首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A series of 1H-1,2,3-triazole-tethered isatin-7-chloroquinoline and 3-hydroxy-indole-7-chloroquinoline conjugates have been synthesized and evaluated for their antimalarial activity against chloroquine-resistant W2 strain of Plasmodium falciparum. The most potent of the test compound with an optimum combination of 3-hydroxy-indole ring and a n-butyl linker displayed an IC50 value of 69 nM.  相似文献   

2.
A series of acetylenic chalcones were evaluated for antimalarial and antitubercular activity. The antimalarial data for this series suggests that growth inhibition of the W2 strain of Plasmodium falciparum can be imparted by the introduction of a methoxy group ortho to the acetylenic group. Most compounds were more active against non-replicating than replicating cultures of Mycobacterium tuberculosis H37Rv, an unusual pattern with respect to existing anti-TB agents.  相似文献   

3.
A significant intersection between antimalarial and antiprion activity is well established for certain compound classes, specifically for polycyclic antimalarial agents bearing basic nitrogen-containing sidechains (e.g., chloroquine, quinacrine, mefloquine). Screening a recently reported set of antiprion compounds with such sidechains showed these 2,4-diarylthiazole based structures also possess significant antimalarial activity. Of particular note, all but one of the compounds displayed activity against a chloroquine-resistant Plasmodium falciparum strain, identifying them as interesting leads for further development in this context. In addition, three new members of the series showed superior antiprion activity compared to the earlier-reported compounds.  相似文献   

4.
A series of acridine derivatives were synthesised and their in vitro antimalarial activity was evaluated against one chloroquine-susceptible strain (3D7) and three chloroquine-resistant strains (W2, Bre1 and FCR3) of Plasmodium falciparum. Structure–activity relationship showed that two positives charges as well as 6-chloro and 2-methoxy substituents on the acridine ring were required to exert a good antimalarial activity. The best compounds possessing these features inhibited the growth of the chloroquine-susceptible strain with an IC50 ? 0.07 μM, close to that of chloroquine itself, and that of the three chloroquine-resistant strains better than chloroquine with IC50 ? 0.3 μM. These acridine derivatives inhibited the formation of β-hematin, suggesting that, like CQ, they act on the haem crystallization process. Finally, in vitro cytotoxicity was also evaluated upon human KB cells, which showed that one of them 9-(6-ammonioethylamino)-6-chloro-2-methoxyacridinium dichloride 1 displayed a promising antimalarial activity in vitro with a quite good selectivity index versus mammalian cell on the CQ-susceptible strain and promising selectivity on other strains.  相似文献   

5.
The aim of this study was to synthesize a series of quinoline–pyrimidine hybrids and to evaluate their in vitro antimalarial activity as well as cytotoxicity. The hybrids were brought about in a two-step nucleophilic substitution process involving quinoline and pyrimidine moieties. They were screened alongside chloroquine (CQ), pyrimethamine (PM) and fixed combinations thereof against the D10 and Dd2 strains of Plasmodium falciparum. The cytotoxicity was determined against the mammalian Chinese Hamster Ovarian cell line. The compounds were all active against both strains. However, hybrid (21) featuring piperazine linker stood as the most active of all. It was found as potent as CQ and PM against the D10 strain, and possessed a moderately superior potency over CQ against the Dd2 strain (IC50: 0.157 vs 0.417 μM, ~threefold), and also displayed activity comparable to that of the equimolar fixed combination of CQ and PM against both strains.  相似文献   

6.
A total of 80 new 2-methyl-6-ureido-4-quinolinamides were synthesized and evaluated for their antimalarial activity. Several analogs elicited the antimalarial effect at MIC of 0.25 mg/mL against the chlooquine-sensitive P. falciparum strain. The IC50 values of the active compounds were observed to be in ng/mL range and two of the analogs have better IC50 value than the standard chloroquine. In the in vivo assay against mdr CQ resistant P. yoelii N67/P. yoelii nigeriensis, however, none of the compound showed complete suppression of parasitemia on day 7. One of the compounds displayed significant antibacterial effect against several strains of bacteria and was many-fold better than the standard drug gentamicin.  相似文献   

