首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abe I  Watanabe T  Noguchi H 《Phytochemistry》2004,65(17):2447-2453
Recombinant chalcone synthase (CHS) from Scutellaria baicalensis and stilbene synthase (STS) from Arachis hypogaea accepted CoA esters of long-chain fatty acid (CHS up to the C12 ester, while STS up to the C14 ester) as a starter substrate, and carried out sequential condensations with malonyl-CoA, leading to formation of triketide and tetraketide alpha-pyrones. Interestingly, the C6, C8, and C10 esters were kinetically favored by the enzymes over the physiological starter substrate; the kcat/KM values were 1.2- to 1.9-fold higher than that of p-coumaroyl-CoA. The catalytic diversities of the enzymes provided further mechanistic insights into the type III PKS reactions, and suggested involvement of the CHS-superfamily enzymes in the biosynthesis of long-chain alkyl polyphenols such as urushiol and ginkgolic acid in plants.  相似文献   

2.
Sequence analysis of the metabolically rich 8.7-Mbp genome of the model actinomycete Streptomyces coelicolor A3(2) revealed three genes encoding predicted type III polyketide synthases (PKSs). We report the inactivation, expression, and characterization of the type III PKS homologous SCO1206 gene product as 1,3,6,8-tetrahydroxynaphthalene synthase (THNS). Incubation of recombinant THNS with malonyl-CoA showed THN production, as demonstrated by UV and HPLC analyses. The Km value for malonyl-CoA and the kcat value for THN synthesis were determined spectrophotometrically to be 3.58±0.85 µM and 0.48±0.03 min–1, respectively. The C-terminal region of S. coelicolor THNS, which is longer than most other bacterial and plant type III PKSs, was shortened by 25 amino acid residues and the resulting mutant was shown to be slightly more active (Km=1.97±0.19 µM, kcat=0.75±0.04 min–1) than the wild-type enzyme.  相似文献   

3.
A family of polyketide synthase genes expressed in ripening Rubus fruits   总被引:1,自引:0,他引:1  
Kumar A  Ellis BE 《Phytochemistry》2003,62(3):513-526
Quality traits of raspberry fruits such as aroma and color derive in part from the polyketide derivatives, benzalacetone and dihydrochalcone, respectively. The formation of these metabolites during fruit ripening is the result of the activity of polyketide synthases (PKS), benzalcetone synthase and chalcone synthase (CHS), during fruit development. To gain an understanding of the regulation of these multiple PKSs during fruit ripening, we have characterized the repertoire of Rubus PKS genes and studied their expression patterns during fruit ripening. Using a PCR-based homology search, a family of ten PKS genes (Ripks1-10) sharing 82-98% nucleotide sequence identity was identified in the Rubus idaeus genome. Low stringency screening of a ripening fruit-specific cDNA library, identified three groups of PKS cDNAs. Group 1 and 2 cDNAs were also represented in the PCR amplified products, while group 3 represented a new class of Rubus PKS gene. The Rubus PKS gene-family thus consists of at least eleven members. The three cDNAs exhibit distinct tissue-specific and developmentally regulated patterns of expression. RiPKS5 has high constitutive levels of expression in all organs, including developing flowers and fruits, while RiPKS6 and RiPKS11 expression is consistent with developmental and tissue-specific regulation in various organs. The recombinant proteins encoded by the three RiPKS cDNAs showed a typical CHS-type PKS activity. While phylogenetic analysis placed the three Rubus PKSs in one cluster, suggesting a recent duplication event, their distinct expression patterns suggest that their regulation, and thus function(s), has evolved independently of the structural genes themselves.  相似文献   

