共查询到20条相似文献,搜索用时 0 毫秒
1.
Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis. 相似文献
2.
The recognition of a new species of rice (Oryza) from Australia 总被引:1,自引:0,他引:1
N. Q. NG J. G. HAWKES J. T. WILLIAMS T. T. CHANG 《Botanical journal of the Linnean Society. Linnean Society of London》1981,82(4):327-330
The discovery is reported of a new endemic species of wild rice in series Sativae from northern Australia, Oryza meridionalis Ng. This species has previously been confused with O. rufipogon, O. nivara and O. saliva f. spontanea. Its geographical distribution is confined to northern Australia. It is also reproductively isolated from all other species of the series Sativae. 相似文献
3.
Huang P Molina J Flowers JM Rubinstein S Jackson SA Purugganan MD Schaal BA 《Molecular ecology》2012,21(18):4593-4604
Asian wild rice (Oryza rufipogon) that ranges widely across the eastern and southern part of Asia is recognized as the direct ancestor of cultivated Asian rice (O. sativa). Studies of the geographic structure of O. rufipogon, based on chloroplast and low‐copy nuclear markers, reveal a possible phylogeographic signal of subdivision in O. rufipogon. However, this signal of geographic differentiation is not consistently observed among different markers and studies, with often conflicting results. To more precisely characterize the phylogeography of O. rufipogon populations, a genome‐wide survey of unlinked markers, intensively sampled from across the entire range of O. rufipogon is critical. In this study, we surveyed sequence variation at 42 genome‐wide sequence tagged sites (STS) in 108 O. rufipogon accessions from throughout the native range of the species. Using Bayesian clustering, principal component analysis and amova , we conclude that there are two genetically distinct O. rufipogon groups, Ruf‐I and Ruf‐II. The two groups exhibit a clinal variation pattern generally from north‐east to south‐west. Different from many earlier studies, Ruf‐I, which is found mainly in China and the Indochinese Peninsula, shows genetic similarity with one major cultivated rice variety, O. satvia indica, whereas Ruf‐II, mainly from South Asia and the Indochinese Peninsula, is not found to be closely related to cultivated rice varieties. The other major cultivated rice variety, O. sativa japonica, is not found to be similar to either O. rufipogon groups. Our results support the hypothesis of a single origin of the domesticated O. sativa in China. The possible role of palaeoclimate, introgression and migration–drift balance in creating this clinal variation pattern is also discussed. 相似文献
4.
The predominant view regarding Asian rice domestication is that the initial origin of nonshattering involved a single gene of large effect, specifically, the sh4 locus via the evolutionary replacement of a dominant allele for shattering with a recessive allele for reduced shattering. Data have accumulated to challenge this hypothesis. Specifically, a few studies have reported occasional seed‐shattering plants from populations of the wild progenitor of cultivated rice (Oryza rufipogon complex) being homozygous for the putative “nonshattering” sh4 alleles. We tested the sh4 hypothesis for the domestication of cultivated rice by obtaining genotypes and phenotypes for a diverse set of samples of wild, weedy, and cultivated rice accessions. The cultivars were fixed for the putative “nonshattering” allele and nonshattering phenotype, but wild rice accessions are highly polymorphic for the putative “nonshattering” allele (frequency ~26%) with shattering phenotype. All weedy rice accessions are the “nonshattering” genotype at the sh4 locus but with shattering phenotype. These data challenge the widely accepted hypothesis that a single nucleotide mutation (“G”/“T”) of the sh4 locus is the major driving force for rice domestication. Instead, we hypothesize that unidentified shattering loci are responsible for the initial domestication of cultivated rice through reduced seed shattering. 相似文献
5.
