首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of small amounts of Fe2+, Zn2+, Cu2+ and thiamine-HCl to the culture medium was required for promoting the galacto-oligosaccharide (Gal-OS)-producing activity of Sterigmatomyces elviae CBS8119, when the concentration of yeast extract in the medium was lowered to 0·1 g l−1. Galacto-oligosaccharide production using a recycling cell culture was performed in a medium containing 360 mg ml−1 of lactose supplemented with optimal concentrations of Fe2+ (1·5 mg l−1 of FeSO4.7H2O), Zn2+ (15 mg l−1 of ZnSO4.7H2O), Cu2+ (0·5 mg l−1 of CuSO4.5H2O) and thiamine-HCl (1 mg l−1 ) . Galacto-oligosaccharide production was maintained at high levels during six cycles of production, with the amount of Gal-OS produced in each cycle being more than 216 mg ml−1 (weight yield of more than 60%).  相似文献   

2.
The effect of hydrogen peroxide on spores of Clostridium perfringens   总被引:3,自引:2,他引:1  
Dithiothreitol (DTT)-treated spores of Clostridium perfringens were much more sensitive to lysis by H2O2 in the presence of Cu2+ than untreated spores. Lysis was greatly inhibited by hydroxyl radical (.OH) scavengers such as thiourea, dimethylthiourea and dimethylsulfoxide, suggesting that lysis of spores by H2O2 involves formation of OH by Cu2+-catalysed decomposition of the peroxide. DTT-treated spores took up Cu2+ at almost the same rate and extent as did isolated cortical fragments. Hydrogen peroxide caused both the decrease in optical density and the hexosamine solubilization of cortical fragments which bound Cu2+.  相似文献   

3.
Abstract: We have used microdialysis to establish an experimental model to characterize mechanisms whereby released substances cause secondary damage in spinal cord injury. We use this model here to characterize damaging effects of the hydroxyl radical (OH') in vivo in the spinal cord. OH'was generatad in vivo by pumping H2O2 and FeCI2/EDTA through parallel microdialysis fibers inserted into the spinal cord. These agents mixed in the tissue to produce OH'by Fenton's reaction. Two types of control experiments were also conducted, one administering only 5 m M H2O2 and the other only 0.5 m M FeCI2/0.82 m M EDTA. During administration of these chemicals, electrical conduction was recorded as one test for deterioration. OH'blocked conduction completely in 2.5-5 h and Fe2+/EDTA partly blocked conduction, but H2O2 alone did not cause detectable blockage. Histological examination supported the hypothesis that neurons were killed by OH', as Fe2+/EDTA and H2O2 alone did not destroy significant numbers of neurons. OH', H2O2, and Fe2+ all caused gradual increases in extracellular amino acid levels. These results are consistent with Fe2+-catalyzed free radical generation playing a role in tissue damage upon spinal cord injury.  相似文献   

4.
Abstract: We studied the action of H2O2 on the exocytosis of glutamate by cerebrocortical synaptosomes. The treatment of synaptosomes with H2O2 (50–150 µ M ) for a few minutes results in a long-lasting depression of the Ca2+-dependent exocytosis of glutamate, induced by KCl or by the K+-channel inhibitor 4-aminopyridine. The energy state of synaptosomes, as judged by the level of phosphocreatine and the ATP/ADP ratio, was not affected by H2O2, although a transient decrease was observed after the treatment. H2O2 did not promote peroxidation, as judged by the formation of malondialdehyde. In indo-1-loaded synaptosomes, the treatment with H2O2 did not modify significantly the KCl-induced increase of [Ca2+]i. H2O2 inhibited exocytosis also when the latter was induced by increasing [Ca2+]i with the Ca2+ ionophore ionomycin. The effects of H2O2 were unchanged in the presence of superoxide dismutase and the presence of the Fe3+ chelator deferoxamine. These results appear to indicate that H2O2, apparently without damaging the synaptosomes, induces a long-lasting inhibition of the exocytosis of glutamate by acting directly on the exocytotic process.  相似文献   