4.
Liu B  Raeth T  Beuerle T  Beerhues L 《Planta》2007,225(6):1495-1503
Biphenyls and dibenzofurans are the phytoalexins of the Maloideae, a subfamily of the economically important Rosaceae. The carbon skeleton of the two classes of antimicrobial secondary metabolites is formed by biphenyl synthase (BIS). A cDNA encoding this key enzyme was cloned from yeast-extract-treated cell cultures of Sorbus aucuparia. BIS is a novel type III polyketide synthase (PKS) that shares about 60% amino acid sequence identity with other members of the enzyme superfamily. Its preferred starter substrate is benzoyl-CoA that undergoes iterative condensation with three molecules of malonyl-CoA to give 3,5-dihydroxybiphenyl via intramolecular aldol condensation. BIS did not accept CoA-linked cinnamic acids such as 4-coumaroyl-CoA. This substrate, however, was the preferential starter molecule for chalcone synthase (CHS) that was also cloned from S. aucuparia cell cultures. While BIS expression was rapidly, strongly and transiently induced by yeast extract treatment, CHS expression was not. In a phylogenetic tree, BIS grouped together closely with benzophenone synthase (BPS) that also uses benzoyl-CoA as starter molecule but cyclizes the common intermediate via intramolecular Claisen condensation. The molecular characterization of BIS thus contributes to the understanding of the functional diversity and evolution of type III PKSs.  相似文献   

5.
An acyltransferase-homologous DNA fragment was amplified in a PCR reaction on a cosmid DNA template from the genomic DNA library of the soil bacterium Streptomyces coelicolor A3(2). The putative amino acid sequence of the fragment resembles acyl-CoA:ACP acyltransferase domains from several bacterial enzymatic complexes of polyketide synthase. There is a high similarity with acyltransferase domains from so-called type I polyketide synthases. Such synthases catalyze production of the aglycone portion of macrolides and polyethers that are important as antibiotics or immunosuppressants. The amplified fragment is considered to be a part of a larger gene complex.  相似文献   

6.
PKSIIIexplorer, a web server based on 'transductive Support Vector Machine' allows fast and reliable prediction of Type III polyketide synthase proteins. It provides a simple unique platform to identify the probability of a particular sequence, being a type III polyketide synthases or not with moderately high accuracy. We hope that our method could serve as a useful program for the type III polyketide researchers. The tool is available at "http://type3pks.in/tsvm/pks3". ABBREVIATIONS: PKS - Polyketide synthase, CHS - Chalcone synthase, SVM - Support vector machine, MCC - Matthews Correlation Coefficient.  相似文献   

7.
The 54-kbp Type I polyketide synthase gene cluster, most probably involved in rifamycin biosynthesis by Amycolatopsis mediterranei, was cloned in E. coli and completely sequenced. The DNA encodes five closely packed, very large open reading frames reading in one direction. As expected from the chemical structure of rifamycins, ten polyketide synthase modules and a CoA ligase domain were identified in the five open reading frames which contain one to three polyketide synthase modules each. The order of the functional domains on the DNA probably reflects the order in which they are used because each of the modules contains the predicted acetate or propionate transferase, dehydratase, and β-ketoacyl-ACP reductase functions, required for the respective step in rifamycin biosynthesis.  相似文献   

8.
[背景]阿维菌素起始酰基转移酶(AveAT0)能够以2-甲基丁酰-辅酶A (coenzyme A,CoA)和异丁酰-CoA作为起始单元分别合成"a"系列或"b"系列的阿维菌素。[目的]探究AveAT0对两种底物的偏好性并进行改造。[方法]通过与识别不同底物的起始酰基转移酶(loading acyltransferases,AT0s)进行序列比对,找到AveAT0底物结合重要的氨基酸,利用活性位点定点突变的方法得到对底物偏好性改变的特定突变体。以2-甲基丁酰-CoA、异丁酰-CoA的类似物2-甲基丁酰-N-乙酰半胱氨(N-acetylcysteamine,SNAC)和异丁酰-SNAC为底物,用Ellman测试法检测释放SNAC的游离巯基(sulfhydryl,SH),测定AveAT0及其突变体的动力学常数,以此表征AveAT0及其突变体的底物偏好性。[结果]AveAT0对2-甲基丁酰SNAC的Km值为0.4 mmol/L,kcat值为14.1 min^-1,kcat/Km为32.1 L/(mmol·min);对异丁酰-SNAC的Km值为0.8 mmol/L,kcat值为6.4 min^-1,kcat/Km为7.5 L/(mmol·min)。选定的突变位点为V224M、Q149L、L121M。按顺序累积突变后发现三突变株AveAT0 V224M/Q149L/L121M对两个底物的偏好性区别最大,对2-甲基丁酰SNAC的Km值为0.8 mmol/L,kcat值为5.4 min^-1,kcat/Km为6.9 L/(mmol·min);对异丁酰-SNAC的kcat/Km为0.1 L/(mmol·min)。[结论]研究发现了AveAT0识别底物过程中的关键氨基酸,为改造阿维菌素聚酮合酶酰基转移酶提供了依据。  相似文献   