Variation in the loss of seed dormancy during after-ripening of wild and cultivated rice species 总被引:3,自引:0,他引:3
BACKGROUND AND AIMS: The aim of this paper was to verify the variation in the loss of seed dormancy during after-ripening and the interspecific and interpopulation variability in the degree of dormancy of seven wild and two cultivated rice species comprising 21 populations and two cultivars. METHODS: Four wild rice species from South America, Oryza glumaepatula, O. latifolia, O. grandiglumis and O. alta, and two O. sativa cultivars were tested in one experiment. In a second experiment, five wild species, O. punctata, O. eichingeri, O.rufipogon, O. latifolia and O. glumaepatula, and one cultivated species (O. glaberrima) were evaluated. Initial germination tests were performed soon after the seeds were harvested and subsequently at 2-month intervals, for a total of six storage periods in the first experiment and three in the second. All tests were conducted in the dark at a temperature of 27 degrees C. KEY RESULTS: Different patterns of after-ripening among populations within and between species were observed. CONCLUSIONS: The cultivated species (O. sativa and O. glaberrima) and, amongst the wild species, the tetraploids O. latifolia, O. grandiglumis and the diploids O. eichingeri and O. punctata, had weak dormancy, losing it completely 2 months after harvest, while O. rufipogon and O. glumaepatula exhibited pronounced dormancy. The latter showed different patterns of after-ripening between populations indigenous to the Amazon region and those originating in the Paraguay River system. Seeds of Solimoes (Amazon) and Japura origin showed weak dormancy whereas those of Paraguay origin showed deep dormancy. Ecological differences among natural habitats may be involved in such differentiation. 相似文献
6.
7.
It is generally accepted that Oryza rufipogon is the progenitor of Asian cultivated rice (O. sativa). However, how the two subspecies of O. sativa (indica and japonica) were domesticated has long been debated. To investigate the genetic differentiation in O. rufipogon in relation to the domestication of O. sativa, we developed 57 subspecies-specific intron length polymorphism (SSILP) markers by comparison between 10 indica cultivars and 10 japonica cultivars and defined a standard indica rice and a standard japonica rice based on these SSILP markers. Using these SSILP markers to genotype 73 O. rufipogon accessions, we found that the indica alleles and japonica alleles of the SSILP markers were predominant in the O. rufipogon accessions, suggesting that SSILPs were highly conserved during the evolution of O. sativa. Cluster analysis based on these markers yielded a dendrogram consisting of two distinct groups: one group (Group I) comprises all the O. rufipogon accesions from tropical (South and Southeast) Asia as well as the standard indica rice; the other group (Group II) comprises all the O. rufipogon accessions from Southern China as well as the standard japonica rice. Further analysis showed that the two groups have significantly higher frequencies of indica alleles and japonica alleles, respectively. These results support the hypothesis that indica rice and japonica rice were domesticated from the O. rufipogon of tropical Asia and from that of Southern China, respectively, and suggest that the indica-japonica differentiation should have formed in O. rufipogon long before the beginning of domestication. Furthermore, with an O. glaberrima accession as an outgroup, it is suggested that the indica-japonica differentiation in O. ruffpogon might occur after its speciation from other AA-genome species. 相似文献
8.
Viet The Ho Giacomo Novi Takeshi Fukao Pierdomenico Perata 《The Plant journal : for cell and molecular biology》2012,72(2):282-293
Crop tolerance to flooding is an important agronomic trait. Although rice (Oryza sativa) is considered a flood‐tolerant crop, only limited cultivars display tolerance to prolonged submergence, which is largely attributed to the presence of the SUB1A gene. Wild Oryza species have the potential to unveil adaptive mechanisms and shed light on the basis of submergence tolerance traits. In this study, we screened 109 Oryza genotypes belonging to different rice genome groups for flooding tolerance. Oryza nivara and Oryza rufipogon accessions, belonging to the A‐genome group, together with Oryza sativa, showed a wide range of submergence responses, and the tolerance‐related SUB1A‐1 and the intolerance‐related SUB1A‐2 alleles were found in tolerant and sensitive accessions, respectively. Flooding‐tolerant accessions of Oryza rhizomatis and Oryza eichingeri, belonging to the C‐genome group, were also identified. Interestingly, SUB1A was absent in these species, which possess a SUB1 orthologue with high similarity to O. sativa SUB1C. The expression patterns of submergence‐induced genes in these rice genotypes indicated limited induction of anaerobic genes, with classical anaerobic proteins poorly induced in O. rhizomatis under submergence. The results indicated that SUB1A‐1 is not essential to confer submergence tolerance in the wild rice genotypes belonging to the C‐genome group, which show instead a SUB1A‐independent response to submergence. 相似文献
9.
