首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
A mixture of a cell culture-adapted strain (C-486) of calf rotavirus and poliovirus type 1 (Sabin) was prepared in tryptose phosphate broth containing 0.1% uranine (physical tracer) and antifoam at a final concentration of 0.001%. By using a six-jet Collison nebulizer, the mixture was aerosolized into a 300-liter stainless-steel rotating (4 rpm) drum. The temperature of the air inside the drum was kept at 20 +/- 1 degrees C, and the virus aerosols were held at the following three levels of relative humidity (RH): low (30 +/- 5%), medium (50 +/- 5%), and high (80 +/- 5%). An all-glass impinger, containing 10.0 ml of tryptose phosphate broth with antifoam, was used to collect samples of air from the drum. Both viruses were propagated and quantitated in MA-104 cells. The calf rotavirus was found to survive well at mid-range RH, where 60% of the infectious virus could be detected even after 24 h of virus aerosolization. At the low RH, the half-life of the infectious rotavirus was ca. 14 h. On the other hand, no infectious poliovirus could be recovered from the drum air at the low and medium RH. At the high RH, more than 50% of the infectious rotavirus became undetectable within 90 min of aerosolization. In contrast to this, the half-life of the poliovirus at the high RH was about 10 h. These data, based on the aerosolization of virus mixtures, therefore suggest that there is a pronounced difference in the way RH influences the airborne survival of these two types of viruses held under identical experimental conditions.  相似文献   

2.
A mixture of a cell culture-adapted strain (C-486) of calf rotavirus and poliovirus type 1 (Sabin) was prepared in tryptose phosphate broth containing 0.1% uranine (physical tracer) and antifoam at a final concentration of 0.001%. By using a six-jet Collison nebulizer, the mixture was aerosolized into a 300-liter stainless-steel rotating (4 rpm) drum. The temperature of the air inside the drum was kept at 20 +/- 1 degrees C, and the virus aerosols were held at the following three levels of relative humidity (RH): low (30 +/- 5%), medium (50 +/- 5%), and high (80 +/- 5%). An all-glass impinger, containing 10.0 ml of tryptose phosphate broth with antifoam, was used to collect samples of air from the drum. Both viruses were propagated and quantitated in MA-104 cells. The calf rotavirus was found to survive well at mid-range RH, where 60% of the infectious virus could be detected even after 24 h of virus aerosolization. At the low RH, the half-life of the infectious rotavirus was ca. 14 h. On the other hand, no infectious poliovirus could be recovered from the drum air at the low and medium RH. At the high RH, more than 50% of the infectious rotavirus became undetectable within 90 min of aerosolization. In contrast to this, the half-life of the poliovirus at the high RH was about 10 h. These data, based on the aerosolization of virus mixtures, therefore suggest that there is a pronounced difference in the way RH influences the airborne survival of these two types of viruses held under identical experimental conditions.  相似文献   

3.
Effect of relative humidity on the airborne survival of rhinovirus-14   总被引:5,自引:0,他引:5  
Rhinovirus-14, suspended in tryptose phosphate broth supplemented with uranine (physical tracer) and an antifoam, was aerosolized by use of a Collison nebulizer. The aerosols were held in a rotating drum with the relative humidity at either the low (30 +/- 5%), medium (50 +/- 5%), or high (80 +/- 5%) level at 20 +/- 1 degrees C. An all-glass impinger was used to recover the virus from the air in the drum, with the first air sample being collected after a 15-min period of aerosol stabilization. Subsequent air samples were withdrawn at 2, 4, 8, and 14 h after stabilization of the aerosol. At the low and medium relative humidity levels, the infectivity of the airborne virus was rapidly lost and less than 0.25% could be detected in the first air sample. At the high RH level, however, the airborne virus had a half-life of 13.7 +/- 1.91 h and nearly 30% of the input infectious virus could be detected in the drum air even after 24 h of aerosolization. These findings suggest that under certain environmental conditions, notably high relative humidity, air may act as a vehicle for the spread of rhinovirus infections.  相似文献   

