首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coral communities at Moorea, French Polynesia, and on the Great Barrier Reef (GBR), Australia, were severely depleted by disturbances early in the 1980s. Corals were killed by the predatory starfish Acanthaster planci, by cyclones, and/or by depressed sea level. This study compares benthic community structure and coral population structures on three disturbed reefs (Vaipahu-Moorea; Rib and John Brewer Reefs-GBR) and one undisturbed reef (Davies Reef-GBR) in 1987–89. Moorea barrier reefs had been invaded by tall macrophytes Turbinaria ornata and Sargassum sp., whereas the damaged GBR reefs were colonised by a diverse mixture of short macrophytes, turfs and coralline algae. The disturbed areas had broadly similar patterns of living and dead standing coral, and similar progress in recolonisation, which suggests their structure may converge towards that of undisturbed Davies Reef. Corals occupying denuded areas at Vaipahu, Rib and John Brewer were small (median diameter 5 cm in each case) and sparse (means 4–8 m-2) compared to longer established corals at Davies Reef (median diameter 9 cm; mean 18 m-2). At Moorea, damselfish and sea urchins interacted with corals in ways not observed in the GBR reefs. Territories of the damselfish Stegastes nigricans covered much of Moorea's shallow reef top. They had significantly higher diversity and density of post-disturbance corals than areas outside of territories, suggesting that the damselfish exerts some influences on coral community dynamics. Sea urchins on Moorea (Diadema setosum Echinometra mathaei, Echinotrix calamaris) were causing widespread destruction of dead standing coral skeletons. Overall, it appears that the future direction and speed of change in the communities will be explicable more in terms of local than regional processes.  相似文献   

2.
Baur  Bruno  Ringeis  Birgit 《Hydrobiologia》2002,469(1-3):1-10
Net pen fish farms generally enrich the surrounding waters and the underlying sediments with nutrients and organic matter, and these loadings can cause a variety of environmental problems, such as algal blooms and sediment anoxia. In this study we test the potential of biofiltration by artificial reefs for reducing the negative environmental impacts surrounding fish farms in the Gulf of Aqaba, Red Sea. Two triangular-shaped artificial reefs (reef volume 8.2 m3) constructed from porous durable polyethylene were deployed at 20 m; one below a commercial fish farm and the other 500 m west of this farm in order to monitor the colonization of these reefs by the local fauna and to determine whether the reef community can remove fish farm effluents from the water. Both reefs became rapidly colonized by a wide variety of organisms with potential for the removal of compounds released from the farms. Within the first year of this study fish abundances and the number of species reached 518–1185 individuals per reef and 25–42 species per reef. Moreover, numerous benthic algae; small sessile invertebrates (bryozoa, tunicates, bivalves, polychaetes, sponges, anemones) and large motile macrofauna (crustaceans, sea urchins, gastropods) settled on the reef surfaces. Depletion of chlorophyll a was measured in the water traversing the artificial reefs in order to assess the biofiltration capacity of the associated fauna. Chlorophyll a was significantly reduced to a level 15–35% lower than ambient concentrations. This reduction was greatest at intermediate current speeds (3–10 cm s–1), but was not influenced by current direction. The reef structures served as a successful base for colonization by natural fauna and flora, thereby boosting the local benthic biodiversity, and also served as effective biofilters of phytoplankton.  相似文献   

3.
Summary When the common sea urchin Diadema antillarum was removed from a 50 m strip of reef in St. Thomas, US Virgin Islands, cover of upright algae and the grazing rates and densities of herbivorous parrotfish and surgeonfish increased significantly within 11–16 weeks when compared to immediately adjacent control areas. Sixteen months after removal, Diadema had recovered to 70% of original density, abundance of upright algae no longer differed between removal and control areas, and the abundance and grazing activity of herbivorous fish in the removal was approaching equivalence with control areas. On a patch reef in St. Croix that had been cleared of Diadema 10–11 years earlier (Ogden et al. 1973b), urchins had recovered to only 50–60% of original density. This reef still showed significantly higher rates of grazing by fish and a significantly greater density of parrotfish and surgeonfish than a nearby control reef where Diadema densities had not been altered. These results indicate that high Diadema densities (7–12/m2 for this study) may suppress the densities of herbivorous fish on Caribbean reefs.  相似文献   

