首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of low-dose nitric oxide (NO) on gamma-ray-induced micronucleus (MN) frequency was investigated in RAW264.7 cells. Treatment of RAW264.7 cells with 0.25 mM sodium nitroprusside (SNP), a chemical NO donor, reduced the frequency of micronuclei induced by 5 Gy gamma rays by 43 to 45% between 3 and 12 h post-treatment. This effect was blocked by carboxy-PTIO, suggesting that NO may play a role in the reduction of radiation-induced MN frequency. To examine possible mechanisms underlying this effect, we first looked at changes in the antioxidant system after SNP treatment. A significant increase in intracellular glutathione (GSH) was seen in SNP-treated cells between 3 and 12 h post-treatment. Depletion of GSH with buthionine sulfoximine (BSO) increased the gamma-ray-induced increase in MN frequency. Detailed studies using various inducers of intracellular GSH suggested that GSH induction has a partial role in the reducing effect of NO on the gamma-ray-induced MN frequency. Next, the effect of NO on DNA repair and replication systems was examined. Wortmannin, an inhibitor of DNA-dependent protein kinase (DNA-PK), dose-dependently inhibited the reducing effect of NO, while caffeine, an inhibitor of ATM kinase and ATR kinase, did not. DNA-PK activity was increased by NO treatment. Etoposide, a topoisomerase II inhibitor, dose-dependently blocked the effect of NO in reducing the gamma-ray-induced MN frequency. These results suggest that the mechanisms of the effect of NO on the gamma-ray-induced MN frequency include elevation of GSH and up-regulation of DNA-PK activity for repairing double-strand breaks. NO may act as a signal for repair systems, e.g. for nonhomologous recombination and for the replication system in S phase, to reduce the MN frequency.  相似文献   

2.
3.
Butein has been reported to exert anti-inflammatory effect but the possible mechanism involved is still unclear. Here, we report the inhibitory effect of butein on nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) gene expression. Butein also inhibited the induction of tumor necrosis factor-alpha and cyclooxygenase 2 by LPS. To further investigate the mechanism responsible for the inhibition of iNOS gene expression by butein, we examined the effect of butein on LPS-induced nuclear factor-kappaB (NF-kappaB) activation. The LPS-induced DNA binding activity of NF-kappaB was significantly inhibited by butein, and this effect was mediated through inhibition of the degradation of inhibitory factor-kappaB and phosphorylation of Erk1/2 MAP kinase. Furthermore, increased binding of the osteopontin alphavbeta3 integrin receptor by butein may explain its inhibitory effect on LPS-mediated NO production. Taken together, these results suggest that butein inhibits iNOS gene expression, providing possible mechanisms for its anti-inflammatory action.  相似文献   

4.
A series of naturally occurring 3,3-dimethylallyloxy- and geranyloxycoumarins and alkaloids were chemically synthesized and tested as anti-inflammatory agents for their inhibitory effects on nitric oxide production in LPS-stimulated RAW 264.7 cells. Results indicated that the alkaloid of fungal origin 3-methylbut-2-enyl-4-methoxy-8-[(3-methylbut-2-enyl)oxy]quinoline-2-carboxylate, commonly known as Ppc-1, and coumarins having an unsubstituted 2-benzopyrone ring exhibited the highest activity with IC50 values from 23 to 34 μM without having poor or not detectable cytotoxicity. Indomethacine and L-NAME used as reference drugs provided by far less activities.  相似文献   

5.
Chitinous materials have been studied in wound healing and artificial skin substitutes for many years. Nitric oxide (NO) has been shown to contribute to cytotoxicity in cell proliferation during inflammation of wound healing. In this study, we examined the effect of chitin and its derivatives on NO production by activated RAW 264.7 macrophages. Chitin and chitosan showed a significantly inhibitory effect on NO production by the activated macrophages. Hexa-N-acetylchitohexaose and penta-N-acetylchitopentaose also inhibited NO production but with less potency. However, N-acetylchitotetraose, -triose, -biose, and monomer of chitin, N-acetylglucosamine and glucosamine had little effect on NO production by the activated cells. These results suggest that the promotive effect of chitinous material on wound healing be related, at least partly, to inhibit NO production by the activated macrophages.  相似文献   

