首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Breast cancer is one of the most frequent and aggressive primary tumors among women of all races. Matrix metalloproteinase (MMPs), a family of zinc- and calcium-dependent secreted or membrane anchored endopeptidases, is overexpressed in varieties of diseases including breast cancer. Therefore, noninvasive visualization and quantification of MMP in vivo are of great interest in basic research and clinical application for breast cancer early diagnosis. Herein, we developed a 99mTc labeled membrane type I matrix metalloproteinase (MT1-MMP) specific binding peptide, [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS), for in vivo detection of MDA-MB-231 breast tumor by single photon emission computed tomography (SPECT). [99mTc]-(HYNIC-AF7p)(tricine)(TPPTS) demonstrated nice biostability and high MT1-MMP binding affinity in vitro and in vivo. Tumor-to-muscle ratio was found to reach to the highest (4.17±0.49) at 2 hour after intravenously administration of [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) into MDA-MB-231 tumor bearing mice. Overall, [99mTc]-(HYNIC-AF7P)(tricine)(TPPTS) demonstrated great potential for MT1-MMP targeted detection in vivo and it would be a promising molecular imaging probe that are probably beneficial to breast cancer early diagnoses.  相似文献   

2.
In our previous studies, interleukin-8 (IL-8) was labeled with (99m)Tc using hydrazinonicotinamide (HYNIC) as bifunctional coupling agent and tricine as coligand. This preparation showed excellent characteristics for imaging of infection in a rabbit model of soft-tissue infection. In the present study, the propylaldehyde hydrazone formulation of HYNIC was introduced to stabilize HYNIC-IL-8. (99m)Tc-HYNIC-IL-8 was prepared using 5 different coligand formulations. The effect of these coligand formulations on the in vitro characteristics and in vivo behavior of (99m)Tc-HYNIC-IL-8 was investigated. HYNIC-conjugated IL-8 was labeled with (99m)Tc in the presence of either (A) tricine, (B) ethylenediaminediacetic acid (EDDA), (C) tricine and trisodium triphenylphosphinetrisulfonate (TPPTS), (D) tricine and nicotinic acid (NIC), or (E) tricine and isonicotinic acid (ISONIC). These preparations were characterized in vitro by RP-HPLC, determination of the octanol/water partition coefficient, stability studies, and receptor binding assays. The in vivo biodistribution of the radiolabel in rabbits with E. coli-induced soft-tissue infection was determined both by gamma-camera imaging as well as by tissue counting at 6 h pi. Specific activity (MBq/microg) was highest for (ISO)NIC (up to 80) > TPPTS (40) > tricine (15) > EDDA (7). RP-HPLC and octanol/water partition coefficients showed a shift toward higher lipophilicity for the TPPTS preparation. The leukocyte receptor binding fractions were around 40-55% for all preparations except for TPPTS, which showed predominantly nonspecific binding. All preparations were stabilized in serum, but the stability in PBS was highest for NIC and TPPTS > EDDA > ISONIC > tricine. The in vivo biodistribution showed highest abscess/muscle for NIC and ISONIC (>200) > EDDA and tricine (approximately 100) > TPPTS (<40). Gamma camera imaging rapidly visualized the abscess from 2 h pi onward for all formulations. The abscess/background (A/B) at 6 h pi for ISONIC was significantly higher (P < 0.05) than that of tricine and the A/B of TPPTS was significantly lower (P < 0.05). IL-8 can be rapidly and easily labeled with (99m)Tc using HYNIC as a chelator in combination with various coligands. The most optimal infection imaging characteristics were found for formulations using nicotinic acid/tricine as coligand system combining a high specific activity and high in vitro stability with high abscess/muscle ratios (>200) and high abscess/background ratios (>20). Protein doses to be administered were as low as 70 ng/kg bodyweight. At these low protein doses, side effects are not to be expected in the human system. This paves the way for infection imaging studies in patients.  相似文献   