4.
Tang  S.  Graba-Landry  A.  Hoey  A. S. 《Coral reefs (Online)》2020,39(2):467-473

Macroalgal beds have been suggested to be an important settlement habitat for a diversity of reef fishes, yet few studies have considered how the composition or structure of macroalgal beds may influence fish settlement. The aim of this study was to investigate how the physical characteristics of Sargassum beds, a common macroalga on inshore coral reefs, influence the abundance of recently-settled rabbitfishes (Siganidae) on Orpheus Island, Great Barrier Reef. The abundance of recently-settled rabbitfish (< 3 cm total length), the density and height of Sargassum thalli, and benthic composition were quantified within replicate 1-m2 quadrats across 15 mid-reef flat sites. A total of 419 recently-settled rabbitfish from three species (Siganus doliatus, S. lineatus and S. canaliculatus) were recorded across 150 quadrats (range 0–16 individuals m−2), with S. doliatus accounting for the majority (85.2%) of individuals recorded. The abundance of S. doliatus and S. lineatus was greatest at moderate Sargassum densities (ca. 20–30 holdfasts m−2) and generally increased with Sargassum height and the cover of ‘other’ macroalgae. These findings demonstrate the potential importance of the physical characteristics of macroalgal beds to the settlement of rabbitfishes on inshore reef flats.

  相似文献   

5.
Number, biomass and production of phytoplankton, bacteria, micro- and mesozooplankton and turnover of labile and stable organic matter were measured in waters over some Capricornia round reefs, and over the reefs of Lizard Island. Primary production was 10 to 40 mg C m–3 d–1 but was lower over the living reefs. Microbial wet biomass in reef waters varied from 100 to 500 mg m–3, and production from 4 to 68 mg C m–3 d–1, which was commensurable with primary production. The biomass of microzooplankton (ciliates, zooflagellates and larvae) in waters of Lizard Island reefs reached 100–300 mg m–3. Mesozooplankton biomass at night in reef waters of Heron Island varied from 200 to 800 mg m–3. Its composition depended upon the tide phase. PB coefficients in bacterioplankton were 0.3 to 1.2 per day. The food demand of bacterioplankton in waters over the reefs was 5 to 20 times higher than the primary phytoplankton production. Labile organic matter (LOM) doubled in waters after it stayed over living reef for several hours. The turnover time of LOM in reef waters was as short as 1–2 weeks.  相似文献   

6.
Disturbance of competitive‐dominant plant and algae canopies often lead to increased diversity of the assemblage. Kelp forests, particularly those of temperate Western Australia, are habitats with high alpha diversity. This study investigated the roles of broad‐scale canopy loss and local scale reef topography on structuring the kelp‐dominated macroalgal forests in Western Australia. Eighteen 314 m2 circular areas were cleared of their Ecklonia radiata canopy and eighteen controls were established across three locations. The patterns of macroalgal recolonisation in replicate clearances were observed over a 34 month period. Macroalgal species richness initially increased after canopy removal with a turf of filamentous and foliose macroalgae dominating cleared areas for up to seven months. A dense Sargassum canopy dominated cleared areas from 11 to 22 months. By 34 months, partial recovery of the kelp canopy into cleared areas had occurred. Some cleared areas did not follow this trajectory but remained dominated by turfing, foliose and filamentous algae. As kelp canopies developed, the initial high species diversity declined but still remained elevated relative to undisturbed controls, even after 34 months. More complex reef topography was associated with greater variability in the algal assemblage between replicate quadrats suggesting colonising algae had a greater choice of microhabitats available to them on topographically complex reefs. Shading by canopies of either Sargassum spp. and E. radiata are proposed to highly influence the abundance of algae through competitive exclusion that is relaxed by disturbance of the canopy. Disturbance of the canopy in E. radiata kelp forests created a mosaic of different patch types (turf, Sargassum‐dominated, kelp‐dominated). These patch types were both transient and stable over the 34 months of this study, and are a potential contemporary process that maintains high species diversity in temperate kelp‐dominated reefs.  相似文献   