6.
Huang YC  Guh JH  Cheng ZJ  Chang YL  Hwang TL  Lin CN  Teng CM 《Life sciences》2001,68(21):2435-2447
In the present study we have examined the effect of DCDC (2',5'-dihydroxy-4-chloro-dihydrochalcone) on lipopolysaccharide (LPS)-induced responses in murine macrophage cell line RAW 264.7. Exposure of LPS-stimulated cells to DCDC inhibited the nitrite accumulation in culture medium. DCDC also concentration-dependently inhibited LPS-stimulated increase of iNOS expression; however, it had little effect on iNOS enzyme activity, suggesting that the inhibitory action to DCDC is mainly due to the inhibition on iNOS expression rather than iNOS enzyme activity. DCDC significantly inhibited LPS-evoked degradation of IkappaB-alpha and the nuclear translocation of NF-kappaB; it also exhibited the activity of scavenging the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). DCDC also inhibited cyclooxygenase-2 activity in RAW 264.7 cells with an IC50 of 3.0 microM; furthermore, it also significantly decreased LPS-induced mortality rate in mice. Taken together, we demonstrate that DCDC exhibits inhibitory effects on nitric oxide production through the inhibition of IkappaB-alpha degradation and NF-kappaB activation, and therefore the suppression of iNOS expression. DCDC also shows the antioxidant activity and COX-2 inhibitory action. Moreover, it improves survival in a murine model of endotoxaemia suggesting that DCDC may be potential in the therapy of septic shock.  相似文献   

7.
C14orf28 [alias dopamine receptor-interacting protein (DRIP1)] is belonging to the family of DRIPs. However, the function of C14orf28 in cancer remains unclear. Herein, we found that C14orf28 was upregulated in colorectal cancer tissues compared to the adjacent non-tumor tissues. Overexpression of C14orf28 promoted the cellular proliferation, migration, invasion of colorectal cancer cells. In addition, C14orf28 inhibited apoptosis and promoted the EMT process. To explore the mechanism of dysregulation, C14orf28 was identified to be a target of miR-519d by targeting its 3′UTR. Furthermore, in agreement, C14orf28 overexpression counteracted the inhibitory effect of miR-519d. Together, these results evidenced that C14orf28 downregulated by miR-519d contributes to tumorigenesis and might provide new potential targets for colorectal cancer therapy.  相似文献   

8.
Inactivation of the Staphylococcus aureus tricarboxylic acid (TCA) cycle delays the resolution of cutaneous ulcers in a mouse soft tissue infection model. In this study, it was observed that cutaneous lesions in mice infected with wild-type or isogenic aconitase mutant S. aureus strains contained comparable inflammatory infiltrates, suggesting the delayed resolution was independent of the recruitment of immune cells. These observations led us to hypothesize that staphylococcal metabolism can modulate the host immune response. Using an in vitro model system involving RAW 264.7 cells, the authors observed that cells cultured with S. aureus aconitase mutant strains produced significantly lower amounts of nitric oxide (NO(?)) and an inducible nitric oxide synthase as compared to those cells exposed to wild-type bacteria. Despite the decrease in NO(?) synthesis, the expression of antigen-presentation and costimulatory molecules was similar in cells cultured with wild-type and those cultured with aconitase mutant bacteria. The data suggest that staphylococci can evade innate immune responses and potentially enhance their ability to survive in infected hosts by altering their metabolism. This may also explain the occurrence of TCA cycle mutants in clinical S. aureus isolates.  相似文献   

9.
The effects of oxidatively modified low density lipoprotein (oxLDL) on atherogenesis may be partly mediated by alterations in the production of nitric oxide (NO) by vascular cells. Lipid hydroperoxides (LOOH) and lysophosphatidylcholine (lysoPC) are the major primary products of LDL oxidation. The purpose of this study was to characterize the effects of oxLDL, LOOH and lysoPC on NO production and the expression of inducible nitric oxide synthase (iNOS) gene in lipopolysaccharide (LPS) stimulated macrophages. LDL was oxidized using an azo-initiator 2,2'-azobis (2-amidinopropane) HCl (ABAP) and octadecadienoic acid was oxidized by lipoxygenase to generate 13-hydroperoxyl octadecadienoic acid (13-HPODE). Our study showed that oxLDL markedly decreased the production of NO, the levels of iNOS protein and iNOS mRNA in LPS stimulated macrophages. The inhibition potential of oxLDL on NO production and iNOS gene expression depended on the levels of LOOH formed in oxLDL and was not due to oxLDL cytotoxicity. Furthermore, 13-HPODE markedly reduced NO production and iNOS protein levels, whereas lysoPC showed only slight reduction. The effects of 13-HPODE and lysoPC did not require an acetylated LDL carrier. Our results suggest that 13-HPODE is a much more potent inhibitor of NO production and iNOS gene expression than lysoPC in LPS stimulated RAW264.7 macrophages.  相似文献   