3.
Jia B  Shi J  Yang Z  Xu B  Liu Z  Zhao H  Liu S  Wang F 《Bioconjugate chemistry》2006,17(4):1069-1076
This report describes the evaluation of biodistribution properties of three radiotracers, [(99m)Tc(SQ168)(EDDA)], [(99m)Tc(SQ168)(tricine)(PDA)], and [(99m)Tc(SQ168)(tricine)(TPPTS)] (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid]-Glu(cyclo{Lys-Arg-Gly-Asp-d-Phe})-cyclo{Lys-Arg-Gly-Asp-d-Phe}; EDDA = ethylenediamine-N,N'-diacetic acid; PDA = 2,5-pyridinedicarboxylic acid; TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate), and their potential to image the glioma integrin alpha(v)beta(3) expression in BALB/c nude mice bearing the U87MG human glioma xenografts. It was found that all three radiotracers were able to localize in glioma tumors with a relatively high tumor uptake and long tumor retention time by binding to the integrin alpha(v)beta(3) expressed on both tumor cells and endothelial cells of tumor neovasculature. It seems that the coligand has minimal effect on integrin alpha(v)beta(3) targeting capability of the (99m)Tc-labeled RGDfK dimer, but it has a significant impact on their biodistribution properties. For example, the complex [(99m)Tc(SQ168)(tricine)(TPPTS)] has the lowest liver uptake and the highest metabolic stability in normal BALB/c nude mice. Results from SPECT imaging studies show that the glioma tumors can be clearly visualized with all three radiotracers at 4 h postinjection. Among the three radiotracers evaluated in this study, [(99m)Tc(SQ168)(tricine)(TPPTS)] has the best imaging quality and is a promising candidate for more preclinical evaluations in the future.  相似文献   

4.
Radiolabeled somatostatin analogs have become powerful tools in the diagnosis and staging of neuroendocrine tumors, which express somatostatin receptors. The aim of this study was to evaluate a new somatostatin analog, 6‐hydrazinopyridine‐3‐carboxylic acid‐Ser3‐octreotate (HYNIC‐SATE) radiolabeled with 99mTc, using ethylenediamine‐N,N′‐diacetic acid and tricine as coligands, to be used as a radiopharmaceutical for the in vivo imaging of somatostatin receptor subtype 2 (SSTR2)‐positive tumor. Synthesis of the peptide was carried out on a solid phase using a standard Fmoc strategy. Peptide conjugate affinities for SSTR2 were determined by receptor binding affinity on rat brain cortex and C6 cell membranes. Internalization rate of 99mTc‐HYNIC‐SATE was studied in SSTR2‐expressing C6 cells that were used for intracranial tumor studies in rat brain. A reproducible in vivo C6 glioma model was developed in Sprague–Dawley rat and confirmed by histopathology and immunohistochemical analysis. Biodistribution and imaging properties of this new radiopeptide were also studied in C6 tumor‐bearing rats. Radiolabeling was performed at high specific activities, with a radiochemical purity of >96%. Peptide conjugate showed high affinity binding for SSTR2 (HYNIC‐SATE IC50 = 1.60 ± 0.05 n m ) and specific internalization into rat C6 cells. After administration of 99mTc‐HYNIC‐SATE in C6 glioma‐bearing rats, a receptor specific uptake of radioactivity was observed in SSTR‐positive organs and in the implanted intracranial tumor and rapid excretion from nontarget tissues via kidneys. 99mTc‐HYNIC‐SATE is a new receptor‐specific radiopeptide for targeting SSTR2‐positive brain tumor and might be of great promise in the scintigraphy of SSTR2‐positive tumors. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Zhou Y  Kim YS  Lu X  Liu S 《Bioconjugate chemistry》2012,23(3):586-595
The main objective of this study is to explore the impact of cyclic RGD peptides and (99m)Tc chelates on biological properties of (99m)Tc radiotracers. Cyclic RGD peptide conjugates, HYNIC-K(NIC)-RGD(2) (HYNIC = 6-hydrazinonicotinyl; RGD(2) = E[c(RGDfK)](2) and NIC = nicotinyl), HYNIC-K(NIC)-3G-RGD(2) (3G-RGD(2) = Gly-Gly-Gly-E[Gly-Gly-Gly-c(RGDfK)](2)), and HYNIC-K(NIC)-3P-RGD(2) (3P-RGD(2) = PEG(4)-E[PEG(4)-c(RGDfK)](2)), were prepared. Macrocyclic (99m)Tc complexes [(99m)Tc(HYNIC-K(NIC)-RGD(2))(tricine)] (1), [(99m)Tc(HYNIC-K(NIC)-3G-RGD(2))(tricine)] (2), and [(99m)Tc(HYNIC-K(NIC)-3P-RGD(2))(tricine)] (3) were evaluated for their biodistribution and tumor-targeting capability in athymic nude mice bearing MDA-MB-435 human breast tumor xenografts. It was found that 1, 2, and 3 could be prepared with high specific activity (~111 GBq/μmol). All three (99m)Tc radiotracers have two major isomers, which show almost identical uptake in tumors and normal organs. Replacing the bulky and highly charged [(99m)Tc(HYNIC)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3″-trisulfonate) with a smaller [(99m)Tc(HYNIC-K(NIC))(tricine)] resulted in less uptake in the kidneys and lungs for 3. Surprisingly, all three (99m)Tc radiotracers shared a similar tumor uptake (1, 5.73 ± 0.40%ID/g; 2, 5.24 ± 1.09%ID/g; and 3, 4.94 ± 1.71%ID/g) at 60 min p.i. The metabolic stability of (99m)Tc radiotracers depends on cyclic RGD peptides (3P-RGD(2) > 3G-RGD(2) ~ RGD(2)) and (99m)Tc chelates ([(99m)Tc(HYNIC)(tricine)(TPPTS)] > [(99m)Tc(HYNIC-K(NIC))(tricine)]). Immunohistochemical studies revealed a linear relationship between the α(v)β(3) expression levels and tumor uptake or tumor/muscle ratios of 3, suggesting that 3 is useful for monitoring the tumor α(v)β(3) expression. Complex 3 is a very attractive radiotracer for detection of integrin α(v)β(3)-positive tumors.  相似文献   