4.
Rotavirus SA11, suspended in tryptose phosphate broth with 2.5 mg of rhodamine B per ml, was aerosolized (Collison nebulizer) into a rotating drum, and the aerosols were held at 20 +/- 1 degree C with the desired relative humidity (RH). An all-glass impinger with tryptose phosphate broth was used to collect 1-min (5.6-liter) samples of air from the drum. The virus was found to survive best at medium (50 +/- 5%) RH, where its half-life was nearly 40 h. The half-life of the virus at the low (25 +/- 5%) RH level was about 9 h. Even at 72 h of aerosol age, 45 and 21% of the infectious virus remained detectable in the air at the medium and low RH levels, respectively. The high (80 +/- 5%) RH level was found to be the least favorable to the survival of the virus, since 50% of the infectious virus became undetectable within 2 h of aerosolization. In a separate experiment at the midrange RH, 3% of the infectious virus was detectable in the drum air after 223 h (9 days) of aerosol age. Rotaviruses could, therefore, survive in air for prolonged periods, thus making air a possible vehicle for their dissemination.  相似文献   

5.
Rotavirus SA11, suspended in tryptose phosphate broth with 2.5 mg of rhodamine B per ml, was aerosolized (Collison nebulizer) into a rotating drum, and the aerosols were held at 20 +/- 1 degree C with the desired relative humidity (RH). An all-glass impinger with tryptose phosphate broth was used to collect 1-min (5.6-liter) samples of air from the drum. The virus was found to survive best at medium (50 +/- 5%) RH, where its half-life was nearly 40 h. The half-life of the virus at the low (25 +/- 5%) RH level was about 9 h. Even at 72 h of aerosol age, 45 and 21% of the infectious virus remained detectable in the air at the medium and low RH levels, respectively. The high (80 +/- 5%) RH level was found to be the least favorable to the survival of the virus, since 50% of the infectious virus became undetectable within 2 h of aerosolization. In a separate experiment at the midrange RH, 3% of the infectious virus was detectable in the drum air after 223 h (9 days) of aerosol age. Rotaviruses could, therefore, survive in air for prolonged periods, thus making air a possible vehicle for their dissemination.  相似文献   

6.
To study the survival of human rhinovirus 14 on environmental surfaces, each stainless steel disk (1 cm in diameter) was contaminated with 10 microL (about 10(5) plaque-forming units) of the virus suspended in either 1 chi tryptose phosphate broth (TPB), 5 mg/mL of bovine mucin in normal saline, or undiluted human nasal discharge. The inoculum was dried in a laminar flow cabinet for 1 h under ambient conditions. The disks were then placed in a glass chamber (20 +/- 1 degree C) with the relative humidity at either low (20 +/- 5%), medium (50 +/- 5%), or high (80 +/- 5%) level. At appropriate intervals, the disk to be tested was placed in 1 mL of tryptose phosphate broth and the eluate titrated in A-5 HeLa cells. When the virus was suspended in either tryptose phosphate broth, mucin, or the nasal discharge and subjected to initial drying, there was a 3.0 +/- 1.0, 82.0 +/- 6.7, and 89.0 +/- 3.0% loss in virus infectivity, respectively. The half-life of the TPB-suspended virus was about 14 h at the high relative humidity as compared with less than 2 h at the other two relative humidity levels. The half-lives for the mucin-suspended virus at the high, medium, and low relative humidity were 1.42, 0.55, and 0.24 h, respectively; the corresponding values for the nasal discharge suspended virus being 0.17, 0.25, and 0.09 h.  相似文献   

7.
Rotavirus survival in conventionally treated drinking water   总被引:1,自引:0,他引:1  
Samples of conventionally treated drinking water collected either as effluent (PE) at a treatment plant or out of a tap (TW) in our laboratory were seeded with simian rotavirus SA-11, which closely resembles rotavirus of human origin. The virus, grown in MA-104 cells, was suspended either in distilled water, Earle's balanced salt solution (EBSS), or tryptose phosphate broth (TPB), and added to the water samples to a final concentration of 5.7 X 10(3) plaque-forming units (PFU) per millilitre. After a contact time of 1 h at 22 degrees C, the samples were diluted and plaque assayed. There was no significant reduction in the virus titre in samples of TW (less than 0.05 mg/L free chlorine). The titre also remained almost the same in PE (0.75 mg/L free chlorine) when EBSS or TPB was used for virus suspension. There was, however, nearly a 1 log10 loss in the titre of the virus when it was suspended in distilled water before the contamination of PE. To study the long-term survival of the rotavirus in TW, the inoculated samples (5.0 X 10(4) PFU/mL) were held at either 4 or 20 degrees C in the dark and tested over a period of 64 days. At 20 degrees C it took 64 days to reduce the virus titre by 2 log10, whereas at 4 degrees C the virus titre dropped only 0.7 log10 during the same period. Rotaviruses could, therefore, survive well enough in conventionally treated drinking water to make it a possible vehicle for their transmission.  相似文献   

