首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human tissues express cannabinoid CB1 and CB2 receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB1/CB2 receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ9-tetrahydrocannabinol (Δ9-THC)) and Sativex (Δ9-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson''s and Huntington''s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB2 receptors, and/or (v) adjunctive ‘multi-targeting’.  相似文献   

2.
The endocannabinoid system consists of cannabinoid CB1 and CB2 receptors, endogenous ligands and their synthesising/metabolising enzymes. Cannabinoid receptors are present at key sites involved in the relay and modulation of nociceptive information. The analgesic effects of cannabinoids have been well documented. The usefulness of nonselective cannabinoid agonists can, however, be limited by psychoactive side effects associated with activation of CB1 receptors. Following the recent evidence for CB2 receptors existing in the nervous system and reports of their up-regulation in chronic pain states and neurodegenerative diseases, much research is now aimed at shedding light on the role of the CB2 receptor in human disease. Recent studies have demonstrated anti-nociceptive effects of selective CB2 receptor agonists in animal models of pain in the absence of CNS side effects. This review focuses on the analgesic potential of CB2 receptor agonists for inflammatory, post-operative and neuropathic pain states and discusses their possible sites and mechanisms of action. Jhaveri and Sagar joint first author.  相似文献   

3.
Cannabinoid CB1 receptor antagonists exhibit pharmacologic properties favorable for the treatment of metabolic disease. CP-945,598 (1-[9-(4-chlorophenyl)-8-(2-chlorophenyl)-9H-purin-6-yl]-4-ethylamino piperidine-4-carboxylic acid amide hydrochloride) is a recently discovered selective, high affinity, competitive CB1 receptor antagonist that inhibits both basal and cannabinoid agonist-mediated CB1 receptor signaling in vitro and in vivo. CP-945,598 exhibits sub-nanomolar potency at human CB1 receptors in both binding (Ki = 0.7 nM) and functional assays (Ki = 0.2 nM). The compound has low affinity (Ki = 7600 nM) for human CB2 receptors. In vivo, CP-945,598 reverses four cannabinoid agonist-mediated CNS-driven responses (hypo-locomotion, hypothermia, analgesia, and catalepsy) to a synthetic cannabinoid receptor agonist. CP-945,598 exhibits dose and concentration-dependent anorectic activity in two models of acute food intake in rodents, fast-induced re-feeding and spontaneous, nocturnal feeding. CP-945,598 also acutely stimulates energy expenditure in rats and decreases the respiratory quotient indicating a metabolic switch to increased fat oxidation. CP-945,598 at 10 mg/kg promoted a 9%, vehicle adjusted weight loss in a 10 day weight loss study in diet-induced obese mice. Concentration/effect relationships combined with ex vivo brain CB1 receptor occupancy data were used to evaluate efficacy in behavioral, food intake, and energy expenditure studies. Together, these in vitro, ex vivo, and in vivo data indicate that CP-945,598 is a novel CB1 receptor competitive antagonist that may further our understanding of the endocannabinoid system.  相似文献   

4.
Tetrahydrocannabinol and other mixed cannabinoid (CB) receptors CB1/CB2 receptor agonists are well established to elicit antinociceptive effects and psychomimetic actions, however, their potential for abuse have dampened enthusiasm for their therapeutic development. In an effort to refine a semi-rigid structural framework for CB2 receptors binding, we designed novel compounds based on aromatic moiety and flexible linker with various amides mimicking the outlook of the endogenous anandamide which could provide as CB2 receptor ligand. In this direction, we developed and synthesized new aryl or arylidene hexanoic acid amides and aryl alkanoic acid diamide carrying different head groups. These new compounds were tested for their affinities for human recombinant CB receptors CB1 and CB2 and fatty acid amide hydrolase. Although, the preliminary screening of these compounds demonstrated weak binding activity towards CB receptor subtypes at 10 µmole, yet this template still could serve up as probes for further optimization and development of affinity ligand for CB receptors.  相似文献   

5.

Background

The endogenous cannabinoid system is involved in the control of pain. However, little is known as to the integrity of the cannabinoid system in human pain syndromes. Here we investigate the expression of the cannabinoid receptor 1 (CB1) in human Achilles tendons from healthy volunteers and from patients with Achilles tendinosis.