6.
Shi J  Jia B  Liu Z  Yang Z  Yu Z  Chen K  Chen X  Liu S  Wang F 《Bioconjugate chemistry》2008,19(6):1170-1178
In this report, we present the synthesis and evaluation of the (99m)Tc-labeled beta-Ala-BN(7-14)NH2 (ABN = beta-Ala-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) as a new radiotracer for tumor imaging in the BALB/c nude mice bearing HT-29 human colon cancer xenografts. The gastrin releasing peptide receptor binding affinity of ABN and HYNIC-ABN (6-hydrazinonicotinamide) was assessed via a competitive displacement of (125)I-[Tyr4]BBN bound to the PC-3 human prostate carcinoma cells. The IC 50 values were calculated to be 24 +/- 2 nM and 38 +/- 1 nM for ABN and HYNIC-ABN, respectively. HYNIC is the bifunctional coupling agent for (99m)Tc-labeling, while tricine and TPPTS (trisodium triphenylphosphine-3,3',3'-trisulfonate) are used as coligands to prepare the ternary ligand complex [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] in very high yield and high specific activity. Because of its high hydrophilicity (log P = -2.39 +/- 0.06), [(99m)Tc(HYNIC-ABN)(tricine)(TPPS)] was excreted mainly through the renal route with little radioactivity accumulation in the liver, lungs, stomach, and gastrointestinal tract. The tumor uptake at 30 min postinjection (p.i.) was 1.59 +/- 0.23%ID/g with a steady tumor washout over the 4 h study period. As a result, it had the best T/ B ratios in the blood (2.37 +/- 0.68), liver (1.69 +/- 0.41), and muscle (11.17 +/- 3.32) at 1 h p.i. Most of the injected radioactivity was found in the urine sample at 1 h p.i., and there was no intact [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] detectable in the urine, kidney, and liver samples. Its metabolic instability may contribute to its rapid clearance from the liver, lungs, and stomach. Despite the steady radioactivity washout, the tumors could be clearly visualized in planar images of the BALB/c nude mice bearing the HT-29 human colon xenografts at 1 and 4 h p.i. The favorable excretion kinetics from the liver, lungs, stomach, and gastrointestinal tract makes [(99m)Tc(HYNIC-ABN)(tricine)(TPPTS)] a promising SPECT radiotracer for imaging colon cancer.  相似文献   