5.
Pyoverdine (PvdI) is the major siderophore secreted by Pseudomonas aeruginosa PAOI in order to get access to iron. After being loaded with iron in the extracellular medium, PvdI is transported across the bacterial outer membrane by the transporter, FpvAI. We used the spectral properties of PvdI to show that in addition to Fe3+, this siderophore also chelates, but with lower efficiencies, all the 16 metals used in our screening. Afterwards, FpvAI at the cell surface binds Ag+, Al3+, Cd2+, Co2+, Cu2+, Fe3+, Ga3+, Hg2+, Mn2+, Ni2+ or Zn2+ in complex with PvdI. We used Inductively Coupled Plasma-Atomic Emission Spectrometry to monitor metal uptake in P. aeruginosa : TonB-dependent uptake, in the presence of PvdI, was only efficient for Fe3+. Cu2+, Ga3+, Mn2+ and Ni2+ were also transported into the cell but with lower uptake rates. The presence of Al3+, Cu2+, Ga3+, Mn2+, Ni2+ and Zn2+ in the extracellular medium induced PvdI production in P. aeruginosa . All these data allow a better understanding of the behaviour of the PvdI uptake pathway in the presence of metals other than iron: FpvAI at the cell surface has broad metal specificity at the binding stage and it is highly selective for Fe3+ only during the uptake process.  相似文献   

6.
Abstract: The activities mediated by the N -methyl-D-aspartate (NMDA) receptor were studied in cultured rat cerebellar granule cells. Micromolar concentrations of the metal binding compounds, EDTA, cysteine, and histidine, as well as serum albumin strongly potentiated receptor activity in the presence of millimolar concentrations of Ca2+ and Mg2+. The findings indicated that these agents remove an endogenous metal, probably Zn2+, which attenuates NMDA receptor-mediated 45Ca uptake and toxicity. Several added metal ions were therefore tested at low micromolar concentrations. Zn2+ was found to be the most potent inhibitor of NMDA-induced 45Ca uptake, followed by Cu2+ and Fe2+. Co2+, Cd2+, Fe3+, and AI3+ had no significant effect, whereas Ni2+ potentiated the 45Ca uptake but inhibited at much higher concentrations. The potentiating agents that remove the endogenous metal had a particularly dramatic effect in the presence of Mg2+, the voltage-dependent suppressor of the NMDA receptor. Mg2+ also played an important role in the inhibitory effect of added Zn2+. Much lower concentrations of Zn2+ were needed to achieve inhibition of NMDA-induced 45Ca uptake in the presence of Mg2+. Under a variety of conditions, a very good correlation was found between NMDA receptor-mediated 45Ca uptake and the magnitude of acute neurotoxicity.  相似文献   

7.
Abstract: The effects of 1-methyl-4-phenylpyridinium (MPP+) on the oxygen consumption, ATP production, H2O2 production, and mitochondrial NADH-CoQ1 reductase (complex I) activity of isolated rat brain mitochondria were investigated. Using glutamate and malate as substrates, concentrations of 10–100 µ M MPP+ had no effect on state 4 (−ADP) respiration but decreased state 3 (+ADP) respiration and ATP production. Incubating mitochondria with ADP for 30 min after loading with varying concentrations of MPP+ produced a concentration-dependent decrease in H2O2 production. Incubation of mitochondria with ADP for 60 min after loading with 100 µ M MPP+ caused no loss of complex I activity after washing of MPP+ from the mitochondrial membranes. These data are consistent with MPP+ initially binding specifically to complex I and inhibiting both the flow of reducing equivalents and the production of H2O2 by the mitochondrial respiratory chain, without irreversibly damaging complex I. However, mitochondria incubated with H2O2 in the presence of Cu2+ ions showed decreased complex I activity. This study provides additional evidence that cellular damage initiated by MPP+ is due primarily to energy depletion caused by specific binding to complex I, any increased damage due to free radical production by mitochondria being a secondary effect.  相似文献   