Methodology

Cannabinoid CB1 receptor immunoreactivity (CB1IR) was evaluated in formalin-fixed biopsies from individuals suffering from painful Achilles tendinosis in comparison with healthy human Achilles tendons.

Principal Findings

CB1IR was seen as a granular pattern in the tenocytes. CB1IR was also observed in the blood vessel wall and in the perineurium of the nerve. Quantification of the immunoreactivity in tenocytes showed an increase of CB1 receptor expression in tendinosis tissue compared to control tissue.

Conclusion

Expression of cannabinoid receptor 1 is increased in human Achilles tendinosis suggesting that the cannabinoid system may be dysregulated in this disorder.  相似文献   

6.
Several lines of preclinical evidence indicate the ability of the prototypic cannabinoid CB1 receptor antagonist, rimonabant, to suppress various alcohol-related behaviors, including alcohol drinking and seeking behavior and alcohol self-administration in rats and mice. Together, these data—synthetically reviewed in the present paper—suggest (a) the involvement of the cannabinoid CB1 receptor in the neural substrate controlling alcohol intake, alcohol reinforcement, and the motivational properties of alcohol and (b) that rimonabant may constitute a new and potentially effective medication for the treatment of alcohol dependence.  相似文献   

7.
Recent findings indicate that cannabinoid-altered vocal development involves elevated densities of dendritic spines in a subset of brain regions involved in zebra finch song learning and production suggesting that cannabinoid receptor activation may regulate cell structure. Here we report that activation of zebra finch CB1 receptors (zfCB1, delivered by a lentivector to CHO cells) produces dose-dependent biphasic effects on the mean length of filopodia expressed: Low agonist concentrations (3 nM WIN55212-2) increase lengths while higher concentrations reduce them. In contrast, treatment of zfCB1-expressing cells with the antagonist/inverse agonist SR141716A causes increases in both mean filopodia length and number at 30 and 100 nM. These results demonstrate that CB1 receptor activation can differentially influence filiopodia elongation depending on dose, and demonstrate that manipulation of cannabinoid receptor activity is capable of modulating cell morphology.  相似文献   

8.
Endocannabinoids and endovanilloids are, by definition, endogenous agonists at cannabinoid CB1 or CB2 receptors and transient receptor potential vanilloid-type-1 (TRPV1) channels, respectively. Due to the several ways through which cannabinoid receptors influence cytosolic Ca2+ concentrations, and to the fact that TRPV1 activation leads to the gating of cations, including Ca2+, both endocannabinoids and endovanilloids, taken separately, can strongly influence Ca2+ signalling. Moreover, CB1/CB2 receptors and TRPV1 channels are often expressed in the same or neighbouring cells, and this can lead to cross-talk between the two receptor types, which is further enriched by the fact that some endocannabinoids, like anandamide and N-arachidonoyldopamine, also activate TRPV1 channels. Finally, both endocannabinoids and endovanilloids also interact with non-cannabinoid, non-TRPV1 receptors and channels, and, although the full physiological relevance of such interactions is yet to be established, the “promiscuity” of these lipophilic molecules can increase even further the potential ways through which they affect Ca2+ signalling. Here we discuss the effects of endocannabinoids and endovanilloids on cytosolic Ca2+ concentrations and their potential biological consequences.  相似文献   

9.
Recent findings indicate that cannabinoid-altered vocal development involves elevated densities of dendritic spines in a subset of brain regions involved in zebra finch song learning and production suggesting that cannabinoid receptor activation may regulate cell structure. Here we report that activation of zebra finch CB1 receptors (zfCB1, delivered by a lentivector to CHO cells) produces dose-dependent biphasic effects on the mean length of filopodia expressed: Low agonist concentrations (3 nM WIN55212-2) increase lengths while higher concentrations reduce them. In contrast, treatment of zfCB1-expressing cells with the antagonist/inverse agonist SR141716A causes increases in both mean filopodia length and number at 30 and 100 nM. These results demonstrate that CB1 receptor activation can differentially influence filiopodia elongation depending on dose, and demonstrate that manipulation of cannabinoid receptor activity is capable of modulating cell morphology.  相似文献   