7.
In this report, we describe the semisynthesis of two series of ursolic and betulinic acid derivatives through designed by modifications at the C-3 and C-28 positions and demonstrate their antimalarial activity against chloroquine-resistant P. falciparum (W2 strain). Structural modifications at C-3 were more advantageous to antimalarial activity than simultaneous modifications at C-3 and C-28 positions. The ester derivative, 3β-butanoyl betulinic acid (7b), was the most active compound (IC50?=?3.4?µM) and it did not exhibit cytotoxicity against VERO nor HepG2 cells (CC50?>?400?µM), showing selectivity towards parasites (selectivity index?>?117.47). In combination with artemisinin, compound 7b showed an additive effect (CI?=?1.14). While docking analysis showed a possible interaction of 7b with the Plasmodium protease PfSUB1, with an optimum binding affinity of ?7.02?kcal/mol, the rather low inhibition displayed on a Bacillus licheniformis subtilisin A protease activity assay (IC50?=?93?µM) and the observed accumulation of ring forms together with a delay of appearance of trophozoites in vitro suggests that the main target of 3β-butanoyl betulinic acid on Plasmodium may be related to other molecules and processes pertaining to the ring stage. Therefore, compound 7b is the most promising compound for further studies on antimalarial chemotherapy. The results obtained in this study provide suitable information about scaffolds to develop novel antimalarials from natural sources.  相似文献   

8.
A series of thymol based substituted pyrazolines and chalcones was synthesized and evaluated for antimalarial activity, using in-vitro and in-vivo malaria models. All the target compounds (5a-k and 6a-j) were found to be active against human malaria parasite strain Plasmodium falciparum NF54. Among all, compounds 5e and 5f of chalcone series and 6c and 6f of pyrazoline series exhibited prominent antimalarial activity with IC50 less than 3 and 2 μM respectively, while other pyrazolines also significantly inhibited the P. falciparum with IC50 less than 10 μM. The designed pharmacophores were found to be effective against P. falciparum. Compound 6f was found to be able to retard malaria progression in mice. This was evident through decreased parasitemia, increased mean survival time and hemoglobin content in the treated animals. Moreover, 6f was observed as an inhibitor of heme polymerization pathway of the malaria parasite. It also inhibited free heme degradation, which could be possibly responsible for higher reactive oxygen species (ROS) in parasite, thus inhibiting the rapid proliferation of the parasite. In addition to this, compound 6f was found to be non-toxic with a good selectivity index. Based on these observations, the compound 6f could be taken up for further antimalarial lead optimization studies.  相似文献   

9.
A novel series of 6-(2-chloroquinolin-3-yl)-4-substituted-phenyl-6H-1,3-oxazin-2-amines were synthesized and evaluated for in vitro antimalarial efficacy against chloroquine sensitive (MRC-02) as well as chloroquine resistant (RKL9) strains of Plasmodium falciparum. The activity tested was at nanomolar concentration. β-Hematin formation inhibition activity (BHIA50) of oxazines were determined and correlated with antimalarial activity. A reasonably good correlation (r?=?0.49 and 0.51, respectively) was observed between antimalarial activity (IC50) and BHIA50. This suggests that antimalarial mode of action of these compounds seems to be similar to that of chloroquine and involves the inhibition of hemozoin formation. Some of the compounds were showing better antimalarial activity than chloroquine against resistant strain of P. falciparum and were also found to be active in the in vivo experiment.  相似文献   

10.
There is challenge and urgency to synthesize cost-effective chemotherapeutic agents for treatment of malaria after the widespread development of resistance to CQ. In the present study, we synthesized a new series of hybrid 9-anilinoacridine triazines using the cheap chemicals 6,9-dichloro-2-methoxy acridine and cyanuric chloride. The series of new hybrid 9-anilinoacridine triazines were evaluated in vitro for their antimalarial activity against CQ-sensitive 3D7 strain of Plasmodium falciparum and their cytotoxicity were determined on VERO cell line. Of the evaluated compounds, two compounds 17 (IC50 = 4.21 nM) and 22 (IC50 = 4.27 nM) displayed two times higher potency than CQ (IC50 = 8.15 nM). Most of the compounds showed fairly high selectivity index. The compounds 13 and 29 displayed >96.59% and 98.73% suppression, respectively, orally against N-67 strain of Plasmodium yoelii in swiss mice at dose 100 mg/kg for four days.  相似文献   

