首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Posttranslational modification with the geranygeranyl moiety is essential for the ability of Rab GTPases to control processes of membrane docking and fusion. This modification is conferred by Rab geranylgeranyltransferase (RabGGTase), which catalyzes the transfer of two 20-carbon geranylgeranyl groups from geranylgeranyl pyrophosphate onto C-terminal cysteine residues of Rab proteins. The enzyme consists of a catalytic alpha/beta heterodimer and an accessory protein termed Rab escort protein (REP-1) that delivers the newly prenylated Rab proteins to their target membrane. In order to understand the structural basis of Rab prenylation, we have investigated in vitro assembly and crystallization of the RabGGTase:REP-1:Rab complex. In order to ensure maximal stability of the ternary complex, we generated its monoprenylated form, which corresponds to a reaction intermediate and displays the highest affinity between the components. This was achieved by expressing the individual components in baculovirus and Escherichia coli systems with subsequent purification followed by in vitro monoprenylation of Rab7 with immobilized recombinant RabGGTase. Purified monoprenylated REP-1:Rab7 was complexed with recombinant RabGGTase and crystallized in hanging drops. The crystals obtained initially diffract to 8 A on an in-house X-ray source.  相似文献   

2.
Phosphonoacetamido(oxy) groups have proven to be good mimics of the diphosphate portion in geranylgeranyl protein transferase I (GGTase I) inhibitors. The introduction of small alkyl groups (Me, Et) into the diphosphate mimic moiety caused a further decrease in collateral farnesyl protein transferase (FTase) inhibitory activity, thereby improving GGTase I over FTase selectivity.  相似文献   

3.
Protein geranylgeranyltransferase type I (PGGTase-I) catalyzes the nucleophilic substitution reaction between the C(20) geranylgeranyl diphosphate (GGPP) and a protein-derived thiol to form a thioether linkage. Here, we describe the stereochemical outcome, at the isoprenoid C1, of the reaction catalyzed by human PGGTase-I. To accomplish this, the pentapeptide N-dansyl-GCVLL was first enzymatically prenylated by human PGGTase-I with either (S)-[1-(2)H]farnesyl diphosphate or (S)-[1-(2)H]GGPP. The prenylated products were then degraded to dipeptides using carboxypeptidase Y. After HPLC purification, the prenylated dipeptide products were analyzed by (1)H NMR spectroscopy. The final spectra were compared with the spectra from the same product obtained via chemical synthesis to deduce the stereochemistry of the PGGTase-I-catalyzed reaction. This comparison showed that the reaction proceeds with inversion of configuration with no detectable (< 6%) racemization. These results are more consistent with an associative-type mechanism, but they cannot be used to rule out a dissociative mechanism involving a rigid, solvent-sequestered, tight ion pair.  相似文献   

4.
The Schizosaccharomyces pombe cwg2+ gene encodes the β-subunit of geranylgeranyl transferase I (GGTase I), which participates in the post-translational C-terminal modification of several small GTPases, allowing their targeting to the membrane. Using the two-hybrid system, we have identified the cwp1+ gene that encodes the α-subunit of the GGTase I. cwp1p interaction with cwg2p was mapped to amino acids 1–244 or 137–294 but was not restricted to amino acids 137–244. The genomic cwp1+ was isolated and sequenced. It has two putative open reading frames of 677 and 218 bp, separated by a 51 bp intron. The predicted amino acid sequence shows significant similarity to GGTase I α-subunits from different species. However, complementation of Saccharomyces cerevisiae ram2-1 mutant by overexpressing the cwp1+ gene was not possible. Expression of both cwg2+ and cwp1+ in Escherichia coli allowed ‘in vitro’ reconstitution of the GGTase I activity. S. pombe cells expressing the mutant enzyme containing the cwg2-1 mutation do not grow at 37°C, but the growth defect can be suppressed by the addition of sorbitol. Actin immunostaining of the cwg2-1 mutant strain grown at 37°C showed an abnormal distribution of actin patches. The cwg2-1 mutation was identified as a guanine to adenine substitution at nucleotide 604 of the coding region, originating the change A202T in the cwg2p. Deletion of the cwg2 gene is lethal; Δcwg2 spores can divide two or three times before losing viability. Most cells have aberrant morphology and septation defects. Overexpression of the rho1G15VC199R double-mutant allele in S. pombe caused loss of polarity but was not lethal and did not render the (1–3)β-D -glucan synthase activity independent of GTP. Therefore, geranylgeranylation of rho1p is required for the appropriate function of this GTPase.  相似文献   