7.
A summary is presented of estimates of distribution and growth of filamentous algae and its effect on the structure and functioning of epibenthic fauna and fish communities in shallow bays on the Swedish west coast. As a consequence of coastal eutrophication vegetation cover has gradually increased during the last decade, and during 1990's most bays in the Skagerrak-Kattegat area were variously covered with filamentous algae during spring and summer (May–July). In some areas filamentous algae (mainlyCladophora andEnteromorpha) completely covered the bottom. In field studies it was demonstrated that increased cover and dominance of filamentous algae result in structural changes of the epibenthic fauna community. Field studies showed that species richness and biomass of epibenthic fauna increased in a sandy bay with a moderate increase (30 to 50%) of filamentous algae cover. At higher cover (90%), biomass of epibenthic fauna was reduced, however, to the same level as for the sandy habitat, although the dominant epibenthic species were different. Heavy growth of epiphytic filamentous algae on eelgrass resulted in reduced biomass and a shift in the species composition of the epibenthic fauna community. Fish assemblage structure was also related to changes in vegetation. In eelgrass beds, fish species numbers were reduced with increasing cover of epiphytic filamentous algae, and at rocky bottoms with kelp algae (dominated byFucus), fish biomass decreased with increasing cover of attached filamentous algae. Further, foraging efficiency of juvenile cod and settling success of plaice were reduced as a response to increasing dominance of filamentous algae.  相似文献   

8.
For 15 months, the composition and abundance of drift vegetation were determined from a plantdominated fringing reef at Galeta Point, Caribbean Panama. Five nets located downstream of the reef platform continuously sampled 1.0–1.3 ha of reef flat which included 137–202 m of fore reef. Time series and multiple correlation analysis were done to evaluate the dependence of drift biomass on selected physical and biological factors. Export and import rates and turnover times were derived and compared between the dominant species. Floating leaves, branches, and seeds of higher plants were the major components of imported drift with 52% of the dry weight mass, followed by algae and seagrass each with 19%, the water hyacinth Eichhornia with 2%, and floating tar with 8%. Exported biomass from the reef platform was higher in the dry-season (late November–March) than in the wet-season (April-early November). Within the 1.0–1.3 ha sampling area, export estimates ranged from 37–294 kg mo-1 for the seagrass Thalassia, 3–171 kg mo-1 for the alga Laurencia, and 3–74 kg mo-1 for the alga Acanthophora. Multiple correlation models indicated that meteorological and hydrographic conditions explained between 31 to 65% of the variance in the drift biomass and that the best predictors of exported biomass were tidal elevation and wind speed (3 week lag). Export rates increased with high tides and strong winds and decreased with elevated water temperatures. Autocorrelations of drift biomass were generally highest at 2 week intervals, suggesting that the quantity of drift removed from the platform was, in part, related to spring and neap tide cycles. Export rates were also affected by the morphology of the vegetation, development of uprights, and location on the reef platform. Import rates of terrestrial-plant debris, the hyacinth Eichhornia, the seagrass Syringodium, and the brown alga Sargassum did not exhibit pronounced seasonal patterns in abundance and averaged 60.2, 1.9, 1.1, and 2.7 g d-1m-1, respectively. Wind speed was negatively correlated with Sargassum abundance, suggesting that strong winds depleted it from nearshore waters. Floating tar averaged about 10 g d-1m-1, the highest reported in the Caribbean. The plant-dominated fringing reef at Galeta Point is shown to be a major source, as well as a recipient, of drift vegetation.  相似文献   