中国野生稻的现状调查 总被引:35,自引:1,他引:35
中国有三种野生稻。野生稻是栽培水稻的野生近缘种,已被列为濒危植物[7],它们分布于中国南方8个省(区)的热带、亚热带湿热生境中。 近年来人为的干扰和生境的破坏已导致它们的居群大量绝灭,其中濒危程度最高的是普通野生稻。本文阐述了它们的生物学、生态学特性,研究了它们的群落学特征,初步报道了它们的濒危状况,探讨了致濒原因。 相似文献
10.
水稻不同品种对铅吸收、分配的差异及机理 总被引:26,自引:1,他引:26
为探究水稻不同品种对Pb吸收积累的差异及机理,以20个不同基因型水稻品种(系)为材料,采用盆栽方法,研究了Pb在水稻植株各器官中的分配及在籽粒中的分布.结果表明,不同品种间,Pb积累量存在显著差异,但品种间的这种差异与品种类型关系不明显;不同器官、不同生育时期,Pb积累量和积累速率不同;各器官Pb浓度按根、茎、叶、穗、籽粒的顺序大幅度下降,分配到籽粒中的Pb比例很低;根与茎,茎与叶片、穗(抽穗期)、籽粒Pb含量呈极显著负相关;根与叶、穗(抽穗期)、籽粒,叶与穗(抽穗期)、籽粒的Pb含量呈正相关,相关性大多达极显著或显著水平;不同品种抽穗期叶片与成熟期籽粒间的Pb含量达显著正相关;Pb在稻米加工各产物中的分布很不均匀,稻谷经脱壳及精加工1次(2min)后,精米Pb含量仅为籽粒总含Pb量的32.88%. 相似文献
11.
RFLP tagging of a new semidwarfing gene in rice 总被引:6,自引:0,他引:6
C. Z. Liang M. H. Gu X. B. Pan G. H. Liang L. H. Zhu 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1994,88(6-7):898-900
A new rice semidwarfing gene which is not allelic tosd1, temporarily designated assdg, might be of use as a new source of semidwarfism in rice breeding programs. We report here the identification of a DNA marker closely linked to this gene. The DNA marker was identified by testing 120 mapped rice RFLP makers as hybridization probes for Southern analysis of a pair of nearly isogenic lines with or withoutsdg. Linkage association of the marker with the gene was verified using a F2 population segregating for semidwarfism. RFLP analysis showed thatsdg is closely linked to a single-copy DNA clone RZ182 on chromosome 5, with a distance of 4.3 centiMorgans between them. This marker may facilitate early selection for the semidwarfing gene in rice breeding programs 相似文献
12.
Garra imberba is widely distributed in China. At the moment, both Garra yiliangensis and G. hainanensis are treated as valid species, but they were initially named as a subspecies of G. pingi, a junior synonym of G. imberba. Garra alticorpora and G. nujiangensis also have similar morphological characters to G. imberba, but the taxonomic statuses and phylogenetic relationships of these species with G. imberba remains uncertain. In this study, 128 samples from the Jinshajiang, Red, Nanpanjiang, Lancangjiang, Nujiang Rivers as well as Hainan Island were measured while 1 mitochondrial gene and 1 nuclear intron of 24 samples were sequenced to explore the phylogenetic relationship of these five species. The results showed that G. hainanensis, G. yiliangensis, G. alticorpora and G. imberba are the same species with G. imberba being the valid species name, while G. nujiangensis is a valid species in and of itself. 相似文献
13.