5.
6.
Small GTPases from the Rab/Ypt family regulate events of vesicular traffic in eukaryotic cells. For their activity, Rab proteins require a posttranslational modification that is conferred by Rab geranylgeranyltransferase (RabGGTase), which attaches geranylgeranyl moieties onto two cysteines of their C terminus. RabGGTase is present in both lower and higher eukaryotes in the form of heterodimers composed of alpha and beta subunits. However, the alpha subunits of RabGGTases from lower eukaryotes, including Saccharomyces cerevisiae (yRabGGTase), are half the size of the corresponding subunit of the mammalian enzyme. This difference is due to the presence of additional immunoglobulin (Ig)-like and leucine rich (LRR) domains in the mammalian transferase. To understand the possible evolutionary implications and functional consequences of structural differences between RabGGTases of higher and lower eukaryotes, we have investigated the interactions of yeast RabGGTase with its lipid and protein substrate. We have demonstrated that geranylgeranyl pyrophosphate binds to the enzyme with an affinity of ca. 40 nM, while binding of farnesyl pyrophosphate is much weaker, with a K(d) value of ca. 750 nM. This finding suggests that despite the structural difference, yRabGGTase selects its lipid substrate in a fashion similar to mammalian RabGGTase. However, unlike the mammalian enzyme, yRabGGTase binds prenylated and unprenylated Ypt1p:Mrs6p complexes with similar affinities (K(d) ca. 200 nM). Moreover, in contrast to the mammalian enzyme, phosphoisoprenoids do not influence the affinity of Mrs6p for yRabGGTase. Using an in vitro prenylation assay, we have demonstrated that yRabGGTase can prenylate Rab proteins in complex with mammalian REP-1, thus indicating that neither the LRR nor the Ig-like domains, nor the recently discovered alternative pathway of catalytic complex assembly, are essential for the catalytic activity of RabGGTase. Despite the ability to function in concert with yRabGGTase in vitro, expression of mammalian REP-1 could not complement deletion of MRS6 gene in S. cerevisiae in vivo. The implications of these findings are discussed.  相似文献   

7.
Properties and partial purification of the bovine adrenal cholesterol esterase from the 100000 X g supernatant fraction were investigated. Variations of the enzyme activity with time-dependent (enzymatic) and time-dependent (non enzymatic) effects have been demonstrated. Mg2 has been proved to inhibit the enzyme activity by a non-enzymatic effect in 50mM Tris/HCl buffer, pH 7.4. A time-dependent inactivation of the cholesterol esterase has been observed in the same buffer. The enzyme could be protected from this enzymatic inactivation by its substrate, cholesterol oleate. cAMP, ATP and Mg2 cuase a time-dependent stimulation of the enzyme in 50mM Tris/HCl buffer, pH 7.4. This result suggests that corticotropin activates the soluble cholesterol esterase from bovine adrenals via cAMP-dependent protein kinase. This view is strengthened by the incorporation of 32P radioactivity from [gamma-32P] ATP into the protein fraction of the 100,000 X g supernatant. The protein-bound 32P radioactivity could be co-purified with the enzyme activity during the partial purification of the soluble cholesterol esterase.  相似文献   