7.
This report describes biodistribution characteristics of three ternary ligand complexes [(99m)Tc(SQ168)(tricine)(L)] (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-Glu(cyclo{Lys-Arg-Gly-Asp-d-Phe})-cyclo{Lys-Arg-Gly-Asp-d-Phe}; L = TPPTS (trisodium triphenylphosphine-3,3',3' '-trisulfonate), ISONIC (isonicotinic acid) and PDA (2,5-pyridinedicarboxylic acid)) in athymic nude mice bearing MDA-MB-435 human breast cancer xenografts. Ternary ligand complexes [(99m)Tc(SQ168)(tricine)(L)] (L = TPPTS, ISONIC and PDA) were prepared and were analyzed by a reversed HPLC method. Surprisingly, coligands have little impact on log P values of their ternary ligand (99m)Tc complexes even though HPLC retention times suggest that [(99m)Tc(SQ168)(tricine)(PDA)] and [(99m)Tc(SQ168)(tricine)(ISONIC)] are more hydrophilic than [(99m)Tc(SQ168)(tricine)(TPPTS)]. The results from biodistribution studies indicated that excretion kinetics of the (99m)Tc-labeled cyclic RGDfK dimer can be modified by the choice of coligand. The fact that all three radiotracers show high tumor uptake during the 2 h study period suggests that the coligand has minimal effect on the tumor targeting capability of the (99m)Tc-labeled cyclic RGDfK dimer. Results from the blocking experiment suggest that the tumor localization of the (99m)Tc-labeled cyclic RGDfK dimer is integrin alpha(v)beta(3)-mediated. On the basis of their liver uptake and tumor/liver ratios, we believe that PDA has the advantage over TPPTS and ISONIC for the (99m)Tc-labeling of HYNIC-biomolecule conjugates.  相似文献   

8.
Previously, we reported a [99mTc(ǀ)]+ labeled d-glucoamine derivative (99mTc-CN5DG) and evaluated it as a tumor imaging agent in mice bearing A549 tumor xenografts. In this paper, 99mTc-CN5DG was further studied in U87 MG (human glioma cells), HCT-116 (human colon cancer cells), PANC-1 (human pancreatic cancer cells) and TE-1 (human esophageal cancer cells) tumor xenografts models to verify its potential application for imaging of different kinds of tumors. The biodistribution data showed that 99mTc-CN5DG had a similar biodistribution pattern in four tumor models at 2 h post-injection with high accumulation in tumors and kidneys. The tumor/muscle ratios (from 4.08 ± 0.42 to 9.63 ± 3.53) and tumor/blood ratios (from 17.18 ± 7.40 to 53.17 ± 16.16) of 99mTc-CN5DG in four tumor models were high. All four kinds of tumors could be clearly seen on their corresponding SPECT/CT images. Pharmacokinetic study in healthy CD-1 mice demonstrated that 99mTc-CN5DG cleared fast from blood (2 min, 12.97 ± 0.88%ID/g; 60 min, 0.33 ± 0.06%ID/g) and the blood distribution, elimination half-life was 5.81 min and 21.16 min, respectively. No abnormality was observed through the abnormal toxicity study. All of the above results demonstrated that 99mTc-CN5DG could be a broad-spectrum SPECT probe for tumor imaging and its further clinical application is warranted.  相似文献   

9.
A HYNIC-conjugated chemotactic peptide (fMLFK-HYNIC) was labeled with (99m)Tc using tricine and TPPTS as coligands. The combination of fMLFK-HYNIC, tricine, and TPPTS with (99m)Tc produced a ternary ligand complex [(99m)Tc(fMLFK-HYNIC)(tricine)(TPPTS)] (RP463). RP463 was synthesized either in two steps, in which the binary ligand complex [(99m)Tc(fMLFK-HYNIC)(tricine)(2)] (RP469) was formed first and then reacted with TPPTS, or in one step by direct reduction of [(99m)Tc]pertechnetate with stannous chloride in the presence of fMLFK-HYNIC, tricine, and TPPTS. The radiolabeling yield for RP463 was usually >/=90% using 10 microg of fMLFK-HYNIC and 100 mCi of [(99m)Tc]pertechnetate. Unlike RP469, which decomposed rapidly in the absence of excess tricine coligand, RP463 was stable in solution for at least 6 h. [(99)Tc]RP463 was prepared and characterized by HPLC and electrospray mass spectrometry. In an in vitro assay, [(99)Tc]RP463 showed an IC(50) of 2 nM against binding of [(3)H]fMLF to receptors on PMNs. [(99)Tc]RP463 also induces effectively the superoxide release of polymorphonuclear leukocytes (PMNs) with an EC(50) value of 0.2 +/- 0.2 nM. The localization of RP463 in the infection foci was assessed in a rabbit infection model. RP463 was cleared from the blood faster than RP469 and was excreted mainly through the renal system. As a result of rapid blood clearance and increased uptake, the target-to-background ratios continuously increased from 1.5 +/- 0.2 at 15 min postinjection to 7.5 +/- 0.4 at 4 h postinjection. Visualization of the infected area could be as early as 2 h. A transient decrease in white blood cell count of 35% was observed during the first 30 min after injection of the HPLC-purified RP463 in the infected rabbit. This suggests that future research in this area should focus on developing highly potent antagonists for chemotactic peptide receptor or other receptors on PMNs and monocytes.  相似文献   