9.
马敏  唐敏  洪葵 《微生物学通报》2013,40(7):1231-1240
[目的]探究红树林土壤中聚酮合酶(Polyketide synthase,PKS)基因的多样性和新颖性.[方法]用Ⅰ型和Ⅱ型PKS基因酮基合成酶(Ketosynthase,KS)域的简并引物对海南清澜港红树林海莲、黄槿、银叶、老鼠簕4种红树根际土壤样品中DNA进行PCR扩增,之后利用PCR-限制性酶切片段多样性(PCR-RFLP)和测序分析法对Ⅰ型和Ⅱ型PKS基因的多样性进行探讨.[结果]对得到的72条Ⅰ型PKS基因的酮基合成酶(Ketosynthase,KS)域DNA序列进行PCR-RFLP分析,共得到51个可操作分类单元(Operational taxonomic unit,OTUs),其中37个OTUs为单克隆产生,没有明显的优势OTU.选取了26个代表不同OTU的克隆进行测序分析,这些序列与GenBank中已知序列的最大相似率均未超过85%. KS域氨基酸序列的系统发育分析显示,所得KS域来源广泛,包括蓝细菌门(Cyanobacteria)、变形杆菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)和一些未可培养细菌;对55条PKSⅡ基因KS域DNA序列的PCR-RFLP分析后共得到25个OTUs,有两个明显的优势OTUs,代表的克隆子数所占比例超过10%.[结论]PCR-RFLP分析表明红树林根际土壤中存在着丰富多样的Ⅰ型和Ⅱ型PKS基因,且前者多样性更高;低的序列相似度表明所获得的PKSⅠ基因KS域序列独特;系统发育分析表明得到的PKSⅠ基因来源广泛.  相似文献   

10.
Abe I  Utsumi Y  Oguro S  Noguchi H 《FEBS letters》2004,562(1-3):171-176
A cDNA encoding a novel plant type III polyketide synthase (PKS) was cloned from rhubarb (Rheum palmatum). A recombinant enzyme expressed in Escherichia coli accepted acetyl-CoA as a starter, carried out six successive condensations with malonyl-CoA and subsequent cyclization to yield an aromatic heptaketide, aloesone. The enzyme shares 60% amino acid sequence identity with chalcone synthases (CHSs), and maintains almost identical CoA binding site and catalytic residues conserved in the CHS superfamily enzymes. Further, homology modeling predicted that the 43-kDa protein has the same overall fold as CHS. This provides new insights into the catalytic functions of type III PKSs, and suggests further involvement in the biosynthesis of plant polyketides.  相似文献   

11.
The modular polyketide synthase (PKS) and nonribosomal peptide synthetase (NRPS) have been found to be involved in natural product synthesis in many microorganisms. Study on their diversities in natural environment may provide important ecological insights, in addition to opportunities for antibacterial drugs development. In this study, the PKS and NRPS gene diversities in two coast sediments near China Zhongshan Station were studied. The phylogenetic analysis of amino acid (AA) sequences indicated that the identified ketosynthase (KS) domains were clustered with those from diverse bacterial groups, including Proteobacteria, Firmicutes, Planctomycetes, Cyanobacteria, Actinobacteria, and some uncultured symbiotic bacteria. One new branch belonging to hybrid PKS/NRPS enzyme complexes and five independent clades were found on the phylogenetic tree. The obtained adenylation (A) domains were mainly clustered within the Cyanobacteria and Proteobacteria group. Most of the identified KS and A domains showed below 80 and 60% identities at the AA level to their closest matches in GenBank, respectively. The diversities of both KS and A domains in natural environmental sample were different from those in sewage-contaminated sample. These results revealed the great diversity and novelty of both PKS and NRPS genes in Antarctic sediment.  相似文献   