8.
Nosocomial outbreaks of rotaviral gastroenteritis are a common occurrence. Although proper disinfection practices in the hospital environment are considered to be important in the prevention and control of such outbreaks, very little information has been available on the rotavirus-inactivating capacity of chemical disinfectants and antiseptics commonly used in hospitals. In view of this, 11 such products were selected and screened for their capacity to bring about at least a 3 log10 reduction in the plaque titre of rotavirus SA-11 after a contact time of 1-30 min. Consept "D" (1:100), D.R.X. (1:80), Dustbane Germicidal (1:80), Hibitane, and Wescodyne (1:200) were found to be ineffective under these test conditions even in the absence of an added organic load. The virucidal capacity of Savlon (1:200) and Zephiran was completely neutralized when single-strength tryptose phosphate broth was added to the virus-disinfectant mixture to simulate an organic load. Cidex (2% acid glutaraldehyde), Proviodine (10% solution of povidone-iodine), Septisol (0.75% hexachlorophene), and Sana Rinse (70% isopropylalcohol, 0.1% hexachlorophene) were able to produce at least a 3 log10 (99.9%) reduction in the virus plaque titre even in the presence of added organic matter. These findings should be of help in the prevention and control of outbreaks of rotaviral diarrhea in the hospital environment.  相似文献   

9.
Survival of airborne virus influences the extent of disease transmission via air. How environmental factors affect viral survival is not fully understood. We investigated the survival of a vaccine strain of Gumboro virus which was aerosolized at three temperatures (10°C, 20°C, and 30°C) and two relative humidities (RHs) (40% and 70%). The response of viral survival to four metrics (temperature, RH, absolute humidity [AH], and evaporation potential [EP]) was examined. The results show a biphasic viral survival at 10°C and 20°C, i.e., a rapid initial inactivation in a short period (2.3 min) during and after aerosolization, followed by a slow secondary inactivation during a 20-min period after aerosolization. The initial decays of aerosolized virus at 10°C (1.68 to 3.03 ln % min(-1)) and 20°C (3.05 to 3.62 ln % min(-1)) were significantly lower than those at 30°C (5.67 to 5.96 ln % min(-1)). The secondary decays at 10°C (0.03 to 0.09 ln % min(-1)) tended to be higher than those at 20°C (-0.01 to 0.01 ln % min(-1)). The initial viral survival responded to temperature and RH and potentially to EP; the secondary viral survival responded to temperature and potentially to RH. In both phases, survival of the virus was not significantly affected by AH. These findings suggest that long-distance transmission of airborne virus is more likely to occur at 20°C than at 10°C or 30°C and that current Gumboro vaccination by wet aerosolization in poultry industry is not very effective due to the fast initial decay.  相似文献   

10.
Airborne Stability of Tailless Bacterial Viruses S-13 and MS-2   总被引:6,自引:6,他引:0       下载免费PDF全文
The effect of relative humidity (RH) on the airborne stability of two small bacterial viruses, S-13 and MS-2, was studied. Poorest recovery of S-13 was obtained at 50% RH. Humidification prior to aerosol sampling significantly increased the recovery of S-13 at RH deleterious to the airborne virus. A commercial preparation of MS-2 suspended in a buffered saline solution showed a rapid loss of viability at RH above 30%, whereas a laboratory preparation containing 1.3% tryptone showed high recoveries at all RH studied. Dilution of the commercial MS-2 into tryptone broth conferred stability on the airborne virus. Humidification prior to sampling significantly reduced the viable recovery from aerosols of commercial MS-2, whereas the laboratory preparation was unaffected.  相似文献   

