首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stephen F. Matter 《Oecologia》1996,105(4):447-453
Individual movement patterns and the effects of host plant patch size and isolation on patch occupancy were examined for red milkweed beetles, Tetraopes tetraophthalmus, residing in a heterogeneous landscape. Male beetles were found to move both more often and farther between host plant patches than female beetles, and this difference affected the patterns of patch occupancy observed. Overall, unoccupied milkweed patches were smaller and more isolated than patches occupied by beetles. Patches uninhabited by females tended to be more isolated, but not necessarily smaller, than patches with female beetles, indicating that females may be affected more by patch isolation than patch size. Presence of male beetles on patches showed a stronger response to patch size than to patch isolation. Differences in movement between males and females illustrate the need for demographically based dispersal data. Comparisons of Tetraopes interpatch movement patterns between landscapes composed of patches of different size revealed that landscapes with overall smaller patches may have greater rates of interpatch movement.  相似文献   

2.
Pollen-mediated gene flow along a linear series of patches of the functionally gynodioecious, bee-pollinated Cucurbita foetidissima was assessed using electrophoretic analysis of seed allozymes. Gene flow was documented at distances up to 0.7 km. For the 13 patches examined, interpatch pollen must have sired from 0% to 48.3% (X̄ = 8.5%) of the seeds of monoecious plants (hermaphrodites). Rates of interpatch siring of seeds of pistillate plants (females) averaged 20.4% (range 8.6%-40%) for the three patches examined. Heterogeneity among fruits in seeds sired by interpatch pollen indicates that the arrival of interpatch pollen is clumped with respect to stigmas. Within patches, plants of the same sex type usually shared identical five-locus genotypes, suggesting that clonal propagation predominates. Since approximately 90% of seeds are sired by intrapatch pollen, seeds of monoecious plants appear to result primarily from geitonogamous (self-) fertilization. This may help explain the existence of female plants in natural populations, since self-fertilization has been shown to severely reduce the survival of seedlings in this species.  相似文献   

3.
Aims Habitat fragmentation impacts the spatial extent and isolation of local populations and communities. Although the biological consequences of these impacts have been well studied at the site level, effects directly related to changes in the spatial configuration of populations in the landscape remain less clear. The objective of this study is to examine how changes in the spatial-scale configuration of populations are associated with variability in morph rations in the floral polymorphic Mediterranean geophyte Narcissus assoanus .Methods We performed a nested analysis of morph ratio variation at three spatial scales: a 50×50 km regional scale in SE France, in fourteen 1×1 km landscapes located in the same region, and within 12 spatially extensive population patches. We also quantified variation in the behaviour of pollinators in population patches of contrasting spatial configuration.Important findings At a regional scale, morph ratios show a geographic pattern of increasing isoplethy (1:1 morph ratio) away from centres of human population development and in upland pastures. At the landscape scale, isoplethy of local population patches is more correlated with decreased isolation among patches than with patch size. Finally, within local isoplethic populations, small patches can show significantly biased morph ratios. In small isolated patches, pollinators perform shorter flight distances among consecutive flower visits than in spatially extensive patches. This study of variation in a genetic polymorphism at multiple spatial scales provides new insights into the scale-dependent effects of habitat fragmentation and the potential occurrence of metapopulation dynamics in natural plant populations.  相似文献   

4.
Habitat fragmentation and loss affect population stability and demographic processes, increasing the extinction risk of species. We studied Anolis heterodermus populations inhabiting large and small Andean scrubland patches in three fragmented landscapes in the Sabana de Bogotá (Colombia) to determine the effect of habitat fragmentation and loss on population dynamics. We used the capture‐mark‐recapture method and multistate models to estimate vital rates for each population. We estimated growth population rate and the most important processes that affect λ by elasticity analysis of vital rates. We tested the effects of habitat fragmentation and loss on vital rates of lizard populations. All six isolated populations showed a positive or an equilibrium growth rate (λ = 1), and the most important demographic process affecting λ was the growth to first reproduction. Populations from landscapes with less scrubland natural cover showed higher stasis of young adults. Populations in highly fragmented landscapes showed highest juvenile survival and growth population rates. Independent of the landscape's habitat configuration and connectivity, populations from larger scrubland patches showed low adult survivorship, but high transition rates. Populations varied from a slow strategy with low growth and delayed maturation in smaller patches to a fast strategy with high growth and early maturation in large patches. This variation was congruent with the fast‐slow continuum hypothesis and has serious implications for Andean lizard conservation and management strategies. We suggest that more stable lizard populations will be maintained if different management strategies are adopted according to patch area and habitat structure.  相似文献   