8.
9.
10.
Kang TJ  Suga H 《Nucleic acids research》2007,35(12):4186-4194
Here we report in vitro selection of a novel ribozyme that catalyzes the 5′-nucleotidyl transfer reaction forming the 2′–5′ phosphodiester bond. This ribozyme was retrieved as a sole sequence in the pool enriched for the 5′-triphosphate-dependent activities in incorporating ATP-γS. The originally selected ribozyme consisting of 109-nucleotide (nt) was miniaturized to 45-nt M4 ribozyme via a series of mutation studies, and based on this mini-ribozyme a trans-acting system was constructed. One of the most challenging tasks in our study was to determine the chemistry occurring at the 5′-ppp site. We utilized various analytical methods including MALDI-TOF analysis of the product generated by the trans-acting system and elucidated the chemistry to be 3′→5′ mononucleotide extension forming the 2′–5′ phosphodiester bond. Interestingly, M4 ribozyme promiscuously accepts a variety of purine nucleotides bearing 5′-mono-, di- and triphosphates as substrates. This remarkable ability of M4 ribozyme would lead us to the development of a new tool for the 5′-modification of RNAs with unique chemical groups.  相似文献   

11.
The ram2 and cal1 genes encode the alpha and beta subunits of yeast geranylgeranyl protein transferase type I (GGPT-I), respectively. Arginine 166 of the beta subunit was changed to isoleucine (betaR166I), histidine 216 to aspartic acid (betaH216D), and asparagine 282 to alanine (betaN282A) by sequential PCR using mutagenic primers. The mutants were expressed under the same conditions as the wild-type and were assayed for GGPT-I activity. Wild-type yeast GGPT-I, alphaH145D, alphaD140N, betaR166I, betaH216D and betaN282A mutant GGPT-Is were partially purified by ammonium sulfate fractionation followed by a Q-Sepharose column. Characterization studies were performed using the active fraction of the Q-Sepharose column. In the chemical modification reactions, the catalytic activity of purified enzyme decreased in proportion to the concentration of modifying reagents, such as phenylglyoxal and diethyl pyrocarbonate (DEPC). Geranylgeranyl pyrophosphate (GGPP) protected the enzyme activity from the modification with phenylglyoxal. The measurement of GGPP binding to wild-type and five mutant GGPT-Is was performed by a gel-filtration assay. The binding of GGPP to the betaR166I mutant was low and the Km value for GGPP in the betaR166I mutant increased about 29-fold. Therefore, the results suggest a role for this arginine residue that directly influences the GGPP binding. The activity of the DEPC-modified GGPT-I was inhibited by 80% at 5 mM DEPC. The differential absorption at 242 nm may suggest that at this concentration the modified histidine residues were 1.5 mol per GGPT-I. The protein substrate, glutathione S-transferase fused undecapeptide (GST-CAIL) protected the enzyme from inactivation by DEPC, and the Km value for GST-CAIL in the betaH216D mutant increased about 12-fold. The trypsin digestion of [14C]DEPC-modified enzyme yielded a single radioactive peptide. As a result of the sequence of this radioactive peptide, the histidine 216 residue was assumed to be an essential part of binding of peptide substrate.  相似文献   

12.
In vitro synthesis of myelin proteolipid protein (PLP) was explored at different ages using rat brain total homogenates, incubated for 30 min with [3H]glycine. Total proteolipids, extracted from the incubated samples, were separated by SDSPAGE and the radioactivity was measured in the band corresponding to myelin PLP. The incorporation into PLP in relation to the incorporation into brain total proteins increased from 0.04% at 10 days of age to 0.63% at 20 days, and declined slowly thereafter. Time course experiments were carried out using brain homogenates obtained from rats of 20 days of age (i.e. at the period of maximal synthesis of PLP). Labeled PLP molecules were already found at 2.5 min of incubation and the incorporation of the label into this protein, relative to the incorporation into total proteins, did not vary throughout the entire incubation time (30 min). Pulsechase experiments using a similar system and adding cycloheximide at different incubation times showed that the appearance of label into mature PLP was immediately blocked by the inhibitor of protein synthesis. These data suggest that PLP is synthesized as such and not as a pre-protein which is subsequently processed to render mature PLP.  相似文献   