11.
Inactivation of airborne Venezuelan equine encephalitis (VEE) virus disseminated from liquid suspensions or from lyophilized preparations as 1- to 5-mum particles was investigated under various conditions of relative humidity and temperature in a 2,500-liter static aerosol chamber. Relative humidity ranging from 18 to 90% at 24 C and temperature ranging from -40 to 24 C had no marked effect on the biological decay rate or the recovery of viable airborne VEE virus disseminated from liquid suspensions. However, at 49 C a significant increase in the biological decay rate and decrease in aerosol recovery of the VEE virus were observed. Airborne lyophilized VEE virus was significantly affected by relative humidity. An increase in relative humidity from 20 to 90% resulted in progressive decrease in aerosol recovery of viable VEE virus. A twofold reduction in aerosol recovery of the lyophilized virus was observed at and above 29 C as compared to the lower temperatures studied. However, the differences among biological decay rates of lycphilized VEE virus were not significant within temperature range of -40 to 38 C.  相似文献   

12.
As part of our studies on the ecology of human enteric viruses, an improved method for detection of rotaviruses in water was developed, and their presence in Galveston Bay was monitored. Samples (378 liters) of estuarine water adjusted to pH 3.5 and a final AlCl3 molarity of 0.001 were filtered through 25-cm pleated cartridge-type filters (Filterite Corp., Timonium, Md.) of 3.0- and 0.45-micron porosity. Adsorbed virus was eluted with 1 liter of 10% tryptose phosphate broth, pH 9.5. Primary eluates were reconcentrated to a final volume of 10 to 20 ml by a simple and rapid magnetic iron oxide adsorption and elution procedure. Two percent casein at pH 8.5 effectively eluted rotavirus from iron oxide. A total of 21 of 72 samples of water, suspended solids, fluffy sediments, and compact sediments collected in different seasons in Galveston Bay yielded rotaviruses. Recovery of rotaviruses varied from 119 to 1,000 PFU/378 liters of water, 1,200 PFU/1,000 g of compact sediment, 800 to 3,800 PFU/378 liters of fluffy sediment, and 1,800 to 4,980 PFU from suspended solids derived from 378 liters of water based on immunofluorescent foci counts on cover slip cultures of fetal monkey kidney cells.  相似文献   

13.
As part of our studies on the ecology of human enteric viruses, an improved method for detection of rotaviruses in water was developed, and their presence in Galveston Bay was monitored. Samples (378 liters) of estuarine water adjusted to pH 3.5 and a final AlCl3 molarity of 0.001 were filtered through 25-cm pleated cartridge-type filters (Filterite Corp., Timonium, Md.) of 3.0- and 0.45-micron porosity. Adsorbed virus was eluted with 1 liter of 10% tryptose phosphate broth, pH 9.5. Primary eluates were reconcentrated to a final volume of 10 to 20 ml by a simple and rapid magnetic iron oxide adsorption and elution procedure. Two percent casein at pH 8.5 effectively eluted rotavirus from iron oxide. A total of 21 of 72 samples of water, suspended solids, fluffy sediments, and compact sediments collected in different seasons in Galveston Bay yielded rotaviruses. Recovery of rotaviruses varied from 119 to 1,000 PFU/378 liters of water, 1,200 PFU/1,000 g of compact sediment, 800 to 3,800 PFU/378 liters of fluffy sediment, and 1,800 to 4,980 PFU from suspended solids derived from 378 liters of water based on immunofluorescent foci counts on cover slip cultures of fetal monkey kidney cells.  相似文献   

14.
The simian rotavirus SA11 was used to develop a simple, reliable, and efficient method to concentrate rotavirus from tap water, treated sewage, and raw sewage by absorption to and elution from Filterite fiberglass-epoxy filters. SA11 adsorbed optimally to Filterite filters from water containing 0.5 mM AlCl3 at pH 3.5. Filter-bound virus was eluted with 0.05 M glycine-NaOH supplemented with 10% tryptose phosphate broth at pH 10. SA11 was quantitated by plaque assay, whereas human rotavirus was detected by immunofluorescence. The method was applied to detect rotavirus in raw and treated sewage at two Houston, Tex., sewage treatment plants. The sewage isolates were identified as rotavirus, probably a human strain, based on several criteria. The sewage isolates were detectable by an immunofluorescence test, using anti-SA11 serum which would detect the simian, human bovine, and porcine rotaviruses. No reaction was noted by immunofluorescence with the reoviruses or several common enteroviruses. The sewage isolates were neutralized by convalescent sera from a human adult and infant who had been infected by rotavirus as well as by a hyperimmune serum prepared in guinea pigs against purified human rotavirus. Preimmune or preillness sera did not react with the isolates by neutralization or immunofluorescence. The natural isolates were sensitive to pH 11 and other inactivating agents, similar to SA11. The buoyant density of the sewage isolates in CsCl gradients was 1.36 g/cm3, which is the value usually reported for complete, infectious rotavirus particles. The double-shelled particle diameter was 67.1 +/- 2.4 nm. Finally, electron micrographs of cell lysates inoculated with the sewage isolate showed particles displaying characteristic rotavirus morphology.  相似文献   