9.
Turbinaria ornata and Sargassum mangarevense (Halophyte, Sargassaceae) are two Fucales that have strong biotechnological potential for the cosmetic industries. To plan for the harvesting of these two species on Tahiti (French Polynesia, South Pacific Ocean) reefs, their total biomass is estimated for three morphologically different reefs using a combination of field data and three 4-m resolution IKONOS satellite images. Fieldwork provided mean algal cover for each of the main habitats of the reefs and a ubiquitous relationship linking percent cover and biomass. Images were used to map the spatial extent of the habitats. Image classification resulted in an overall habitat map accuracy of 70%. For the three reefs, the total biomass was 153,565 ± 73,441, 561,718 ± 192,956, and 215,203 ± 75,012 tons of dry matter, which yielded a mean areal biomass of 0.173 ± 0.083 kg.m–2, 0.133 ± 0.046 kg.m–2, and 0.193 ± 0.067 kg.m–2 (dry matter). The different total and areal biomass reflect different reef structures and the abundance of suitable substratum for algal settlement. Images reveal the spatial distribution of the algae, mostly located on the outer edges (crest and dense back-reef) of the reefs. Since percent cover data were collected during the cool season when algal densities are at their highest, the computed biomasses are maxima.  相似文献   

10.
The common herbivorous macroinvertebrates on reef flats of the central Great Barrier Reef (GBR) were, in order of abundance: gastropod molluscs (Turbo and Trochus spp.); pagurid crabs; and the starfish, Linckia laevigata. The density of macroinvertebrates on Davies Reef was lowest in the thick-turf habitats at the windward reef-crest (0.6–0.9 m–2) compared with 3.1 to 5.2 m–2 elsewhere on the reef flat. Invertebrate grazer densities were similar on mid-shelf reef flats (mean: 2.3–3.6 m–2) and significantly lower on outer-shelf reefs (0.3–1.0 m–2). The ingestion rate of Turbo chrysostomus, the most abundant macroinvertebrate species, was derived from (a) faecal production and food absorption efficiency, (b) comparison of algal biomass on grazed and ungrazed natural substrata and (c) gut-filling rate and feeding periodicity in field populations. The ingestion rate of Trochus pyramis, the most common trochid and an abundant component of the macroinvertebrate fauna, was also estimated using (a). This gastropod fed continuously, whereas T. chrysostomus showed a distinct nocturnal feeding periodicity. T. chrysostomus and T. pyramis ingested daily means of 35 and 54 mgC animal-1, respectively. Total gastropod grazing rates (mgC m–2d-1 in the field ranged from 11 in a thick-turf, reef-crest habitat to 144 on the open-grazed main flat. Grazing by gastropods accounted for between 0.3 and 8% of the net production of benthic algal food resources, depending on location on the reef flat. Across the whole reef flat the mean (areally-weighted) gastropod grazing rate was 6% of net production. A comparison of the relative roles of different types of grazers led to the conclusion that fishes are likely to have the greatest overall trophic impact on reefs of the central GBR. Even where macroinvertebrates are most abundant on reef flats, the yield from benthic algal communities to macroinvertebrates is estimated to be only one third of that due to fishes.Contribution no. 471 from the Australian Institute of Marine Science  相似文献   

11.
We report on the distribution and abundance of megafauna on a deep-water rocky reef (1796–2373 m) in the Fram Strait, west of Svalbard. Biodiversity and population density are high, with a maximum average of 26.7±0.9 species m−2 and 418.1±49.6 individuals m−2 on the east side of the reef summit. These figures contrast with the surrounding abyssal plain fauna, with an average of only 18.1±1.4 species and 29.4±4.3 individuals m−2 (mean ± standard error). The east side of the reef summit, where the highest richness and density of fauna are found, faces into the predominant bottom current, which likely increases in speed to the summit and serves as a source of particulate food for the numerous suspension feeders present there. We conclude that the observed faunal distribution patterns could be the result of hydrodynamic patterns and food availability above and around the reef. To our knowledge, this study is the first to describe the distribution and diversity of benthic fauna on a rocky reef in deep water.  相似文献   