5.
Golden‐headed lion tamarins (GHLTs; Leontopithecus chrysomelas) are endangered primates endemic to the Brazilian Atlantic Forest, where loss of forest and its connectivity threaten species survival. Understanding the role of habitat availability and configuration on population declines is critical for guiding proactive conservation for this, and other, endangered species. We conducted population viability analysis to assess vulnerability of ten GHLT metapopulations to habitat loss and small population size. Seven metapopulations had a low risk of extirpation (or local extinction) over the next 100 years assuming no further forest loss, and even small populations could persist with immediate protection. Three metapopulations had a moderate/high risk of extirpation, suggesting extinction debt may be evident in parts of the species’ range. When deforestation was assumed to continue at current rates, extirpation risk significantly increased while abundance and genetic diversity decreased for all metapopulations. Extirpation risk was significantly negatively correlated with the size of the largest patch available to metapopulations, underscoring the importance of large habitat patches for species persistence. Finally, we conducted sensitivity analysis using logistic regression, and our results showed that local extinction risk was sensitive to percentage of females breeding, adult female mortality, and dispersal rate and survival; conservation or research programs that target these aspects of the species’ biology/ecology could have a disproportionately important impact on species survival. We stress that efforts to protect populations and tracts of habitat of sufficient size throughout the species’ distribution will be important in the near‐term to protect the species from continuing decline and extinction.  相似文献   

6.
The influence of spatial heterogeneity on the population dynamics of a naturally occurring invertebrate host-pathogen system was experimentally investigated. At ten week intervals over a two year period, I quantified the spatial distribution of natural populations of the terrestrial isopod crustacean Porcellio scaber infected with the isopod iridescent virus (IIV). During the seasonally dry periods of summer and early fall in central California, isopod populations were highly aggregated and the degree of patchiness and distance between inhabited patches was greatest. Coincident with increased patchiness and patch spacing was an increase in isopod density within patches. During the wet seasons of winter and spring, isopod population patchiness, inter-patch spacing, and within-patch density was low. Seasonal changes in virus prevalence were negatively correlated with within-patch density, patchiness, and inter-patch spacing. The influence of the spatial distribution of isopods on virus prevalence was also tested in field experiments. The virus was introduced into arrays of artificial habitat patches colonized by isopods in which interpatch distance was varied. The prevalence of resulting infections was monitored at weekly intervals. In addition, dispersal rates between artificial patches and natural patches were quantified and compared. The results showed that isopods in treatments with the smallest inter-patch spacing had the highest virus prevalence, with generally lower prevalence among isopods in more widely spaced patches. The spacing of experimental patches significantly affected virus prevalence, although the experiments did not resolve a clear relationship between patch spacing and virus prevalence. Rates of dispersal between patches decreased with increased patch spacing, and these rates did not differ significantly from dispersal between natural patches. The results suggest that rates of dispersal between isopod subpopulations may be an important component of the infection dynamics in this system. I discuss the consequences of these findings for host-pathogen dynamics in fragmented habitats, and for other ecological interactions in spatially heterogeneous habitats.  相似文献   