15.
The simian rotavirus SA11 was used to develop a simple, reliable, and efficient method to concentrate rotavirus from tap water, treated sewage, and raw sewage by absorption to and elution from Filterite fiberglass-epoxy filters. SA11 adsorbed optimally to Filterite filters from water containing 0.5 mM AlCl3 at pH 3.5. Filter-bound virus was eluted with 0.05 M glycine-NaOH supplemented with 10% tryptose phosphate broth at pH 10. SA11 was quantitated by plaque assay, whereas human rotavirus was detected by immunofluorescence. The method was applied to detect rotavirus in raw and treated sewage at two Houston, Tex., sewage treatment plants. The sewage isolates were identified as rotavirus, probably a human strain, based on several criteria. The sewage isolates were detectable by an immunofluorescence test, using anti-SA11 serum which would detect the simian, human bovine, and porcine rotaviruses. No reaction was noted by immunofluorescence with the reoviruses or several common enteroviruses. The sewage isolates were neutralized by convalescent sera from a human adult and infant who had been infected by rotavirus as well as by a hyperimmune serum prepared in guinea pigs against purified human rotavirus. Preimmune or preillness sera did not react with the isolates by neutralization or immunofluorescence. The natural isolates were sensitive to pH 11 and other inactivating agents, similar to SA11. The buoyant density of the sewage isolates in CsCl gradients was 1.36 g/cm3, which is the value usually reported for complete, infectious rotavirus particles. The double-shelled particle diameter was 67.1 +/- 2.4 nm. Finally, electron micrographs of cell lysates inoculated with the sewage isolate showed particles displaying characteristic rotavirus morphology.  相似文献   

16.
There is mounting evidence for the waterborne transmission of diarrhea caused by rotaviruses. As a result, proper techniques are required for their recovery from samples of incriminated water. The combined efficiency of the talc-Celite technique and polyethylene glycol 6000 hydroextraction was, therefore, tested for this purpose, using Simian rotavirus SA-11 and MA-104 cells. Conditioning of the dechlorinated tap water samples was carried out by pH adjustment to 6.0 and the addition of Earle balanced salt solution to a final concentration of 1:100. Passage of a 1-liter volume of such a conditioned sample through a layer containing a mixture of talc (300 mg) and Celite 503 (100 mg) led to the adsorption of nearly 93% of the added SA-11 plaque-forming units. For the recovery of the layer-adsorbed virus, 3% beef extract and 1× tryptose phosphate broth were found to be superior to a variety of other eluents tested. When we tested 100-liter sample volumes, layers containing 1.2 g of talc and 0.4 g of Celite were employed. Virus elution was carried out with 100 ml of tryptose phosphate broth. The eluate was concentrated 10-fold by overnight (4°C) hydroextraction with polyethylene glycol. With a total input virus of 7.0 × 105 and 1.4 × 102 plaque-forming units, the recoveries were about 71 and 59%, respectively.  相似文献   

17.
Stainless steel disks (diameter, 1 cm) were contaminated with fecally suspended hepatitis A virus (HAV; strain HM-175) and held at low (25% +/- 5%), medium (55% +/- 5%), high (80% +/- 5%), or ultrahigh (95% +/- 5%) relative humidity (RH) at an air temperature of 5,20, or 35 degrees C. HAV survival was inversely proportional to the level of RH and temperature, and the half-lives of the virus ranged from greater than 7 days at the low RH and 5 degrees C to about 2 h at the ultrahigh RH and 35 degrees C. In parallel tests with fecally suspended Sabin poliovirus (PV) type 1 at the low and ultrahigh RH, all PV activity was lost within 4 h at the low RH whereas at the ultrahigh RH it remained detectable up to 12 h. HAV could therefore survive much better than PV on nonporous environmental surfaces. Moreover, the ability of HAV to survive better at low levels of RH is in direct contrast to the behavior of other enteroviruses. These findings should help in understanding the genesis of HAV outbreaks more clearly and in designing better measures for their control and prevention.  相似文献   