12.
We examined the impact of adding scallop shells (byproduct of the fisheries) to sandy and rocky sea bottoms in the northern Gulf of St. Lawrence. The effect of adding shells was greatest on sandy bottoms where species richness increased 3.7-fold and species diversity 1.9-fold. The increase in most species was due to immigration rather than new settlement. Trials examining the effect of different densities of shells in plots of the same size (4 m2) showed that species diversity increased rapidly with shell abundance and levelled off when shells covered half of the bottom, whereas species richness only levelled off when shells almost completely covered the bottom. Trials examining the effect of the size of the shell patches (shell density being kept constant) showed that species diversity was already maximal in 1-m2 plots, whereas species richness only attained a plateau at 4 m2. Our small-scale trials indicate that the addition of shells would have a positive impact, increasing numerous invertebrates, including commercial species (scallops, whelks and urchins).  相似文献   

13.
Experimental carbonate blocks of coral skeleton,Porites lobata (PL), and cathedral limestone (LS) were deployed for 14.8 months at shallow (5–6 m) and deep (11–13m) depths on a severely bioeroded coral reef, Champion Island, Galápagos Islands, Ecuador. Sea urchins (Eucidaris thouarsii) were significantly more abundant at shallow versus deep sites.Porites lobata blocks lost an average of 25.4 kg m–2yr–1 (23.71 m–2yr–1 or 60.5% decrease yr–1). Losses did not vary significantly at depths tested. Internal bioeroders excavated an average of 2.6 kg m–2 yr–1 (2.41 m–2 yr–1 or 0.6% decrease yr–1), while external bioeroders removed an average of 22.8 kg m–2 yr–1). (21.31 m–2 yr–1). or 59.9% decrease yr–1). few encrusting organisms were observed on the PL blocks. Cathedral limestone blocks lost an average of 4.1 kg m–2 yr–1). (1.81 m–2 yr–1). or 4.6% decrease yr-'), also with no relation to depth. Internal bioeroders excavated an average of 0.6 kg m–2 yr–1). (0.31 m–2 yr–1). or 0.7% decrease yr–1). and external bioeroders removed an average of 3.5 kg m–2 yr–1). (1.51 m–2 yr–1). or 3.9% decrease yr–1). from the LS blocks. Most (57.6%) encrustation occurred on the bottom of LS blocks, and there was more accretion on block bottoms in deep (61.4 mg cm–2 yr–1). versus shallow (35.0 mg cm–2 yr–1) sites. External bioerosion reduced the average height of the reef framework by 0.2 cm yr–1). for hard substrata (represented by LS) and 2.3 cm yr–1). for soft substrata (represented by PL). The results of this study suggest that coral reef frameworks in the Galápagos Islands are in serious jeopardy. If rates of coral recruitment do not increase, and if rates of bioerosion do not decline, coral reefs in the Galápagos Islands could be eliminated entirely.  相似文献   

14.
Territorial damselfish are important herbivores on coral reefs because they can occupy a large proportion of the substratum and modify the benthic community to promote the cover of food algae. However, on coastal coral reefs damselfish occupy habitats that are often dominated by unpalatable macroalgae. The aim of this study was to examine whether damselfish can maintain distinctive algal assemblages on a coastal reef that is seasonally dominated by Sargassum (Magnetic Island, Great Barrier Reef). Here, three abundant species (Pomacentrus tripunctatus, P. wardi and Stegastes apicalis) occupied up to 60% of the reef substrata. All three species promoted the abundance of food algae in their territories. The magnitudes of the effects varied among reef zones, but patterns were relatively stable over time. Damselfish appear to readily co-exist with large unpalatable macroalgae as they can use it as a substratum for promoting the growth of palatable epiphytes. Damselfish territories represent patches of increased epiphyte load on macroalgae, decreased sediment cover, and enhanced cover of palatable algal turf.  相似文献   