11.
Both the lack of a credible malaria vaccine and the emergence and spread of parasites resistant to most of the clinically used antimalarial drugs and drug combination have aroused an imperative need to develop new drugs against malaria. In present work, α-pyranochalcones and pyrazoline analogs were synthesized to discover chemically diverse antimalarial leads. Compounds were tested for antimalarial activity by evaluation of the growth of malaria parasite in culture using the microtiter plate based SYBR-Green-I assay. The (E)-3-(3-(2,3,4-trimethoxyphenyl)-acryloyl)-2H-chromen-2-one (Ga6) turned out to be the most potent analog of the series, showing IC50 of 3.1 μg/ml against chloroquine-sensitive (3D7) strain and IC50 of 1.1 μg/ml against chloroquine-resistant field isolate (RKL9) of Plasmodium falciparum. Cytotoxicity study of the most potent compounds was also performed against HeLa cell line using the MTT assay. All the tested compounds showed high therapeutic indices suggesting that they were selective in their action against the malaria parasite. Furthermore, docking of Ga6 into active site of falcipain enzyme revealed its predicted interactions with active site residues. This is the first instance wherein chromeno-pyrazolines have been found to be active antimalarial agents. Further exploration and optimization of this new lead could provide novel, antimalarial molecules which can ward off issues of cross-resistance to drugs like chloroquine.  相似文献   

12.
A new series of 4-aminochloroquinoline based sulfonamides were synthesized and evaluated for antiamoebic and antimalarial activities. Out of the eleven compounds evaluated (F1F11), two of them (F3 and F10) showed good activity against Entamoeba histolytica (IC50 <5 μM). Three of the compounds (F5, F7 and F8) also displayed antimalarial activity against the chloroquine-resistant (FCR-3) strain of Plasmodium falciparum with IC50 values of 2 μM. Compound F7, whose crystal structure was also determined, inhibited β-haematin formation more potently than quinine. To further understand the action of hybrid molecules F7 and F8, molecular docking was carried out against the homology model of P. falciparum enzyme dihydropteroate synthase (PfDHPS). The complexes showed that the inhibitors place themselves nicely into the active site of the enzyme and exhibit interaction energy which is in accordance with our activity profile data. Application of Lipinski ‘rule of five’ on all the compounds (F1F11) suggested high drug likeness of F7 and F8, similar to quinine.  相似文献   

13.
A series of 4-aminoquinolinyl-chalcone amides 1119 were synthesized through condensation of carboxylic acid-functionalized chalcone with aminoquinolines, using 1,1′-carbonyldiimidazole as coupling agent. These compounds were screened against the chloroquine sensitive (3D7) and chloroquine resistant (W2) strains of Plasmodium falciparum. Their cytotoxicity towards the WI-38 cell line of normal human fetal lung fibroblast was determined. All compounds were found active, with IC50 values ranging between 0.04–0.5 μM and 0.07–1.8 μM against 3D7 and W2, respectively. They demonstrated moderate to high selective activity towards the parasitic cells in the presence of mammalian cells. However, amide 15, featuring the 1,6-diaminohexane linker, despite possessing predicted unfavourable aqueous solubility and absorption properties, was the most active of all the amides tested. It was found to be as potent as CQ against 3D7, while it displayed a two-fold higher activity than CQ against the W2 strain, with good selective antimalarial activity (SI = 435) towards the parasitic cells. During this study, amide 15 was thus identified as the best drug-candidate to for further investigation as a potential drug in search for new, safe and effective antimalarial drugs.  相似文献   

14.
In the present study we have synthesized a new class of 4-aminoquinolines and evaluated against Plasmodium falciparum in vitro (3D7-sensitive strain & K1-resistant strain) and Plasmodium yoelii in vivo (N-67 strain). Among the series, eleven compounds (5, 6, 7, 8, 9, 11, 12, 13, 14, 15 and 21) showed superior antimalarial activity against K1 strain as compared to CQ. In addition, all these analogues showed 100% suppression of parasitemia on day 4 in the in vivo mouse model against N-67 strain when administered orally. Further, biophysical studies suggest that this series of compounds act on heme polymerization target.  相似文献   