10.
CB1- and CB2-type cannabinoid receptors mediate effects of the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide in mammals. In canonical endocannabinoid-mediated synaptic plasticity, 2-AG is generated postsynaptically by diacylglycerol lipase alpha and acts via presynaptic CB1-type cannabinoid receptors to inhibit neurotransmitter release. Electrophysiological studies on lampreys indicate that this retrograde signalling mechanism occurs throughout the vertebrates, whereas system-level studies point to conserved roles for endocannabinoid signalling in neural mechanisms of learning and control of locomotor activity and feeding. CB1/CB2-type receptors originated in a common ancestor of extant chordates, and in the sea squirt Ciona intestinalis a CB1/CB2-type receptor is targeted to axons, indicative of an ancient role for cannabinoid receptors as axonal regulators of neuronal signalling. Although CB1/CB2-type receptors are unique to chordates, enzymes involved in biosynthesis/inactivation of endocannabinoids occur throughout the animal kingdom. Accordingly, non-CB1/CB2-mediated mechanisms of endocannabinoid signalling have been postulated. For example, there is evidence that 2-AG mediates retrograde signalling at synapses in the nervous system of the leech Hirudo medicinalis by activating presynaptic transient receptor potential vanilloid-type ion channels. Thus, postsynaptic synthesis of 2-AG or anandamide may be a phylogenetically widespread phenomenon, and a variety of proteins may have evolved as presynaptic (or postsynaptic) receptors for endocannabinoids.  相似文献   

11.
Human peripheral cannabinoid receptor CB2, a G protein-coupled receptor (GPCR) involved in regulation of immune response has become an important target for pharmaceutical drug development. Structural and functional studies on CB2 may benefit from immobilization of the purified and functional receptor onto a suitable surface at a controlled density and, preferably in a uniform orientation. The goal of this project was to develop a generic strategy for preparation of functional recombinant CB2 and immobilization at solid interfaces. Expression of CB2 as a fusion with Rho-tag (peptide composed of the last nine amino acids of rhodopsin) in E. coli was evaluated in terms of protein levels, accessibility of the tag, and activity of the receptor. The structural integrity of CB2 was tested by ligand binding to the receptor solubilized in detergent micelles, captured on tag-specific monoclonal 1D4 antibody-coated resin. Highly pure and functional CB2 was obtained by sequential chromatography on a 1D4- and Ni-NTA-resin and its affinity to the 1D4 antibody characterized by surface plasmon resonance (SPR). Either the purified receptor or fusion CB2 from the crude cell extract was captured onto a 1D4-coated CM4 chip (Biacore) in a quantitative fashion at uniform orientation as demonstrated by the SPR signal. Furthermore, the accessibility of the extracellular surface of immobilized CB2 and the affinity of interaction with a novel monoclonal antibody NAA-1 was studied by SPR. In summary, we present an integral strategy for purification, surface immobilization, ligand- and antibody binding studies of functional cannabinoid receptor CB2.  相似文献   

12.
Cannabinoid receptors are a family of G-protein coupled receptors that are involved in a wide variety of physiological processes and diseases. One of the key regulators that are unique to cannabinoid receptors is the cannabinoid receptor interacting proteins (CRIPs). Among them CRIP1a was found to decrease the constitutive activity of the cannabinoid type-1 receptor (CB1R). The aim of this study is to gain an understanding of the interaction between CRIP1a and CB1R through using different computational techniques. The generated model demonstrated several key putative interactions between CRIP1a and CB1R, including the critical involvement of Lys130 in CRIP1a.  相似文献   