10.
Integrin alphavbeta3 plays a critical role in tumor angiogenesis and metastasis. Radiolabeled RGD peptides that are integrin alphavbeta3-specific are very useful for noninvasive imaging of integrin expression in rapidly growing and metastatic tumors. In this study, we determined the binding affinity of E{E[c(RGDfK)]2}2 (tetramer) and its 6-hydrazinonicotinamide conjugate (HYNIC-tetramer) against the binding of 125I-echistatin to the integrin alphavbeta3-positive MDA-MB-435 breast cancer cells. The athymic nude mice bearing MDA-MB-435 xenografts were used to evaluate the potential of ternary ligand complex [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] (TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate) as a new radiotracer for imaging breast cancer integrin alphavbeta3 expression by single photon emission computed tomography (SPECT). It was found that the binding affinity of tetramer (IC50 = 51 +/- 11 nM) was slightly higher than that of its dimeric analogue (IC50 = 78 +/- 27 nM) and is comparable to that of the HYNIC-tetramer conjugate (IC50 = 55 +/- 11 nM) within the experimental error. Biodistribution data showed that [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had a rapid blood clearance (4.61 +/- 0.81 %ID/g at 5 min postinjection (p.i.) and 0.56 +/- 0.12 %ID/g at 120 min p.i.) and was excreted mainly via the renal route. [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] had high tumor uptake with a long tumor retention (5.60 +/- 0.87 %ID/g and 7.30 +/- 1.32 %ID/g at 5 and 120 min p.i., respectively). The integrin alphavbeta3-specificity was demonstrated by co-injection of excess E[c(RGDfK)]2, which resulted in a significant reduction in tumor uptake of the radiotracer. The metabolic stability of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] was determined by analyzing urine and feces samples from the tumor-bearing mice at 120 min p.i. In the urine, about 20% of [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] remained intact while only approximately 15% metabolized species was detected in feces. SPECT images displayed significant radiotracer localization in tumor with good contrast as early as 1 h p.i. The high tumor uptake and fast renal excretion make [99mTc(HYNIC-tetramer)(tricine)(TPPTS)] a promising radiotracer for noninvasive imaging of the integrin alphavbeta3-positive tumors by SPECT.  相似文献   

11.
目的:通过放射性核素~(99m)Tc标记BmK CT多肽制备靶向胶质瘤的显像剂,探讨~(99m)?Tc-BmK CT用于胶质瘤显像的可行性。方法:采用BmK CT多肽游离的氨基与DTPA酸酐反应得到BmK CT-DTPA,经99m Tc标记后通过柱层析分离纯化制备~(99m)?Tc-BmK CT。测定标记物在PBS溶液和血清中不同时间点放射性化学纯度,评价BmK CT-~(99m)?Tc体外稳定性。新西兰白兔耳缘静脉注射~(99m)Tc-BmK CT进行SPECT显像,观察不同时间点体内的放射性分布。皮下胶质瘤裸鼠经尾静脉注射~(99m)Tc-BmK CT,观察不同时间点肿瘤的摄取情况;注射后4 h处死裸鼠,分离肿瘤和主要器官进行离体SPECT显像,并用勾画感兴趣区法分析相对放射性计数。结果:~(99m)Tc标记BmK CT多肽标记率大于80%,经柱层析分离纯化后放射性化学纯度大于99%。标记物在PBS和血清稳定性良好,6 h内放射性化学纯度均大于95%,12 h内放射性化学纯度大于90%。正常白兔SPECT显像表明~(99m)Tc-BmK CT主要浓聚在肝脏、脾脏和肾脏,软组织持续显影微弱,甲状腺区及胃肠未见核素浓聚;显像剂主要通过泌尿系统排泄,24 h肾脏与肝脏显影接近。胶质瘤裸鼠SPECT显像表明,注射后4 h肿瘤显像清楚,ROI分析结果显示肿瘤/肌肉比4.26±0.25,标记物在肿瘤内代谢缓慢,8 h肿瘤部位仍有较高摄取。结论:本研究成功制备了~(99m)Tc标记BmK CT多肽,标记物主要被肝、脾和肾摄取,经泌尿系统排泄;~(99m)Tc-BmK CT能够在皮下胶质瘤中浓聚,注射后4 h肿瘤显影清晰,瘤内代谢缓慢,有潜力成为一种新型胶质瘤分子探针。  相似文献   