15.
Kelp forests dominated by species of Laminariales are globally recognized as key habitats on subtidal temperate rocky reefs. Forests characterized by fucalean seaweed, in contrast, receive relatively less attention despite being abundant, ubiquitous, and ecologically important. Here, we review information on subtidal fucalean taxa of Australia's Great Southern Reef, with a focus on the three most abundant and widely distributed genera (Phyllospora, Scytothalia, and Sargassum) to reveal the functionally unique role of fucoids in temperate reef ecology. Fucalean species span the entire temperate coastline of Australia (~71,000 km2) and play an important role in supporting subtidal temperate biodiversity and economic values on rocky reefs as well as in adjacent habitats. Climatic and anthropogenic stressors have precipitated significant range retractions and declines in many fucoids, with critical implications for associated assemblages. Such losses are persistent and unlikely to be reversed naturally due to the life history of these species and colonization of competitors and grazers following loss. Active restoration is proving successful in bringing back some fucoid species (Phyllospora comosa) lost from urban shores and will complement other passive and active forms of conservation. Fucalean forests play a unique role on subtidal temperate reefs globally, especially in Australia, but are comparatively understudied. Addressing this knowledge gap will be critical for understanding, predicting, and mitigating extant and future loss of these underwater forests and the valuable ecosystem services they support.  相似文献   

16.
Synopsis Fish assemblages at an artificial reef site, a natural reef site and a sandy-mud bottom site, on the shelf (depth 130 m) off Iwate Prefecture, northern Japan, were surveyed by using a bottom trammel net from May 1987 to March 1993. A total of 12 173 fishes of 48 species were recorded. Physiculus maximowiczi was dominant and comprised 69% of the total numerical abundance. Total fish number was lowest in March at all the 3 sites when P. maximowiczi migrated to deeper and warmer waters. Assemblage equitability and species diversity also varied seasonally in accordance with the abundance fluctuation of P. maximowiczi. P. maximowiczi, Alcichthys alcicornis and Hexagrammos otakii were more abundant at the artificial reef and natural reef sites, while Dexistes rikuzenius and Hemitripterus villosus were more abundant at the sandy-mud bottom site; total fish abundance was largest at the artificial reef site mainly due to the large number of P. maximowiczi. Species richness was similar among sites, but equitability, and consequently species diversity, was lowest at the artificial reef site. The main effect of the artificial reef seemed the attraction of P. maximowiczi from nearby bottoms, especially from natural rocky reefs; its large abundance determined the structure of the artificial reef fish community.  相似文献   

17.
Predation by reef fishes may play an important role in structuring nearby soft-bottom communities. Here we evaluate the hypothesis that the abundance and spatial distribution of an epibenthic mobile organism, the squat lobster Munida gregaria (=M. subrugosa), is influenced by predation by fishes that shelter in temperate rocky reefs of northern Patagonia. The density of squat lobsters on sandy bottoms around three reefs, one natural and two artificial, was estimated at increasing distances (0, 5, 15 and 45 m) from the reefs. In one of the artificial reefs a sample was first collected four months after the reef was created, before it was colonized by fish, and again nine months later when a population of reef-dwelling fish had been established. An area between 5 and 19 m wide free of squat lobsters surrounded all colonized reefs, and no effect was evident at a distance of 45 m from the reefs. In contrast, the density of squat lobsters did not vary with distance from the reef in the new, uncolonized, artificial reef. A predation exclusion experiment conducted around both artificial reefs resulted in a larger presence of squat lobsters within exclusion cages than in partial and open cages. The caging experiment provides strong evidence for attributing the halo around the reefs to predation by fishes, and to confirm that off-reef foraging behaviour depletes prey abundance in nearby soft bottoms.  相似文献   