8.
A variety of metal microprojectiles are currently used for carrying foreign DNA into living cells via particle-acceleration techniques. While developing a microprojectile-mediated protocol for transforming cells of sugarbeet ( Beta vulgaris L.), formation of a blue precipitate was observed with the indigoqenic substrate 5-bromo-4-chloro-3-indolyl-β-D-glucuronic acid (X-gluc) in the absence of gusA DNA encoding β-D-glucuronidase (GUS). Tungsten microcarriers, but not gold or silicon carbide, proved capable of catalyzing the cleavage of the glucuronide residue from three histochemical substrates evaluated: X-gluc, salmon X-gluc and magenta X-gluc. Indigo-stained sugarbeet cells were observed following bombardment with tungsten in the absence of DNA. Addition of oxidative catalysts to tungsten microcarriers during substrate incubation had no apparent effect on the metal-mediated catalysis. Treatment of microcarriers with Proteinase K and heat ruled out the presence of enzymes. Microbiological evaluation indicated the absence of contaminating microbes. Similarly, metal-catalyzed hydrolysis of the fluorogenic substrate 4-methylumbelliferyl-β-D-glucuronic acid (4-MUG) was observed in the presence of tungsten spheres but not with gold or silicon carbide particles. With this substrate, hydrolysis also occurred with millimolar concentrations of Cu2+, Fe2+ and Zn2+ ions. Consequently, careful monitoring of DNA-minus controls and avoidance of millimolar concentrations of Cu2+, Fe2+ and Zn2+ ions are recommended in microprojectile bombardment experiments where transient assays for gusA expression are performed.  相似文献   

9.
Washed Escherichia coli ATCC11775 cells were killed by (–)-epigallocatechin (EGC) in the presence of a non- lethal concentration of Cu2+ (1 μmol l−1) without additional H2O2, but not by (–)-epicatechin (EC). EGC alone (< 0·1 mmol l−1) did not reduce the viability of the cells. The survival curve obtained in the presence of EGC and Cu2+ was similar to that obtained in the presence of (–)-adrenaline (EN) and Cu2+.  相似文献   

10.
The role of a recently identified K+ATP channel in preventing H2O2 formation was examined in isolated pea stem mitochondria. The succinate-dependent H2O2 formation was progressively inhibited, when mitochondria were resuspended in media containing increasing concentration of KCl (from 0.05 to 0.15  M ). This inhibition was linked to a partial dissipation of the transmembrane electrical potential (ΔΨ) induced by KCl. Conversely, the malate plus glutamate-dependent H2O2 formation was not influenced. The succinate-sustained H2O2 generation was also unaffected by nigericin (a H+/K+ exchanger), but completely prevented by valinomycin (a K+ ionophore). In addition, cyclosporin A (a K+ATP channel opener) inhibited this H2O2 formation, while ATP (an inhibitor of the channel opening) slightly increased it. The inhibitory effect of ATP was strongly stimulated in the presence of atractylate (an inhibitor of the adenine nucleotide translocase), thus suggesting that the receptor for ATP on the K+ channel faces the intermembrane space. Finally, the succinate-dependent H2O2 formation was partially prevented by phenylarsine oxide (a thiol oxidant).  相似文献   

11.
Effects of mixtures of chloride salts of cadmium, copper and zinc on survival, whole body residues, and histopathology of mummichog, Fundulus heteroclitus (L.), were investigated in synthetic sea water at 20‰ salinity and 20°C. Mixtures of Cu2+ and Zn2+ as indicated by 96 h bioassay studies produced more deaths than expected on the basis of toxicities of individual components. Concentrations of Cd2+ not ordinarily lethal exerted a negative effect on survival of fish intoxicated by salts of copper, zinc, or both.
Atomic absorption determinations of Cd, Cu, and Zn residues in mummichog which survived 96 h exposures to each of these toxicants provided useful indices of total body burdens for these metals. Residues from survivors held in mixtures, especially Cd2+ and Zn2+ mixtures, did not conform to patterns observed for single elements. Whole body aggregates of Cd, Cu, and Zn from dead mummichogs were of limited worth owing to possible accumulation of these metals from the medium after death.
Renal and lateral line canal lesions were noted in all fish subjected to copper concentrations of 1 mg/1 and higher. Renal lesions observed in fish immersed in mixtures of Cu2+ and Cd2+ assumed a damage pattern characteristic of Cd2+; with mixtures of Cu2+ and Zn2+, lesion were typical of Cu2+-induced damage. Lesions induced in lateral line epithelium by Cu2+ were not affected by either Cd2+ or Zn2+. Epithelia lining the oral cavity were necrotized by the caustic action of high levels of Zn2+ (60 mg/1) and of Cu2+ (8 mg/1).  相似文献   