Molecular evolution of the rice miR395 gene family 总被引:6,自引:1,他引:5
Guddeti S Zhang DC Li AL Leseberg CH Kang H Li XG Zhai WX Johns MA Mao L 《Cell research》2005,15(8):631-638
14.
Multilocus analysis of nucleotide variation of Oryza sativa and its wild relatives: severe bottleneck during domestication of rice 总被引:6,自引:0,他引:6
Varying degrees of reduction of genetic diversity in crops relative to their wild progenitors occurred during the process of domestication. Such information, however, has not been available for the Asian cultivated rice (Oryza sativa) despite its importance as a staple food and a model organism. To reveal levels and patterns of nucleotide diversity and to elucidate the genetic relationship and demographic history of O. sativa and its close relatives (Oryza rufipogon and Oryza nivara), we investigated nucleotide diversity data from 10 unlinked nuclear loci in species-wide samples of these species. The results indicated that O. rufipogon and O. nivara possessed comparable levels of nucleotide variation ((sil) = 0.0077 approximately 0.0095) compared with the relatives of other crops. In contrast, nucleotide diversity of O. sativa was as low as (sil) = 0.0024 and even lower ((sil) = 0.0021 for indica and 0.0011 for japonica), if we consider the 2 subspecies separately. Overall, only 20-10% of the diversity in the wild species was retained in 2 subspecies of the cultivated rice (indica and japonica), respectively. Because statistic tests did not reject the assumption of neutrality for all 10 loci, we further used coalescent to simulate bottlenecks under various lengths and population sizes to better understand the domestication process. Consistent with the dramatic reduction in nucleotide diversity, we detected a severe domestication bottleneck and demonstrated that the sequence diversity currently found in the rice genome could be explained by a founding population of 1,500 individuals if the initial domestication event occurred over a 3,000-year period. Phylogenetic analyses revealed close genetic relationships and ambiguous species boundary of O. rufipogon and O. nivara, providing additional evidence to treat them as 2 ecotypes of a single species. Lowest linkage disequilibrium (LD) was found in the perennial O. rufipogon where the r(2) value dropped to a negligible level within 400 bp, and the highest in the japonica rice where LD extended to the entirely sequenced region ( approximately 900 bp), implying that LD mapping by genome scans may not be feasible in wild rice due to the high density of markers needed. 相似文献
15.
p-SINE1-like intron of the CatA catalase homologs and phylogenetic relationships among AA-genome Oryza and related species 总被引:1,自引:0,他引:1
M. Iwamoto H. Nagashima T. Nagamine H. Higo K. Higo 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1999,98(6-7):853-861
Intron-2 of the Oryza sativa CatA catalase gene is similar in nucleotide sequence to p-SINE1, a retroposon, and seems to have been added to the ancestral genome of rice. To examine when the p-SINE1-like intron was inserted into CatA during the evolutionary divergence of Oryza species, and to elucidate the evolutionary relationships among Oryza species using the sequence of the intron as a marker, we performed polymerase chain reaction (PCR) analyses of 32 accessions
of 17 Oryza species with various genome types. Agarose-gel electrophoresis of the PCR products revealed that all the Oryza species with an AA genome have the CatA homolog with the intron, whereas other Oryza species have the CatA homolog without the intron. These results indicate that intron-2 of CatA is a good marker for distinguishing species with an AA genome among Oryza species. Sequencing of the PCR products showed that all the introns are similar to p-SINE1, though with slight variations in length. We also performed PCR analyses using four accessions of three species in genera
related to Oryza, and found that there is an intron in the CatA homolog of Leersia perrieri. On the other hand, the CatA homolog of Porteresia coarctata has no intron. Sequence data showed that the L. perrieri homolog has a p-SINE1-like intron similar to that in Oryza species with an AA genome. These results suggest that the p-SINE1-like intron was already present in the common ancestor of Oryza and L. perrieri and was then lost in the ancestors of P. coarctata and of the Oryza species other than those with an AA genome. The phylogenetic tree of Oryza species with an AA genome based on the nucleotide sequences of the introns leads us to propose that Oryza species with an AA genome evolved from an ancestor of Oryza longistaminata.