18.
Features of an intertidal population of Chondracanthus teedei var. lusitanicus, which occurs in sandy basins on rocky shores of part of the Portuguese coast (Buarcos, Figueira da Foz), were studied over one year. Biomass and plant size showed a small increase in early spring (April), a marked increase in early summer (June/July) and were at a minimum in late summer. There was generally more tetrasporophytes (4–32.5%) than female gametophytes (3–29%), which contrasts with other geographical regions where C. teedei populations have been studied, such as Brazil and France. However, non-fructified thalli predominated throughout the year. Phycocolloid extracts were compared for the various stages using spectroscopic methods (FTIR, FT-Raman, 1H- and 13C-NMR). These showed a hybrid carrageenan belonging to the lambda family in the tetrasporophyte and a hybrid kappa-iota-mu-nu carrageenan in the female gametophyte and non-fructified thalli. The average phycocolloid content was 34.9% dry weight, with a maximum of 43.6% in July. The combination of high available biomass and phycocolloid content makes this species a potentially important source of kappa/iota hybrid carrageenan in Portugal additional to the traditionally harvested carrageenophytes.  相似文献   

19.
Synopsis The herbivorous surgeonfish Acanthurus lineatus aggressively maintained feeding territories in the surf zone of the outer reef flat in American Samoa. Intertidal territories were re-established each morning, as well as after displacement by low tides or rough surf. Day-to-day site fidelity of recognizable individuals was high: 99.9% return rate per day for adults (15–20 cm), 99.6% for juveniles (8–13 cm), and 97.2% for recruits (2.5–5 cm). Fish fed on turf algae primarily in the afternoon (80% of available time), and spent 10% of their time on active territorial defense and 2–13% of their time on forays from their territory. On average, a fish defended its territory 1900 times daily and took 17 000 bites (= 7400 bites m–2 d–1), but rough surf reduced feeding by 60% and defense by 75%. High territorial defense requirements significantly reduced feeding rates. Although the distribution and behavior of this species in Samoa was in large part similar to that reported for it elsewhere (Australia, Indian Ocean), there were notable differences: in Samoa A. lineatus densities within colonies were greater (0.4 fish m–2), territory size was smaller (2.3 m2), and defense rate against intruders was greater (2.5 attacks min–1). These differences in Samoa may be related to their smaller body size, greater abundance or increased food supply caused by hurricane damage to reefs which has enhanced the algal turfs that A. lineatus feeds upon.  相似文献   

20.
Yu. I. Sorokin 《Hydrobiologia》1992,242(2):105-114
Exchange of phosphate between components of the reef bottom and the water column were studied on reefs around Heron Island (Great Barrier Reef), both in aquaria and in in situ enclosures, using radioactive phosphorus (32P) as a tracer. Living corals, dead corals, coral rubble overgrown with periphyton, and soft sediments of coral sand were used in experiments. In all of these components of bottom reef biotopes, two opposite flows of inorganic phosphate were recorded and measured, i.e. the rate of PO4-P uptake from water (Ac), and its release (Ae). At ambient PO4-P concentrations in water of 0.1– 0.3 µmoll–1, both flows varied in living corals and coral rubble between 10 and 70 µg P kg–1 h–1, 3–10 mg P m–2 day–1, and in coral sand between 10 and 30 µg P kg–1 h–1, or 2–7 mg P m–2 day–1. Under the latter concentration range (which is typical for coral reef areas), the reciprocal PO4-P flows almost balanced each other, so that net uptake (At) was very low. Often it approached zero or was positive, showing that a net PO4-P release had taken place. The uptake flow (Ac) in living coral was much more dependent on the PO4-P content in overlying water than was the release flow (Ae). The influence of conditions of illumination upon the values of Ac and Ae was comparatively low. The data obtained are used to discuss problems of phosphorus balance and dynamics in coral reef ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号