7.
Temporal changes in the population size of a phytophagous lady-beetle were analyzed to identify mechanisms affecting lady-beetle population dynamics at different spatial scales. The study area (15 ha) included 18 habitat patches. The major host plants were potato for first generation larvae and eggplant for second generation larvae. The habitat patches were classified into three groups according to the major host plants in each patch: P-E patches (both host plants available), P patches (potato only), and E patches (eggplant only). The winter disappearance of adults in the whole study area, and larval mortality in E patches were apparently the most important factors disturbing the overall population density. Density-dependent movement of females appeared to have the greatest stabilizing effect on the yearly fluctuation of population density. Rate of increase of female adults from the first to the second generation,R, was generally higher on eggplants in E patches than in P-E patches because the adult density of the first generation was much higher in P-E patches. The yearly fluctuation of adult density in each generation tended to be less in patches with all habitat components necessary for the full life cycle (P-E patches). However, such patches were not favorable for first generation females, as indicated by the lower rate of increase from the first to the second generation. The density and stability of lady-beetle populations is discussed in relation to habitat structure.  相似文献   

8.
生境破碎化对动物种群存活的影响   总被引:51,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

9.
Species living in highly fragmented landscapes often occur as metapopulations with frequent population turnover. Turnover rate is known to depend on ecological factors, such as population size and connectivity, but it may also be influenced by the phenotypic and genotypic composition of populations. The Glanville fritillary butterfly (Melitaea cinxia) in Finland uses two host-plant species that vary in their relative abundances among distinct habitat patches (dry meadows) in a large network of approximately 1,700 patches. We found no effect of host species use on local extinction. In contrast, population establishment was strongly influenced by the match between the host species composition of an empty habitat patch and the relative host use by larvae in previous years in the habitat patches that were well connected to the target patch. This "colonization effect" could be due to spatially variable plant acceptability or resistance or to spatially variable insect oviposition preference or larval performance. We show that spatial variation in adult oviposition preference occurs at the relevant spatial scale and that the other possible causes of the colonization effect can be discounted. We conclude that the colonization effect is generated by host preference influencing the movement patterns of ovipositing females. Migrant females with dissimilar host preferences have different perceptions of relative patch quality, which influences their likelihood of colonizing patches with particular host composition.  相似文献   

10.
Abstract The reduction and fragmentation of forest habitats is expected to have profound effects on plant species diversity as a consequence of the decreased area and increased isolation of the remnant patches. To stop the ongoing process of forest fragmentation, much attention has been given recently to the restoration of forest habitat. The present study investigates restoration possibilities of recently established patches with respect to their geographical isolation. Because seed dispersal events over 100 m are considered to be of long distance, a threshold value of 100 m between recent and old woodland was chosen to define isolation. Total species richness, individual patch species richness, frequency distributions in species occurrences, and patch occupancy patterns of individual species were significantly different among isolated and nonisolated stands. In the short term no high species richness is to be expected in isolated stands. Establishing new forests adjacent to existing woodland ensures higher survival probabilities of existing populations. In the long term, however, the importance of long‐distance seed dispersal should not be underestimated because most species showed occasional long‐distance seed dispersal. A clear distinction should be made between populations colonizing adjacent patches and patches isolated from old woodland. The colonization of isolated stands may have important effects on the dynamics and diversity of forest networks, and more attention should be directed toward the genetic traits and viability of founding populations in isolated stands.  相似文献   

11.
Colonization in metapopulations: a review of theory and observations   总被引:1,自引:0,他引:1  
In metapopulation dynamics turnover of populations in isolated patches may be frequent. Regional survival of a species in such a system with frequent extinctions hinges on its colonization ability. Colonization is more than just dispersal; when a propagule reaches a new patch it faces higher extinction probabilities than does an established population. Extinction models as well as empirical data suggest that a large propagule with a potential for rapid increase in a varying environment, or with a low mortality rate in an environment perceived as constant, has a higher probability of successful colonization. Large variation in population size when it is still small increases the risk of failure. Factors introducing such variation are demographic stochasticity and environmental variation. It is hard to single out demographic traits that ensure good colonizing ability, since colonization can be achieved in many different ways, but generalists and species with self-fertilization seem to be superior.  相似文献   