12.
Abstract: The effect of Zn2+ on t -[3H]butylbicycloorthobenzoate ([3H]TBOB) binding to the GABAA receptor complex was studied autoradiographically in rat brain. Zn2+ inhibited [3H]TBOB binding in a dose-dependent manner at physiological concentrations. Saturation analysis revealed noncompetitive inhibition in various brain regions. The inhibitory effect of Zn2+ had regional heterogeneity; regions showing the greatest inhibition of [3H]TBOB binding were cortical laminae I–III, most areas of hippocampus, striatum, septum, and cerebellar cortex. Regions with relatively less inhibition of [3H]TBOB binding included cortical laminae V–VI, thalamus, superior colliculus, inferior colliculus, and central gray matter. The effect of Zn2+ and those of other GABAA ligands, such as benzodiazepines, bicuculline, isoguvacine, and picrotoxin, on [3H]TBOB binding seemed to be additive. Ni2+, Cd2+, and Cu2+ also inhibited [3H]TBOB binding with a regional heterogeneity similar to that produced by Zn2+. These results are consistent with Zn2+ acting at the previously detected recognition site on the GABAA receptor complex, distinct from the picrotoxin, GABA, and benzodiazepine sites. The regional heterogeneity of the Zn2+ effect may reflect differential regional distribution of GABAA receptor subtypes among brain regions. Other divalent cations probably act at the Zn2+ binding site.  相似文献   

13.
The metabolism of hydrogen peroxide by the scavenging system was studied in Chlamydomonas grown in a selenium-lacking and a selenium-containing medium. In cells of the former, 40% of external hydrogen peroxide (H2O2) was scavenged by ascorbate peroxidase (AsAP; EC 1.11.1.11) and the residual H2O2 by catalase (EC 1.11.1.6). The enzymes involved in the ascorbate-glutathione cycle including AsAP. were localized in the chloroplast. In cells of the latter, glutathione peroxidase (GSHP; EC 1.11.1.9) functioned primarily in the removal of external H2O2. GSHP was located solely in the cytosol. The Chlamydomonas AsAP was relatively stable in ascorbate-depleted medium as compared with chloroplast AsAP of higher plants. No inactivation of the enzyme was found upon its incubation with hydroxyurea, an inhibitor of the chloroplast enzyme of higher plants. The enzyme showed higher specificity with pyrogallol than with ascorbate. The amino acid sequences in the N-terminal region of Chlamvdomonas AsAP showed no significant similarity to any other AsAP from higher plants and Euglena . The enzyme had a molecular mass of 34 kDa. The Km values of the enzyme for ascorbate and H2O2 were 5.2±0.3 and 25±3.4 μ M , respectively. Hydrogen peroxide was generated at a rate of 6.1±0.8 μmol mg-1 chlorophyll h-1 in intact chloroplasts isolated from Chlamydomonas cells grown in the presence of Na-selenite, and it diffused from the organelles into the medium.  相似文献   