12.
Unusual polyketide synthases (PKSs), that are structurally type I but act in an iterative manner for aromatic polyketide biosynthesis, are a new family found in bacteria. Here we report the cloning of the iterative type I PKS gene chlB1 from the chlorothricin (CHL) producer Streptomyces antibioticus DSM 40725 by a rapid PCR approach, and characterization of the function of the gene product as a 6-methylsalicyclic acid synthase (6-MSAS). Sequence analysis of various iterative type I PKSs suggests that the resulting aromatic or aliphatic structure of the products might be intrinsically determined by a catalytic feature of the paired KR-DH domains in the control of the double bond geometry. The finding of ChlB1 as a 6-MSAS not only enriches the current knowledge of aromatic polyketide biosynthesis in bacteria, but will also contribute to the generation of novel polyketide analogs via combinatorial biosynthesis with engineered PKSs.  相似文献   

13.
Exophiala lecanii-corni has significant bioremediation potential because it can degrade a wide range of volatile organic compounds. In order to identify sites for the insertion of genes that might enhance this potential, a genetic analysis of E. lecanii-corni was undertaken. Two polyketide synthase genes, ElPKS1 and ElPKS2, have now been discovered by a PCR-based strategy. ElPKS1 was isolated by a marker rescue technique. The nucleotide sequence of ElPKS1 consists of a 6576-bp open reading frame encoding a protein with 2192 amino acids, which was interrupted by a 60-bp intron near the 5' end and a 54-bp intron near the 3' end. Sequence analysis, results from disruption experiments, and physiological tests showed that ElPKS1 encoded a polyketide synthase required for melanin biosynthesis. Since ElPKS1 is non-essential, it is a desirable bioengineering target site for the insertion of native and foreign genes. The successful expression of these genes could enhance the bioremediation capability of the organism. ElPKS2 was cloned by colony hybridization screening of a partial genomic library with an ElPKS2 PCR product. ElPKS2 had a 6465-bp open reading frame that encoded 2155 amino acids and had introns of 56, 67, 54, and 71 bp. Although sequence analysis of the derived protein of ElPKS2 confirmed the polyketide synthase nature of its protein product, the function of that product remains unclear.  相似文献   

14.
Substrate specificity of recombinant chalcone synthase (CHS) from Scutellaria baicalensis (Labiatae) was investigated using chemically synthesized aromatic and aliphatic CoA esters. It was demonstrated for the first time that CHS converted benzoyl-CoA to phlorobenzophenone (2,4,6-trihydroxybenzophenone) along with pyrone by-products. On the other hand, phenylacetyl-CoA was enzymatically converted to an unnatural aromatic polyketide, phlorobenzylketone (2, 4,6-trihydroxyphenylbenzylketone), whose structure was finally confirmed by chemical synthesis. Furthermore, in agreement with earlier reports, S. baicalensis CHS also accepted aliphatic CoA esters, isovaleryl-CoA and isobutyryl-CoA, to produce phloroacylphenones. In contrast, hexanoyl-CoA only afforded pyrone derivatives without formation of a new aromatic ring. It was noteworthy that both aromatic and aliphatic CoA esters were accepted in the active site of the enzyme as a starter substrate for the complex condensation reaction. The low substrate specificity of CHS thus provided further insight into the structure and function of the enzyme.  相似文献   

15.
Mycinamicin is a 16-membered macrolide antibiotic produced by Micromonospora griseorubida A11725, which shows strong antimicrobial activity against gram-positive bacteria. Recently, the nucleotide sequences of the mycinamicn biosynthetic gene cluster in M. griseorubida have been completely determined. Mycinamicin non-producer M7A21 was isolated by mycAV inactivation, which encodes the module 7 of mycinamicin polyketide synthase (PKS) required for the biosynthesis of the mycinamicin biosynthetic intermediate protomycinolide-IV (PML-IV). When the bioconversion to mycinamicin II (M-II) from PML-IV was performed using M7A21 and the feeding culture method, the productivity of M-II was the same as that of M-II in wild-type strain A11725. p446M7 containing mycAV was constructed using the Escherichia coli-Streptomyces shuttle vector pGM446. The mycinamicin productivity of M7A21 was restored by the introduction of p446M7 into the M7A21 cell, but almost all p446M7 was integrated into the chromosome of M7A21 because the plasmid was unstable in M7A21. The feeding culture and the introduction of the complement gene for M7A21 would be powerful tools to perform combinatorial biosynthesis for the production of new macrolide antibiotics.  相似文献   