10.
Unstimulated RAW 264.7 macrophages express negligible heme oxygenase-1 (HO-1) protein but incubation with the nitric oxide (NO) donor spermine nonoate (SPNO) induced HO-1 and weakly cyclo-oxygenase-2 (COX-2) protein. This effect was potentiated by coincubation with the COX-2 selective inhibitor, SC58125. Cells incubated with SPNO showed a strong increase in HO-1 mRNA levels after 4 h with a significant potentiation in the presence of SC58125, which did not modify HO-1 mRNA stability. The induction of HO-1 by NO and its potentiation by anti-inflammatory agents may play a role in inflammatory and immune responses.  相似文献   

11.
Prostaglandins (PGs), the arachidonic acid (AA) metabolites of the cyclooxygenase (COX) pathway, and the cytokine TNFalpha play major roles in inflammation and they are synthesised mainly by macrophages. Their syntheses have been shown to be regulated by several factors, including nitric oxide, a further important macrophage product. Since both positive and negative regulations of PGs and TNFalpha synthesis by NO have been reported, we sought to understand the mechanisms underlying these opposite NO effects by using a recent class of NO releasing compounds, the NONOates, which have been shown to release NO in a controlled fashion. To this aim, we analysed the effect of NO released from PAPA/NO (t1/2 15 min) and DETA/NO (t1/2 20 h) in RAW 264.7 cells. Both NONOates were used at the same concentrations allowing the cell cultures to be exposed either at high levels of NO for brief time (PAPA/NO) or at low levels of NO for long time (DETA/NO). We found that the two NONOates had opposite effect on basal TNFalpha release, being increased by PAPA/NO and decreased by DETA/NO, while they did not affect the release stimulated by LPS. At variance, both NONOates increased the basal PGE(2) production, while the LPS-stimulated production was slightly increased only by PAPA/NO. The modulation of PGE(2) synthesis was the result of the distinct effects of the two NO-donors on either arachidonic acid (AA) release or cyclooxygense-2 (COX-2) expression, the precursor and synthetic enzyme of PGs, respectively. Indeed, in resting cultures AA release was enhanced only by PAPA/NO whereas COX-2 expression was moderately upregulated by both donors. In LPS activated cells, both NONOates induced AA release, although with different kinetics and potencies, but only DETA/NO significantly increased COX-2 expression. In conclusion, by comparing the activities of these two NONOates, our observations indicate that level and time of exposure to NO are both crucial in determining the molecular target and the final result of the interactions between NO and inflammatory molecules.  相似文献   

12.
Nystatin is known to deplete lipid rafts from mammalian cell membranes. Lipid rafts have been reported to be necessary for lipopolysaccharide signaling. In this study, it was unexpectedly found that lipopolysaccharide-induced nitric oxide production was not inhibited, but rather increased in the presence of a non-cytotoxic concentration of nystatin. Surprisingly, treatment with nystatin induced only NO production and iNOS expression in RAW264.7 cells. At the concentration used, no changes in the expression of GM1 ganglioside, a lipid raft marker on RAW264.7 cells, was seen. From studies using several kinds of inhibitors for signaling molecules, nystatin-induced NO production seems to occur via the iκB/NF-κB and the PI3 K/Akt pathway. Furthermore, because nystatin is known to activate the Na-K pump, we examined whether the Na-K pump inhibitor amiloride suppresses nystatin-induced NO production. It was found that amiloride significantly inhibited nystatin-induced NO production. The results suggest that a moderate concentration of nystatin induces NO production by Na-pump activation through the PI3 kinase/Akt/NF-κB pathway without affecting the condition of lipid rafts.  相似文献   

13.
14.
Four types of resveratrol dimerized analogues were synthesized and evaluated in vitro on LPS-induced NO production in RAW 264.7 cells. The results showed that several compounds, especially those containing 1,2-diphenyl-2,3-dihydro-1H-indene core (type I), exhibited good inhibitory activities. Among 25 analogues, 12b showed a significant inhibitory activity (49% NO production at 10 μM, IC50 = 3.38 μM). Further study revealed that compound 12b could suppress LPS-induced iNOS expression, NO production, and IL-1β release in a concentration-dependently manner. The mechanism of action (MOA) involved for its anti-inflammatory responses was through signaling pathways of p38 MAPK and JNK1/2, but not ERK1/2.  相似文献   

15.
The effect of D-galactosamine (D-GalN) on nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophage cells was examined. D-GalN augmented the production of NO, but not tumor necrosis factor (TNF)-alpha in LPS-stimulated RAW 264.7 cells. Pretreatment of D-GalN augmented the NO production whereas its post-treatment did not. D-GalN augmented the NO production in RAW 264.7 cells stimulated with either TNF-alpha and interferon-gamma. The augmentation of LPS-induced NO production by D-GalN was due to enhanced expressions of an inducible type of NO synthase mRNA and proteins. Intracellular reactive oxygen species (ROS) were exclusively generated in RAW 264.7 cells stimulated with D-GalN and LPS. Scavenging of intracellular ROS abrogated the augmentation of NO production. It was therefore suggested that D-GalN might augment LPS-induced NO production through the generation of intracellular ROS.  相似文献   