14.
M.E.FÁREZ-VIDAL, A. FERNÁNDEZ-VIVAS, F. GONZÁLEZ AND J.M. ARIAS. 1995. The extracellular amylase activity from Myxococcus coralloides D was purified by Sephacryl S-200 gel filtration and by ion-exchange chromatography on DEAE-Sephadex A-25. The molecular weight was estimated by SDS-PAGE and by gel filtration as 22.5 kDa. The optimum temperature was 45°C. The pH range of high activity was between 6.5 and 8.5, with an optimum at pH 8.0. Activity was strongly inhibited by Hg2+, Zn2+, Cu2+, Ag+, Pb2+, Fe2+ and Fe3+, EDTA and glutardialdehyde, but was less affected by Ni2+ and Cd2+. Li+, Mg2+, Ba2+, Ca2+, N -ethylmaleimide, carbodiimide and phenyl methyl sulphonyl fluoride had almost no affect. The K m (45°C, pH 8) for starch hydrolysis was 2.0 times 10-3 gl-1. Comparison of the blue value-reducing curves with the time of appearance of maltose identified the enzyme produced by M. coralloides D as an α-amylase.  相似文献   

15.
Suspension-cultured rose ( Rosa damascena Mill. cv. Gloire de Guilan) cells irradiated with UV-C (254 nm. 558 J m−2) showed a transient production of H2O2 as measured by chemiluminescence of luminol in the presence of peroxidase (EC 1.1 1.1.7). The peak concentration of H2O2, which occurred at about 60–90 min after irradiation, was 8–9 μ M . The time course for the appearance of H2O2 matched that for UV–induced K+ efflux. Treatments that inhibited the UV-induced efflux of K+, including heat and overnight incubation with cycloheximide and diethylmaleate, also inhibited the appearance of H2O2. The converse was not always true, since catalase (EC 1.11.1.6. and salicylhydroxamic acid, which inhibited luminescence, did not stop K+ efflux. We conclude that H2O2 synthesis depends on K+ efflux. Because H2.O2 in the extracellular space is required for lignin synthesis in many plant tissues, we suggest that the UV–stimulated production of H2O2 is an integral part of a defensive lignin synthesis.  相似文献   

16.
Generation of O2 and H2O2 as well as the activities of superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase, dehydroascorbate reductase and ascorbate content were studied in tomato cell cultures in response to fusaric acid – a nonspecific toxin of phytopathogenic Fusarium species. Toxin treatment resulted in decreased cell viability which was preceded by culture medium alkalinization up to 0.65 pH unit and enhanced extracellular O2 production. The H2O2 level was not significantly affected. In toxin-treated cultures, a transient, significant increase occurred in intracellular superoxide dismutase, catalase, guaiacol peroxidase and ascorbate peroxidase activities. Fusaric acid-induced ascorbate turnover modulation led to up to a twofold increase in dehydroascorbic acid accumulation, and a decrease in the associated ascorbate redox ratio. It was concomitant with a significant decrease in dehydroascorbate reductase activity. These results support previous observations that the pro- and anti-oxidant systems are involved in response to fusaric acid treatment although differential response of H2O2 and its metabolism-related enzymes between the whole leaf and cell culture assays was found.  相似文献   

17.
Indispensability of Iron for the Growth of Cultured Chick Cells   总被引:1,自引:0,他引:1  
In order to clarify the role of iron in the growth promoting effect of transferrin (Tf), the effects of the following substances were examined in cultured chick skeletal myogenic cells: transition metal ions (Fe2+, Fe3+, Cr3+, Cu2+, Mn2+, Co2+, Cd2+, Zn2+ and Ni2+), Tf complexes with these metals and metal-free apoTf.
The cells did not grow well when incubated in a culture medium composed of Eagle's minimum essential medium and horse serum. But they grew well in the presence of Fe2+ or Fe3+ (10–100 μM) or iron-bound Tf (10–500 nM) in the medium. None of the transition metal ions other than iron was effective. Neither apoTf nor Tf complexes with these metals showed the growth promoting effect. The generality of the requirement of iron for cell growth was ascertained in the primary culture of other types of chick embryonic cells: fibroblasts, cardiac myocytes, retinal pigment cells and spinal nerve cells.
The results show that iron is one of the indispensable substances for cell growth and suggest that Tf protein plays a role in facilitating the transport of iron into the cells.  相似文献   