12.
We studied the genetic structure of a population of the clonal grass Setaria incrassata using isozyme electrophoresis to determine the extent of clone and gene diversity within and between three spatially isolated Setaria patches. High clone diversity and an even distribution of genets, which covered less than 0.25 m2 on average, indicated that patch formation was dominated by propagation from seed. Gene diversity was high within the population and there was little genetic differentiation between patches. High levels of heterozygosity and polymorphism and strongly negative fixation indices indicated extensive recombination through outbreeding, despite the low number of alleles per locus. The synergistic effects of vegetative and sexual propagation may have contributed towards the unexpectedly high genetic diversity of this population. Genetic diversity in clonal populations may be preserved in the genotypes of clones and may therefore be increased by even rare recombination events.  相似文献   

13.
Many animal populations are forced to inhabit very small forest patches, which may threaten their long-term survival. In some cases, animals in these forest remnants are able to supplement their diet by using resources outside of their home patch, a process named 'landscape supplementation'. Although this is probably a key process for population survival in fragmented landscapes, little is known about the ability of most animal species to move through the matrix and feed from different landscape elements. In this paper we report several cases of landscape supplementation by two groups of Mexican mantled howler monkeys Alouatta palliata mexicana inhabiting two different forest patches in Los Tuxtlas, Mexico. Our observations show that howler monkeys used several landscape elements, such as isolated trees, live fences and neighboring forest patches to supplement their diet. These observations underline the importance of these landscape elements for the survival of forest-dependent animals in highly fragmented landscapes, as they can provide important food resources and, hence, can be considered as potential extensions of their home range. However, the degree of protection the landowner provides to howler monkeys and proper management of these landscape elements are key aspects in determining the use of these elements by these animals.  相似文献   

14.
In the present study, the distribution, population size and structure, habitat and stand disturbance of a critically endangered plant Euryodendron excelsum H. T. Chang were examined using field investigations. A total of 179 individual plants, including 23 adult trees, were found. The population was distributed in 10 highly isolated and fragmented patches. Half of the 10 patches had less than 10 individual plants and two patches had only one remnant adult; there were no adult plants in two of the patches. Although the overall population structure trends to a reversed 'J' shape, two fragile stages of E. excelsum limit its natural recruitment and regeneration: seed germination and seedling growth toward adulthood. The major threats for the survival of this species are its specific small population size and the high frequency of anthropogenic destruction. Based on the results, some strategies were put forward for the conservation of E. excelsum populations.  相似文献   

15.
Detection of the genetic effects of recent habitat fragmentation in natural populations can be a difficult task, especially for high gene flow species. Previous analyses of mitochondrial DNA data from across the current range of Speyeria idalia indicated that the species exhibited high levels of gene flow among populations, with the exception of an isolated population in the eastern portion of its range. However, some populations are found on isolated habitat patches, which were recently separated from one another by large expanses of uninhabitable terrain, in the form of row crop agriculture. The goal of this study was to compare levels of genetic differentiation and diversity among populations found in relatively continuous habitat to populations in both recently and historically isolated habitat. Four microsatellite loci were used to genotype over 300 individuals from five populations in continuous habitat, five populations in recently fragmented habitat, and one historically isolated population. Results from the historically isolated population were concordant with previous analyses and suggest significant differentiation. Also, microsatellite data were consistent with the genetic effects of habitat fragmentation for the recently isolated populations, in the form of increased differentiation and decreased genetic diversity when compared to nonfragmented populations. These results suggest that given the appropriate control populations, microsatellite markers can be used to detect the effects of recent habitat fragmentation in natural populations, even at a large geographical scale in high gene flow species.  相似文献   

16.
Habitat fragmentation and destruction associated with the rapid urban and rural development of southeast Queensland presents an immediate threat to the survival of koala populations within this region. A sensitive method combining heteroduplex analysis (HDA) with temperature gradient gel electrophoresis (TGGE) was optimized to detect within-species variation in a mitochondrial DNA (mtDNA) control-region fragment, approximately 670 bp in length, from the koala. Eight different haplotypes were characterized in koalas, of which four were novel. Analysis of mtDNA diversity in 96 koalas from five populations in southeast Queensland revealed that the number of haplotypes in a single population ranged from one to five, with an average within-population haplotype diversity of 0.379 +/- 0.016, and nucleotide diversity of 0.22 +/- 0.001%. Nucleotide divergence between populations averaged 0.09 +/- 0.001% and ranged from 0.00 to 0.14%. Significant genetic heterogeneity was observed among most populations, suggesting that koala populations may be spatially structured along matrilines, although this may not be universal. The limited distribution of the central phylogenetic haplotype suggested the possibility of historical population bottlenecks north of the Gold Coast, while the presence of two highly divergent haplotypes at the Moreton site may indicate the occurrence of one or more undocumented translocation events into this area.  相似文献   