16.
The possible effects of ultra-wideband (UWB) pulses on cellular nitric oxide production were tested by measuring nitrite in the medium bathing UWB exposed RAW 264.7 macrophages. A 30 min exposure to 1 ns UWB pulses, repeated at 600 Hz with an estimated SAR of 0.106 W/kg, did not change nitric oxide production by RAW 264.7 cells, with or without stimulation by gamma interferon and lipopolysaccharide. However, when nitrate was added to the medium of stimulated cells, nitric oxide production increased after UWB exposure, indicating a possible action of UWB pulses on induced nitric oxide synthase under certain conditions.  相似文献   

17.
This study was designed to isolate and identify a potent inhibitory compound against nitric oxide (NO) production from the stem bark of Ulmus pumila L. Ethyl acetate fraction of hot water extract registered a higher level of total phenolics (756.93 mg GAE/g) and also showed strong DPPH (IC50 at 5.6 μg/mL) and ABTS (TEAC value 0.9703) radical scavenging activities than other fractions. Crude extract and its fractions significantly decreased nitrite accumulation in LPS-stimulated RAW 264.7 cells indicating that they potentially inhibited the NO production in a concentration dependent manner. Based on higher inhibitory activity, the ethyl acetate fraction was subjected to Sephadex LH-20 column chromatography and yielded seven fractions and all these fractions registered appreciable levels of inhibitory activity on NO production. The most effective fraction F1 was further purified and subjected to 1H, 13C-NMR and mass spectrometry analysis and the compound was identified as icariside E4. The results suggest that the U. pumila extract and the isolated compound icariside E4 effectively inhibited the NO production and may be useful in preventing inflammatory diseases mediated by excessive production of NO.  相似文献   

18.
Two new farnesyl phenols named grifolinones A and B, together with known grifolin and neogrifolin, were isolated from methanolic extract of the inedible mushroom Albatrellus caeruleoporus. Their structures were characterized by a combination of 2D NMR, MS, IR, and UV spectra. Grifolinone B was composed of two grifolin molecules, which were connected by a C-C bond. Grifolinones A and B, grifolin, and neogrifolin exhibited inhibitory activity against nitric oxide (NO) production stimulated by lipopolysaccharide (LPS) in RAW 264.7 cells with IC50values of 23.4, 22.9, 29.0, and 23.3 microM, respectively.  相似文献   

19.
Arginine is a common substrate for both inducible nitric oxide synthase (iNOS) and arginase. The competition between iNOS and arginase for arginine contributes to the outcome of several parasitic and bacterial infections. Salmonella infection in macrophage cell line RAW264.7 induces iNOS. Because the availability of l-arginine is a major determinant for nitric oxide (NO) synthesis, we hypothesize that in the Salmonella infected macrophages NO production may be regulated by arginase. Here we report for the first time that Salmonella up-regulates arginase II but not arginase I isoform in RAW264.7 macrophages. Blocking arginase increases the substrate l-arginine availability to iNOS for production of more nitric oxide and perhaps peroxynitrite molecules in the infected cells allowing better killing of virulent Salmonella in a NO dependent manner. RAW264.7 macrophages treated with iNOS inhibitor Aminoguanidine reverts the attenuation in arginase-blocked condition. Further, the NO block created by Salmonella was removed by increasing concentration of l-arginine. The whole-mice system arginase I, although constitutive, is much more abundant than the inducible arginase II isoform. Inhibition of arginase activity in mice during the course of Salmonella infection reduces the bacterial burden and delays the disease outcome in a NO dependent manner.  相似文献   

20.
The chemical characterization of Selaginella tamariscina leaves resulted in the isolation of five lignanoside derivatives (14 and 6) and one neolignan (5). These compounds include three new lignanosides, tamariscinosides D–F (13), and one liriodendrin (4) that were isolated for the first time from this plant, together with two known compounds, (2R,3S)-dihydro-2-(3,5-dimethoxy-4-hydroxyphenyl)-7-methoxy-5-acetyl-benzofuran (5) and moellenoside B (6). The chemical structures of these isolated compounds were determined using 1D and 2D NMR, MS, and CD spectroscopic data, and the results were compared to data previously reported in the literatures. These compounds were also evaluated in terms of their inhibition of NO production in lipopolysaccharide (LPS)-stimulated activity in the macrophage cell line RAW 264.7. Among them, compounds 1, 2, 5, and 6 exhibited a significant inhibition with IC50 values ranging from 32.3 to 55.8 μM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号