12.
Metal-free click chemistry has become an important tool for pretargeted approaches in the molecular imaging field. The application of bioorthogonal click chemistry between a pretargeted trans-cyclooctene (TCO) derivatized monoclonal antibody (mAb) and a 99mTc-modified 1,2,4,5-tetrazine for tumor imaging was examined in vitro and in vivo. The HYNIC tetrazine compound was synthesized and structurally characterized, confirming its identity. Radiolabeling studies demonstrated that the HYNIC tetrazine was labeled with 99mTc at an efficiency of >95% and was radiochemically stable. 99mTc–HYNIC tetrazine reacted with the TCO–CC49 mAb in vitro demonstrating its selective reactivity. In vivo biodistribution studies revealed non-specific liver and GI uptake due to the hydrophobic property of the compound, however pretargeted SPECT imaging studies demonstrated tumor visualization confirming the success of the cycloaddition reaction in vivo. These results demonstrated the potential of 99mTc–HYNIC–tetrazine for tumor imaging with pretargeted mAbs.  相似文献   

13.
The chlorambucil l-histidine conjugate was synthesized and radiolabeled with [99mTc(CO)3]+ core to form the 99mTc(CO)3(His–CB) complex. The radiochemical purity of the complex was over 90%. It had good hydrophilicity and was stable at room temperature. The high initial tumor uptake with certain retention, fast clearance from background, good tumor/non-tumor ratios and satisfactory scintigraphic images highlighted the potential of 99mTc(CO)3(His–CB) as a tumor imaging agent.  相似文献   

14.
The deoxyglucose dithiocarbamate (DGDTC) was successfully labeled with the 99mTc(CO)3 core to provide the corresponding 99mTc(CO)3–DGDTC complex in good yields. The radiochemical purity of the 99mTc(CO)3–DGDTC complex was over 90%, as measured by high performance liquid chromatography (HPLC). The complex possessed good stability in saline at room temperature and in mouse plasma at 37 °C. Its partition coefficient result indicated that it was a hydrophilic complex. The electrophoresis results showed the complex was neutral. The biodistribution of 99mTc(CO)3–DGDTC in mice bearing S 180 tumor showed that the complex clearly accumulated in tumor, exhibiting high tumor/blood and tumor/muscle ratios and good tumor retention. Single photon emission computed tomography (SPECT) image studies showed there was a visible uptake in tumor sites, suggesting 99mTc(CO)3–DGDTC could be considered as a potential tumor imaging agent.  相似文献   

15.
The mesenchymal-epithelial transition factor (c-Met), which is related to tumor cell growth, angiogenesis and metastases, is known to be overexpressed in several tumor types. In this study, we synthesized technetium-99m labeled 1,2,3-triazole-4-yl c-Met binding peptide (cMBP) derivatives, prepared by solid phase peptide synthesis and the ‘click-to-chelate’ protocol for the introduction of tricarbonyl technetium-99m, as a potential c-Met receptor kinase positive tumor imaging agent, and evaluated their in vitro c-Met binding affinity, cellular uptake, and stability. The 99mTc labeled cMBP derivatives ([99mTc(CO)3]12, [99mTc(CO)3]13, and [99mTc(CO)3]14) were prepared in 85-90% radiochemical yields. The cold surrogate cMBP derivatives, [Re(CO)3]12, [Re(CO)3]13, and [Re(CO)3]14, were shown to have high binding affinities (0.13 μM, 0.06 μM, and 0.16 μM, respectively) to a purified cMet/Fc chimeric recombinant protein. In addition, the in vitro cellular uptake and inhibition studies demonstrated the high specific binding of these 99mTc labeled cMBP derivatives ([99mTc(CO)3]12–14) to c-Met receptor positive U87MG cells.  相似文献   