13.
Petioles, leaf discs and midribs of several olive (Olea europaea L.) cultivars, collected from potted greenhouse plants, field-grown and in vitro shoots, were used to test their morphogenic capacity. Adventitious shoots were induced only in petioles from in vitro-grown shoots of cultivars Moraiolo, Dolce Agogia and Halkidikis, grown on Olive Medium (OM) plus 18 M zeatin within 4 to 5 weeks. Regeneration was achieved, both on Murashige and Skoog (MS) and on modified OM, only in the dark. The highest regeneration was achieved directly from the proximal part of the petioles after 2 to 3 weeks in media containing 5 to 40 M thidiazuron, or with both 10 M 2-isopentenyladenine +2.2 M 6-benzyladenine with or without low auxin concentration (not more than 2.5 M). A few adventitious shoots were also regenerated from callus when it was shifted from auxin and cytokinin media to cytokinin only medium. The regeneration potential was higher in petioles collected from apical nodes than from basal ones. The adventitious shoots were transferred to solid half-strength MS medium supplemented with 4.5 M zeatin for further development. Several regenerated shoots were rooted and the plantlets hardened in the greenhouse. No apparent differences regarding morphological aspects were observed among the regenerated plantlets or with those obtained by stimulation of axillary buds.Abbreviations BA 6-benzyladenine - IBA indole-3-butyric acid - NAA 1-naphthaleneacetic acid - TDZ thidiazuron (N-phenyl-N-1,2,3-thidiazol-5-ylurea) - 2iP 2-isopentenyladenine - MS Murashige and Skoog medium - 1/2 MS half strength MS - OM Olive Medium - BN Bourgin & Nitsch  相似文献   

14.
The biosynthesis of the tocotrienol and tocopherol forms of vitamin E is initiated by prenylation of homogentisate. Geranylgeranyl diphosphate (GGDP) is the prenyl donor for tocotrienol synthesis, whereas phytyl diphosphate (PDP) is the prenyl donor for tocopherol synthesis. We have previously shown that tocotrienol synthesis is initiated in monocot seeds by homogentisate geranylgeranyl transferase (HGGT). This enzyme is related to homogentisate phytyltransferase (HPT), which catalyzes the prenylation step in tocopherol synthesis. Here we show that monocot HGGT is localized in the plastid and expressed primarily in seed endosperm. Despite the close structural relationship of monocot HGGT and HPT, these enzymes were found to have distinct substrate specificities. Barley (Hordeum vulgare cv. Morex) HGGT expressed in insect cells was six times more active with GGDP than with PDP, whereas the Arabidopsis HPT was nine times more active with PDP than with GGDP. However, only small differences were detected in the apparent Km values of barley HGGT for GGDP and PDP. Consistent with its in vitro substrate properties, barley HGGT generated a mixture of tocotrienols and tocopherols when expressed in the vitamin E-null vte2-1 mutant lacking a functional HPT. Relative levels of tocotrienols and tocopherols produced in vte2-1 differed between organs and growth stages, reflective of the composition of plastidic pools of GGDP and PDP. In addition, HGGT was able to functionally substitute for HPT to rescue vte2-1-associated phenotypes, including reduced seed viability and increased fatty acid oxidation of seed lipids. Overall, we show that monocot HGGT is biochemically distinct from HPT, but can replace HPT in important vitamin E-related physiological processes.  相似文献   

15.
16.
A highly active soluble peroxidase has been identified in the preputial gland of rats and characterized immunologically along with other soluble peroxidases of a number of rat tissues such as submaxillary gland, exorbital lacrimal gland and also of the uterine fluid of the estrogen treated rats. All these peroxidases have the native molecular weight around 73K as determined by gel filtration on Sephadex G-150. An antiserum raised against the pure bovine lactoperoxidase interacts with all these soluble peroxidases and immunoprecipitates the enzyme activity in a similar fashion when titrated against varied concentration of the antiserum. Following electrophoretic transfer to nitrocellulose by Western blotting, the antiserum crossreacts with the preputial, submaxillary and lacrimal gland protein of molecular weight around 73K and with the uterine fluid protein of molecular weight of 80K. An additional crossreacting protein of molecular weight of 80K is also evident in the lacrimal gland. All these enzyme preparations, however, contain another immunoreactive protein of molecular weight of about 64K. While 73–80K molecular weight interacting proteins may represent different forms of peroxidase, presumably with varied carbohydrate moieties, 64K molecular weight protein may be a precursor of the peroxidase which after posttranslational modification such as heme conjugation and glycosylation leads to formation of native enzyme. Rat harderian gland, unlike bovine origin, does not contain any detectable peroxidase activity. The immunoblot does not show the presence of any immunoreactive protein around 73K except the 64K molecular weight protein indicating that this gland can not synthesize the native peroxidase from this precursor probably due to some block in posttranslational modification.  相似文献   