16.
Polyketides are secondary metabolites with diverse biological activities. Polyketide synthases (PKS) are often encoded from genes clustered in the same genomic region. Functional analyses and genomic studies show that most fungi are capable of producing a repertoire of polyketides. We considered the potential of Ceratocystidaceae for producing polyketides using a comparative genomics approach. Our aims were to identify the putative polyketide biosynthesis gene clusters, to characterize them and predict the types of polyketide compounds they might produce. We used sequences from nineteen species in the genera, Ceratocystis, Endoconidiophora, Davidsoniella, Huntiella, Thielaviopsis and Bretziella, to identify and characterize PKS gene clusters, by employing a range of bioinformatics and phylogenetic tools. We showed that the genomes contained putative clusters containing a non-reducing type I PKS and a type III PKS. Phylogenetic analyses suggested that these genes were already present in the ancestor of the Ceratocystidaceae. By contrast, the various reducing type I PKS-containing clusters identified in these genomes appeared to have distinct evolutionary origins. Although one of the identified clusters potentially allows for the production of melanin, their functional characterization will undoubtedly reveal many novel and important compounds implicated in the biology of the Ceratocystidaceae.  相似文献   

17.
Recombinant chalcone synthase (CHS) from Scutellaria baicalensis accepted cinnamoyl diketide-NAC and cinnamoyl-NAC as a substrate, and carried out sequential condensations with malonyl-CoA to produce 2',4',6'-trihydroxychalcone. Steady-state kinetic analysis revealed that the CHS accepted the diketide-NAC with less efficiency, while cinnamoyl-NAC primed the enzyme reaction almost as efficiently as cinnamoyl-CoA. On the other hand, it was for the first time demonstrated that the diketide-NAC was also a substrate for recombinant polyketide reductase (PKR) from Glycyrrhiza echinata, and converted to the corresponding beta-ketohemithioester. Furthermore, by co-action of the CHS and the PKR, the NAC-thioesters were converted to 6'-deoxychalcone in the presence of NADPH and malonyl-CoA.  相似文献   

18.
19.
A generic design of Type I polyketide synthase genes has been reported in which modules, and domains within modules, are flanked by sets of unique restriction sites that are repeated in every module [1]. Using the universal design, we synthesized the six-module DEBS gene cluster optimized for codon usage in E. coli, and cloned the three open reading frames into three compatible expression vectors. With one correctable exception, the amino acid substitutions required for restriction site placements were compatible with polyketide production. When expressed in E. coli the codon-optimized synthetic gene cluster produced significantly more protein than did the wild-type sequence. Indeed, for optimal polyketide production, PKS expression had to be down-regulated by promoter attenuation to achieve balance with expression of the accessory proteins needed to support polyketide biosynthesis.  相似文献   

20.
The geneCAL1 (also known asCDC43) ofSaccharomyces cerevisiae encodes the subunit of geranylgeranyl transferase I (GGTase I), which modifies several small GTPases. Biochemical analyses of the mutant enzymes encoded bycall-1, andcdc43-2 tocdc43-7, expressed in bacteria, have shown that all of the mutant enzymes possess reduced activity, and that none shows temperature-sensitive enzymatic activities. Nonetheless, all of thecall/cdc43 mutants show temperature-sensitive growth phenotypes. Increase in soluble pools of the small GTPases was observed in the yeast mutant cells at the restrictive temperature in vivo, suggesting that the yeast prenylation pathway itself is temperature sensitive. Thecall-1 mutation, located most proximal to the C-terminus of the protein, differs from the othercdc43 mutations in several respects. An increase in soluble Rholp was observed in thecall-1 strain grown at the restrictive temperature. The temperature-sensitive phenotype ofcall-1 is most efficiently suppressed by overproduction of Rholp. Overproduction of the other essential target, Cdc42p, in contrast, is deleterious incall-1 cells, but not in othercdc43 mutants or the wild-type strains. Thecdc43-5 mutant cells accumulate Cdc42p in soluble pools andcdc43-5 is suppressed by overproduction of Cdc42p. Thus, several phenotypic differences are observed among thecall/cdc43 mutations, possibly due to alterations in substrate specificity caused by the mutations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号