13.
The prevalence of obstructive sleep apnea (OSA) in Americans is 9% and increasing. Increased afferent vagal activation may predispose to OSA by reducing upper airway muscle activation/patency and disrupting respiratory rhythmogenesis. Vagal afferent neurons are inhibited by cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors in animal models of vagally-mediated behaviors. Injections of dronabinol, a non-selective CB1/CB2 receptor agonist, into the nodose ganglia reduced serotonin (5-HT)-induced reflex apneas. It is unknown what role CB1 and/or CB2 receptors play in reflex apnea. Here, to determine the independent and combined effects of activating CB1 and/or CB2 receptors on dronabinol’s attenuating effect, rats were pre-treated with CB1 (AM251) and/or CB2 (AM630) receptor antagonists. Adult male Sprague-Dawley rats were anesthetized, instrumented with bilateral electrodes to monitor genioglossus electromyogram (EMGgg) and a piezoelectric strain gauge to monitor respiratory pattern. Following intraperitoneal treatment with AM251 and/or AM630, or with vehicle, serotonin was intravenously infused into a femoral vein to induce reflex apnea. After baseline recordings, the nodose ganglia were exposed and 5-HT-induced reflex apneas were again recorded to confirm that the nerves remained functionally intact. Dronabinol was injected into each nodose ganglion and 5-HT infusion was repeated. Prior to dronabinol injection, there were no significant differences in 5-HT-induced reflex apneas or phasic and tonic EMGgg before or after surgery in the CB1, CB2, combined CB1/CB2 antagonist, and vehicle groups. In the vehicle group, dronabinol injections reduced 5-HT-induced reflex apnea duration. In contrast, dronabinol injections into nodose ganglia of the CB1, CB2, and combined CB1/CB2 groups did not attenuate 5-HT-induced reflex apnea duration. However, the CB1 and CB2 antagonists had no effect on dronabinol’s ability to increase phasic EMGgg. These findings underscore the therapeutic potential of dronabinol in the treatment of OSA and implicate participation of both cannabinoid receptors in dronabinol’s apnea suppression effect.  相似文献   

14.
Abstract

Context: Beta-arrestins are known to couple to some G-protein-coupled receptors (GPCRs) to regulate receptor internalization, G-protein coupling and signal transduction, but have not been investigated for most receptors, and for very few receptors in vivo. Previous studies have shown that beta-arrestin2 deletion enhances the efficacy of specific cannabinoid agonists. Objective: The present study hypothesized that brain cannabinoid CB1 receptors are regulated by beta-arrestin2. Methods: Beta-arrestin2+/+ and ?/? mice were used. Western blotting was used to determine the relative levels of each beta-arrestin subtype in mouse brain. Receptor binding was measured to determine whether deletion of beta-arrestin2 influences agonist binding to brain CB1 receptors, or the subcellular localization of CB1 in brain membranes subjected to differential centrifugation. A variety of cannabinoid agonists from different chemical classes were investigated for their ability to activate G-proteins in the presence and absence of beta-arrestin2 in cerebellum, hippocampus and cortex. Results: No differences were found in the density of beta-arrestin1 or cannabinoid CB1 receptors in several brains of beta-arrestin2+/+ versus ?/? mice. Differences between genotypes were found in the proportion of high- and low-affinity agonist binding sites in brain areas that naturally express higher levels of beta-arrestin2. Cortex from beta-arrestin2?/? mice contained less CB1 in the P1 fraction and more CB1 in the P2 fraction compared to beta-arrestin2+/+. Of the agonists assayed for activity, only Δ9-tetrahydrocannabinol (THC) exhibited a difference between genotypes, in that it was less efficacious in beta-arrestin2?/? than +/+ mouse membranes. Conclusion: Beta-arrestin2 regulates cannabinoid CB1 receptors in brain.  相似文献   

15.
Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.  相似文献   

16.
The cannabinoid type-1 receptor (CB1R) is one of the most abundant members of the G protein-coupled receptor family in the central nervous system. Once activated by their cognate ligands, endocannabinoids, CB1Rs generally limit the timing of neurotransmitter release at many cortical synapses. Prior studies have indicated the involvement of CB1R in neurodegeneration and in various neuronal insults, with an emphasis on their neuroprotective role. In the present study we used a novel selective CB1R radioligand to investigate regional variations in CB1R ligand binding as a factor of progressive Braak tau pathology in the frontal cortex of Alzheimer’s disease (AD) patients. The frontal cortex was chosen for this study due to the high density of CB1Rs and their well-characterized involvement in the progression of AD. Post-mortem prefrontal cortex samples from AD patients from Braak stages I to VI and controls were subjected to CB1R autoradiography with [125I]SD-7015 as radioligand. Regional concentration of [125I]SD-7015, corresponding to, and thereby representing, regional CB1R densities, were expressed in fM/g_tissue. The results show that CB1R density inversely correlates with Braak tau pathology with the following tendency: controls 1R radioligand [125I]SD7015 in human brains, allowing the detection of fine modalities of receptor expression and radioligand binding during the progression of AD.  相似文献   