18.
Stainless steel disks (diameter, 1 cm) were contaminated with fecally suspended hepatitis A virus (HAV; strain HM-175) and held at low (25% +/- 5%), medium (55% +/- 5%), high (80% +/- 5%), or ultrahigh (95% +/- 5%) relative humidity (RH) at an air temperature of 5,20, or 35 degrees C. HAV survival was inversely proportional to the level of RH and temperature, and the half-lives of the virus ranged from greater than 7 days at the low RH and 5 degrees C to about 2 h at the ultrahigh RH and 35 degrees C. In parallel tests with fecally suspended Sabin poliovirus (PV) type 1 at the low and ultrahigh RH, all PV activity was lost within 4 h at the low RH whereas at the ultrahigh RH it remained detectable up to 12 h. HAV could therefore survive much better than PV on nonporous environmental surfaces. Moreover, the ability of HAV to survive better at low levels of RH is in direct contrast to the behavior of other enteroviruses. These findings should help in understanding the genesis of HAV outbreaks more clearly and in designing better measures for their control and prevention.  相似文献   

19.
Pathogenicity of Listeria monocytogenes grown on crabmeat   总被引:1,自引:0,他引:1  
The pathogenicity of Listeria monocytogenes as influenced by growth on crabmeat at 5 and 10 degrees C was studied. Crabmeat was inoculated with L. monocytogenes V7 (ca. 10(4) CFU/g) and incubated for up to 14 days at 5 and 10 degrees C. At selected incubation times, L. monocytogenes was removed from crabmeat by washing with 0.1 M potassium phosphate buffer (pH 7.0), and populations were determined by surface plating on LiCl-phenylethanol-moxalactam agar. Buffered suspensions were then centrifuged, and the resulting pellets were suspended in phosphate buffer containing 10% glycerol and stored at -18 degrees C. Thawed, diluted suspensions of cells were tested for pathogenicity by intraperitoneal injection into immunocompromised and nonimmunocompromised mice. L. monocytogenes cells recovered from crabmeat and then recultured in tryptose phosphate broth (TPB), as well as cells which had not been passed through crabmeat but had been cultured in TPB, were likewise harvested, suspended in buffered 10% glycerol, frozen, thawed, diluted, and tested for pathogenicity by intraperitoneal injection. Growth on crabmeat at 5 and 10 degrees C did not have a significant effect on pathogenicity. The population of L. monocytogenes necessary to kill about 50% of the immunocompromised mice in each test set within 7 days was about 10(4) CFU, and this result was not significantly affected by storage temperature of the crabmeat or type of substrate, i.e., crabmeat or TPB, on which it had grown.  相似文献   

20.
Pathogenicity of Listeria monocytogenes grown on crabmeat.   总被引:2,自引:2,他引:0       下载免费PDF全文
The pathogenicity of Listeria monocytogenes as influenced by growth on crabmeat at 5 and 10 degrees C was studied. Crabmeat was inoculated with L. monocytogenes V7 (ca. 10(4) CFU/g) and incubated for up to 14 days at 5 and 10 degrees C. At selected incubation times, L. monocytogenes was removed from crabmeat by washing with 0.1 M potassium phosphate buffer (pH 7.0), and populations were determined by surface plating on LiCl-phenylethanol-moxalactam agar. Buffered suspensions were then centrifuged, and the resulting pellets were suspended in phosphate buffer containing 10% glycerol and stored at -18 degrees C. Thawed, diluted suspensions of cells were tested for pathogenicity by intraperitoneal injection into immunocompromised and nonimmunocompromised mice. L. monocytogenes cells recovered from crabmeat and then recultured in tryptose phosphate broth (TPB), as well as cells which had not been passed through crabmeat but had been cultured in TPB, were likewise harvested, suspended in buffered 10% glycerol, frozen, thawed, diluted, and tested for pathogenicity by intraperitoneal injection. Growth on crabmeat at 5 and 10 degrees C did not have a significant effect on pathogenicity. The population of L. monocytogenes necessary to kill about 50% of the immunocompromised mice in each test set within 7 days was about 10(4) CFU, and this result was not significantly affected by storage temperature of the crabmeat or type of substrate, i.e., crabmeat or TPB, on which it had grown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号