16.
CD13 receptor plays a critical role in tumor angiogenesis and metastasis. We therefore aimed to develop 99mTc-labeled monomeric and dimeric NGR-containing peptides, namely, NGR1 and NGR2, for SPECT imaging of CD13 expression in HepG2 hepatoma xenografts. Both NGR-containing monomer and dimer were synthesized and labeled with 99mTc. In vivo receptor specificity was demonstrated by successful blocking of tumor uptake of 99mTc-NGR dimer in the presence of 20 mg/kg NGR2 peptide. Western blot and immunofluorescence staining confirmed the CD13 expression in HepG2 cells. The NGR dimer showed higher binding affinity and cell uptake in vitro than the NGR-containing monomer, presumably due to a multivalency effect. 99mTc-Labeled monomeric and dimeric NGR-containing peptides were subjected to SPECT imaging and biodistribution studies. SPECT scans were performed in HepG2 tumor-bearing mice at 1, 4, 12, and 24 h post-injection of ~7.4 MBq tracers. The metabolism of tracers was determined in major organs at different time points after injection which demonstrated rapid, significant tumor uptake and slow tumor washout for both traces. Predominant clearance from renal and hepatic system was also observed in 99mTc-NGR1 and 99mTc-NGR2. In conclusion, monomeric and dimeric NGR peptide were developed and labeled with 99mTc successfully, while the high integrin avidity and long retention in tumor make 99mTc-NGR dimer a promising agent for tumor angiogenesis imaging.  相似文献   

17.
The 2-[(3-carboxy-1-oxopropyl)amino]-2-deoxy-d-glucose (CPADG) was synthesized and radiolabeled with 99mTcO4 to obtain the 99mTc–CPADG complex in high yield. It was stable over 6 h in saline at room temperature and in serum at 37 °C. The partition coefficient and electrophoresis results indicated that the complex was hydrophilic and cationic. In vitro cell studies showed there was an increase in the uptake of 99mTc–CPADG as a function of incubation time and 99mTc–CPADG was possibly transported via the glucose transporters. The biodistribution of 99mTc–CPADG in mice bearing S 180 tumor showed that the complex accumulated in the tumor with high uptake and good retention. The tumor/blood and tumor/muscle ratios increased with time and reached 1.91 and 5.05 at 4 h post-injection. Single photon emission computed tomography (SPECT) image studies showed there was an obvious accumulation in tumor sites, suggesting 99mTc–CPADG would be a promising candidate for tumor imaging.  相似文献   

18.
EGFR is over-expressed in several solid tumors including breast, prostate, pancreas, and lung cancers and is correlated to the metastasic potential of the tumor. Anti-EGFR receptor-binding peptidomimetics (AERP) were examined to assess the small molecule’s potential use as tumor-specific imaging agents. The aim of this work was to design and characterize the binding specificity of the radiolabeled peptidomimetics to EGFR over-expressing cell lysate and to A431 xenograft tumors. Our newly designed peptidomimetic, AERP, was conjugated to DTPA and labeled with 99mTc. The in vivo tumor accumulation of [99mTc] DTPA-AERP-2 was 1.6 ± 0.1 %ID/g and tumor to muscle ratio was 5.5. Our studies suggest that this novel peptidomimetic, AERP-2, warrants further development as an EGFR specific tumor-imaging agent.  相似文献   

19.
Angiogenesis imaging agents for single photon emission computed tomography (SPECT) play a role in diagnosing tumor-induced angiogenesis as well as tumor metastasis. We synthesized and evaluated radiolabeled RGD glycopeptides by incorporation of the [99mTc(CO)3(H2O)3]+. 99mTc labeled glucosamino-D-c(RGDfK) ([99mTc]2) was prepared in 90–93% radiochemical yields (decay corrected). In vitro cell binding assays demonstrated selective binding [99mTc]2 to human umbilical vein endothelial (HUVE) cells, with inhibition of binding to 37.3% of control levels by 10 μM of cold authentic compounds. In addition, [99mTc]2 was shown to have high binding affinity to purified αvβ3 integrin (IC50 = 1.5 nM). These results suggest that these radiolabeled RGD glycopeptides may have value for non-invasive assessment of angiogenesis.  相似文献   

20.
99mTc-diamine-diphenol chelates are neutral lipophilic chelates exhibiting good stability in aqueous solutions. The cell labeling and biolocalization properties of four different 99mTc-amine-phenol complexes were determined. All four chelates readily labeled leukocytes and RCBs in high yields. Even though 99mTc was retained by the cells, the elution rate of 99mTc from the labeled cells in plasma at 37 °C was unacceptably high for potential utility in scintigraphic imaging. The uptake of 99mTc in brain or heart following i.v. injection of the chelates in rats was low and clearance of activity from the blood was slow.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号