15.
A series of eleven double prodrug derivatives of a fosmidomycin surrogate were synthesized and investigated for their ability to inhibit in vitro growth of P. falciparum and M. tuberculosis. A pivaloyloxymethyl (POM) phosphonate prodrug modification was combined with various prodrug derivatisations of the hydroxamate moiety. The majority of compounds showed activity comparable with or inferior to fosmidomycin against P. falciparum. N-benzyl substituted carbamate prodrug 6f was the most active antimalarial analog with an IC50 value of 0.64?µM. Contrary to fosmidomycin and parent POM-prodrug 5, 2-nitrofuran and 2-nitrothiophene prodrugs 6i and 6j displayed promising antitubercular activities.  相似文献   

16.
In this investigation, we describe a new approach to chiral synthesis of chloroquine and its analogues. All tested compounds displayed potent activity against chloroquine sensitive as well as chloroquine resistant strains of Plasmodium falciparum in vitro and Plasmodium yoelii in vivo. Compounds S-13b, S-13c, S-13d and S-13i displayed excellent in vitro antimalarial activity with an IC50 value of 56.82, 60.41, 21.82 and 7.94 nM, respectively, in the case of resistant strain. Furthermore, compounds S-13a, S-13c and S-13d showed in vivo suppression of 100% parasitaemia on day 4 in the mouse model against Plasmodium yoelii when administered orally. These results underscore the application of synthetic methodology and need for further lead optimization.  相似文献   

17.
Here, we describe a series of readily obtainable benzophenone derivatives with antimalarial and antitrypanosomal activity. The most active compounds display submicromolar activity against Plasmodium falciparum. Micromolar activity is obtained against Trypanosoma brucei. Main problem of the compounds is low selectivity. However, there are indications that separation of antimalarial and cytotoxic activity might by possible. In addition, some compounds inhibit human ABC transporter with nanomolar activity.  相似文献   

18.
A set of derivatives encompassing structural modifications on the privileged phenalenone scaffold were assessed for their antiplasmodial activities against a strain of chloroquine sensitive Plasmodium falciparum F32. Two compounds exhibited considerable effects against the malaria parasite (IC50 ? 1 μg/mL), one of which maintained the same level of activity in a chloroquine-resistant strain. This is the first record of antiplasmodial activity on this type of scaffold, providing a new structural motif as a new lead for antimalarial activity.  相似文献   

19.
Among three series of 1,2,4-trioxane derivatives, five compounds showed good in vitro antimalarial activity, three compounds of which exhibited better activity against P. falciparum resistant (RKL9) strain than the sensitive (3D7) one. Two best compounds were one from aryl series and the other from heteroaryl series with IC50 values of 1.24 µM and 1.24 µM and 1.06 µM and 1.17 µM, against sensitive and resistant strains, respectively. Further, trioxane derivatives exhibited good binding affinity for the P. falciparum cysteine protease falcipain 2 receptor (PDB id: 3BPF) with well defined drug-like and pharmacokinetic properties based on Lipinski’s rule of five with additional physicochemical and ADMET parameters. In view of having antimalarial potential, 1,2,4-trioxane derivative(s) reported herein may be useful as novel antimalarial lead(s) in the discovery and development of future antimalarial drug candidates as P. falciparum falcipain 2 inhibitors against resistant malaria.  相似文献   

20.
The efficacy of chloroquine, once the drug of choice in the fight against Plasmodium falciparum, is now severely limited due to widespread resistance. Amodiaquine is one of the most potent antimalarial 4-aminoquinolines known and remains effective against chloroquine-resistant parasites, but toxicity issues linked to a quinone-imine metabolite limit its clinical use. In search of new compounds able to retain the antimalarial activity of amodiaquine while circumventing quinone-imine metabolite toxicity, we have synthesized five 4-aminoquinolines that feature rings lacking hydroxyl groups in the side chain of the molecules and are thus incapable of generating toxic quinone-imines. The new compounds displayed high in vitro potency (low nanomolar IC50), markedly superior to chloroquine and comparable to amodiaquine, against chloroquine-sensitive and chloroquine-resistant strains of P. falciparum, accompanied by low toxicity to L6 rat fibroblasts and MRC5 human lung cells, and metabolic stability comparable or higher than that of amodiaquine. Computational studies indicate a unique mode of binding of compound 4 to heme through the HOMO located on a biphenyl moeity, which may partly explain the high antiplasmodial activity observed for this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号