18.
Six-month-old water cultures of Pinus radiataI D. Don seedlings showed optimal growth, and the highest CO2 assimilation and photosystem I-dependent ascorbate/dichlorophenolindophenol → NADP+ electron flow, at 3.0 uM Cu2+ (excess) in the hydroponic media. In the nine-month-old water cultures, when the early Cu deprivation has been overcome, the optimum for plant growth and CO2 fixation shifts to 0.3 u M Cu2+ (normal); at that time, the 3.0 uM Cu2+ water cultures showed toxic symptoms of foliar chlorosis. Under Cu2+ deficient levels (0.03 uM) a clear decrease in the photosystem I-linked electron transport and CO2 assimilation rates, as well as in the whole plant development, could be observed. Both six- and nine-month-old water cultures showed a close relationship between the Cu2+ concentration of the media and the foliar Cu content. However, leaf chlorophyll and the Cu content of thylakoid lamellae showed such a correlation only in the Cu2+ deficient and Cu2+ normal water cultures. The conclusion from these results is that the electron transport rate ascorbate/dicblorophenolindophenol → NADP+, and the Cu content of the photosynthetic membranes, can be used to diagnose a Cu deficiency in Pinus radiata plants.  相似文献   

19.
The present study examined the response of antioxidant systems to NaCl stress and the relative importance of Na+ and Cl in NaCl-induced antioxidant systems in roots of rice seedlings. NaCl treatment caused an increase in the activities of ascorbate peroxidase (APX) and glutathione reductase (GR) in roots of rice seedlings, but had no effect on the activities of superoxide dismutase (SOD) and catalase (CAT). There were detectable differences in APX and GR isoenzymes between control and NaCl-treated roots. Levels of activity for SOD and CAT isoenzymes did not change in NaCl-stressed roots compared with the control roots. NaCl treatment produced an increase in H2O2, ascorbate (AsA), dehydro-ascorbate (DHA), reduced glutathione (GSH), and oxidized glutathione (GSSG) levels. Treatment with 50 m M Na-gluconate (whose anion is not permeable to membrane) led to a similar Na+ level in roots to that with 100 m M NaCl. It was found that treatment with 50 m M Na-gluconate affected H2O2, AsA, and DHA levels, APX and GR activities, OsAPX and OsGR mRNA induction in the same way as 100 m M NaCl. These observed changes seem to be mediated by Na+ toxicity and not by Cl toxicity. On the other hand, it was found that NaCl, but not Na-gluconate and NaNO3, caused an increase in GSH and GSSG levels, indicating that Cl, rather than Na+, is responsible for the NaCl-increased GSH and GSSG levels in roots of rice seedlings.  相似文献   

20.
D.A. DIONYSIUS, P.A. GRIEVE AND A.C. VOS. 1992. Components of the lactoperoxidase system were measured during incubation in Isosensitest broth, with enzymatic (glucose oxidase, GO) or chemical (sodium carbonate peroxyhydrate, SCP) means to generate H2O2. When low levels of thiocyanate (SCN-) were used in the GO system, H2O2 was detected and lactoperoxidase (LP) was inactivated when SCN- was depleted. With 10-fold higher SCN-, LP remained active and H2O2 was not detectable. The oxidation product of the LP reaction, most likely hypothiocyanite, was present in low concentrations. When SCP was used for the immediate generation of H2O2 in a system employing low SCN-, half the LP activity was lost within minutes but thereafter it remained stable. Low concentrations of oxidation product were measured and H2O2 was not detected during the course of the experiment. At high SCN- levels, relatively high concentrations of oxidation product were produced immediately, with H2O2 undetectable. The results suggest that the final product of the LP reaction depends on the method of H2O2 generation and the relative proportions of the substrates. Antibacterial activity of the two LPS was tested against an enterotoxigenic strain of Escherichia coli. Both systems showed bactericidal activity within 4 h incubation at 37°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号