17.
18.
Outer mitochondrial membrane was purified from rat liver. Its constituent proteins were analyzed by SDS-polyacrylamide gel electrophoresis and by electrophoretic immunoblotting employing antibodies raised against total outer mitochondrial membrane. Anti-outer mitochondrial membrane antiserum reacted with only one polypeptide (15 kDa) in rough microsomes, whereas no immunological cross-reactivity was observed with other mitochondrial compartments (intermembrane space, inner membrane, or matrix) or with lysosomes or total cytosol. The antiserum was employed to characterize precursors of outer mitochondrial membrane proteins synthesized in vitro in a rabbit reticulocyte cell-free system. One product (a 68 kDa polypeptide designated OMM-68) bound efficiently to mitochondria in vitro but did not interact with either dog pancreas or rat liver microsomes, either co-translationally or post-translationally. OMM-68 was synthesized exclusively by the membrane-free class of polyribosomes. Attachment of precursor OMM-68 to mitochondria was not accompanied by processing of the polypeptide to a different size.  相似文献   

19.
Partial protein extracts were prepared from hair, nail, and stratum corneum in the absence of urea and interfacial surfactant. Tricine-sodium dodecyl sulfate polyacrylamide gel electrophoreses of these extracts showed low-molecular weight protein-rich patterns apparently different from those of whole protein extracts, which mainly consist of keratin bands. Several protein bands characterized each keratinized tissue or its derived species. In addition, we identified a major band of approximately 7 kDa as ubiquitin, a ubiquitously distributed protein that mediates non-lysosomal protein degradation, through direct amino acid sequence analysis of the electro-blotted protein band. The partial extraction is useful for investigation of soluble proteins retained in the keratinized tissues.  相似文献   

20.
1. Tissue activities, intracellular distribution as well as selected kinetic and molecular properties of succinyl-CoA-3-oxo acid CoA transferase (EC 2.8.3.5), which is an initiator of ketone body usage, were examined in rat kidney, heart, brain, skeletal muscle and liver. 2. The activities of the transferase in these tissues are similar to reported values and are somewhat affected by the homogenization medium. Higher recoveries of activity are obtained when a phosphate buffer is used during the homogenization; Tris solutions containing sucrose and mannitol lead to only slightly lower recoveries, but can be used in studies to determine the subcellular localization of the transferase activity. 3. A close correlation was observed between the relative activities of citrate synthase (a mitochondrial marker enzyme) and CoA transferase in the cytoplasmic, particulate and mitochondrial fractions from the five tissues. 4. The K(m) values for acetoacetate (measured in two different ways), the ratio of V(max.) values for the two enzyme-catalysed half-reactions, and succinate product inhibition are quite similar for the enzyme from each tissue. 5. The enzymes are also similar in molecular weight (with an approx. mol.wt. of 100000 as determined by gel filtration). All show an active band in isoelectric-focusing studies with pI 7.6, except for the enzyme from heart (pI 6.8). 6. The results demonstrate a mitochondrial origin for CoA transferase in these rat tissues and support the proposition that CoA transferase is a ketolytic enzyme, i.e. an enzyme uniquely involved in the complete oxidation of ketone bodies. The structural and functional similarities of these transferases suggest that factors other than differences in K(m) values account for differences in the utilization of ketone bodies by various tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号