Received: 29 August 1998 / Accepted: 2 November 1998 相似文献
16.
DAVID B. LOWRY 《Biological journal of the Linnean Society. Linnean Society of London》2012,106(2):241-257
Recent interest in the role of ecology in species formation has led to renewed discussion of the stages in the process of speciation. Although attempts to classify the stages in the process of species formation date back at least as far as Alfred Russel Wallace, one of the most intense debates on the subject occurred among botanists during the mid‐20th Century. The present review outlines the progression of the historical debate about stages in the evolution of species, which was instigated by the genecological classification scheme of Göte Turesson in the 1920s, championed in the mid‐century by Jens Clausen, and then brought under harsh scrutiny by many in the 1960s and 1970s. At the heart of the controversy is the question of whether speciation occurs rapidly on a local scale or gradually through the formation of geographically widespread ecotypes that evolve as precursors to species. A corollary to this debate is the question of whether speciation is reversible and, if so, how does it become irreversible? A third wave of interest in stages in the process of speciation is currently underway, thus making a modern historical narrative of the debate important. Both contemporary and past evolutionary biologists have argued that viewing speciation as being composed of stages can free researchers from concerns over species definitions and focus attention on the mechanisms involved in the process. How speciation becomes irreversible and whether ecogeographically isolated ecotypes are integral to this process remain as important unresolved issues. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106 , 241–257. 相似文献
17.
Wildgermplasmconsistsofanimportantbasisforgeneticimprovementofcultivatedrice.OryzameyerianaisoneofthethreewildOryzaspeciesfoundinChina[1].AccessionsoriginatedinYunnanProvinceexhibitstrongresistancetobacterialleafblight[2].O.meyerianagrowsonthehillsideunde… 相似文献
18.
Ballini E Berruyer R Morel JB Lebrun MH Nottéghem JL Tharreau D 《The New phytologist》2007,175(2):340-350
During the breeding process of cultivated crops, resistance genes to pests and diseases are commonly introgressed from wild species. The size of these introgressions is predicted by theoretical models but has rarely been measured in cultivated varieties. By combining resistance tests with isogenic strains, genotyping and sequencing of different rice accessions, it was shown that, in the elite rice variety IR64, the resistance conferring allele of the rice blast resistance gene Pi33 was introgressed from the wild rice Oryza rufipogon (accession IRGC101508). Further characterization of this introgression revealed a large introgression at this locus in IR64 and the related variety IR36. The introgressed fragment represents approximately half of the short arm of rice chromosome 8. This is the first report of a large introgression in a cultivated variety of rice. Such a large introgression is likely to have been maintained during backcrossing only if a selection pressure was exerted on this genomic region. The possible traits that were selected are discussed. 相似文献
19.
The mechanism inducing the difference in growth rate under various temperature (10–50 °C) conditions was analyzed using rice
and azuki bean seedlings. The growth rate of rice coleoptiles and azuki bean epicotyls increased as temperature increased
up to 40 and 30 °C, respectively, and the elongation was retarded at a higher temperature. The cell wall extensibility of
rice coleoptiles and azuki bean epicotyls also showed the highest value at 40 and 30 °C, respectively, and became smaller
as the temperature rose or dropped from the optimum. The opposite tendency was observed in the minimum stress-relaxation time
of the cell wall. On the other hand, the cellular osmotic concentration of rice coleoptiles and azuki bean epicotyls was lower
at the temperature optimum for growth at 40 and 30 °C, respectively. When rice and azuki bean seedlings grown at 10, 20, 40,
or 50 °C were transferred to the initial temperature (30 °C), the growth rate of coleoptiles and epicotyls was mostly elevated,
concomitant with an increase in the cell wall extensibility. The growth rate was correlated with the cell wall mechanical
parameters in both materials. These results suggest that the environmental temperature modulates the growth rate of plant
shoots by affecting mainly the mechanical properties of the cell wall.
Electronic Publication 相似文献