17.
We have recently reported that cannabinoid agonists can up-regulate and enhance the activity of serotonin 2A (5-HT2A) receptors in the prefrontal cortex (PFCx). Increased expression and activity of cortical 5-HT2A receptors has been associated with neuropsychiatric disorders, such as anxiety and schizophrenia. Here we report that repeated CP55940 exposure selectively up-regulates GRK5 proteins in rat PFCx and in a neuronal cell culture model. We sought to examine the mechanism underlying the regulation of GRK5 and to identify the role of GRK5 in the cannabinoid agonist-induced up-regulation and enhanced activity of 5-HT2A receptors. Interestingly, we found that cannabinoid agonist-induced up-regulation of GRK5 involves CB2 receptors, β-arrestin 2, and ERK1/2 signaling because treatment with CB2 shRNA lentiviral particles, β-arrestin 2 shRNA lentiviral particles, or ERK1/2 inhibitor prevented the cannabinoid agonist-induced up-regulation of GRK5. Most importantly, we found that GRK5 shRNA lentiviral particle treatment prevented the cannabinoid agonist-induced up-regulation and enhanced 5-HT2A receptor-mediated calcium release. Repeated cannabinoid exposure was also associated with enhanced phosphorylation of CB2 receptors and increased interaction between β-arrestin 2 and ERK1/2. These latter phenomena were also significantly inhibited by GRK5 shRNA lentiviral treatment. Our results suggest that sustained activation of CB2 receptors, which up-regulates 5-HT2A receptor signaling, enhances GRK5 expression; the phosphorylation of CB2 receptors; and the β-arrestin 2/ERK interactions. These data could provide a rationale for some of the adverse effects associated with repeated cannabinoid agonist exposure.  相似文献   

18.
The synthesis and SAR of 3-alkyl-4-aryl-4,5-dihydropyrazole-1-carboxamides 123 and 1-alkyl-5-aryl-4,5-dihydropyrazole-3-carboxamides 2427 as two novel cannabinoid CB1 receptor agonist classes were described. The target compounds elicited high affinities to the CB1 as well as the CB2 receptor and were found to act as CB1 receptor agonists. The key compound 19 elicited potent CB1 agonistic and CB2 inverse agonistic properties in vitro and showed in vivo activity in a rodent model for multiple sclerosis after oral administration.  相似文献   

19.
Three series of new cannabinoids were prepared and their affinities for the CB1 and CB2 cannabinoid recptors were determined. These are the 1-methoxy-3-(1′,1′-dimethylalkyl)-, 1-deoxy-11-hydroxy-3-(1′,1′-dimethylalkyl)- and 11-hydroxy-1-methoxy-3-(1′,1′-dimethylalkyl)-Δ8-tetrahydrocannabinols, which contain alkyl chains from dimethylethyl to dimethylheptyl appended to C-3 of the cannabinoid. All of these compounds have greater affinity for the CB2 receptor than for the CB1 receptor, however only 1-methoxy-3-(1′,1′-dimethylhexyl)-Δ8-THC (JWH-229, 6e) has effectively no affinity for the CB1 receptor (Ki=3134±110 nM) and high affinity for CB2 (Ki=18±2 nM).  相似文献   

20.
Cannabinoid CB1 receptor antagonists reduce body weight in rodents and humans, but their clinical utility as anti-obesity agents is limited by centrally mediated side effects. Here, we describe the first mixed CB1 antagonist/CB2 agonist, URB447 ([4-amino-1-(4-chlorobenzyl)-2-methyl-5-phenyl-1H-pyrrol-3-yl](phenyl)methanone), which lowers food intake and body-weight gain in mice without entering the brain or antagonizing central CB1-dependent responses. URB447 may provide a useful pharmacological tool for investigating the cannabinoid system, and might serve as a starting point for developing clinically viable CB1 antagonists devoid of central side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号