17.
Sound management of species requires reliable estimates of dispersal. Indeed, dispersal of individuals among local populations is a key factor in the biology and persistence of local populations and metapopulations. Here, the small-scale dispersal pattern of a vulnerable species, the endemic Sardinian chalk hill blue butterfly, was studied by applying capture–recapture multistate models and a model selection based on AIC values. Model parameters were survival, capture and movement probabilities. The model selection showed that (a) survival probability of individuals varied between sexes, (b) capture probability varied between sexes and among patches, and (c) movement probability varied with direction. The probability of movement among adjacent local populations was generally low and ranged from 0.009 to 0.212. Movement probabilities were subsequently modeled using data on interpatch distance and donor patch population size or area. The ultrastructural biology-based models turned out to be the most appropriate models for inference, showing that dispersal decreases with increasing interpatch distance and increasing donor patch population size or area, and suggesting that butterfly dispersal is affected by patch geometry and the presence of conspecifics. The application of multistate models, the model selection approach, and ultrastructural modeling allowed testing the validity of some general hypotheses related to dispersal in metapopulations and helped elucidate the butterfly small-scale dispersal pattern.  相似文献   

18.
Several ecological conditions and processes occurring naturally in plant populations may lead to spatial aggregation of sexes within populations of sexually polymorphic species. In addition, ecological disturbances such as forest management or fire could also affect the spatial distribution of sexes within populations. Spatial aggregation of sexes can have important consequences for the fitness of the individuals in sex-biased patches through increased pollen limitation and/or variation in the male fitness of hermaphrodites. Therefore, spatial aggregation of sexes could be relevant for the maintenance of the sexual polymorphism in plant species. Here, we used point pattern analysis to study the spatial distribution of female and hermaphrodite individuals within a single population of the gynodioecious understory shrub Daphne laureola, inhabiting a young pine reforestation and the adjacent natural undisturbed area. In the undisturbed area, we found that hermaphrodites were distributed randomly whereas females were spatially aggregated at short distances. Such aggregation could result from narrower ecological amplitude, cyto-nuclear determination of sex and limited dispersal and/or increased cloning in females. In the reforested area, females were slightly more abundant and the two sexes were randomly distributed among all plants. Recolonization processes after certain forest disturbances could thus favour the establishment of females and alter the spatial distribution of sexes in this understory species.  相似文献   

19.
20.
Migration is a key process for spatially structured populations. We examined how a variety of patch based metrics commonly used to predict the number of immigrants to a habitat patch performed based on data from three different years, in two distinct insect systems. The first system was an herbivorous beetle inhabiting patches of its host plant within a 'typical' patch network. In this system there were numerous patches located relatively close to one another, given the beetle's dispersal ability. The second system consisted of a butterfly inhabiting a series of 17 subalpine meadows. Here, the patches were arranged in a linear fashion and were more distant from each other. Overall, we found that the best models incorporating aspects of patch size and/or isolation explained a large (30–40%) amount of deviance in immigration, but there were considerable differences between the systems. For the first system, we found that metrics including the size of the target patch explained the highest proportion of deviance in immigrant numbers, while metrics based only on interpatch distances explained very little deviance. The situation was reversed for the second system. Metrics including the size of the target patch explained little deviance, while metrics based on the distance between patches explained the bulk of deviance in the number of immigrants. The results of our study show that the effects of patch size and isolation on the number of immigrants are highly important, but dependent on spatial scale, the organism studied, and how it responds to the spatial arrangement of patches. Correspondingly, there will be no single generalized metric to predict immigration for all cases. Given the dependency of the results on the system studied, we recommend that future studies provide explicit data on habitat areas and dispersal distance relative to interpatch distance to allow for meaningful comparison among organisms and systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号