共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: Continuous fermentation by a highly flocculant strain of the yeast Saccharomyces cerevisiae was carried out in a tower fluidized-bed bioreactor. The synthetic and molasses media with a total sugar concentration of 17% (w/v) were used for fermentation. Different dilution rates were tested. Stable cell densities of 50 kg m-3 (dry weight) were maintained for all dilution rates. The ethanol productivity was increasing linearly with dilution rates up to 15—20 kg m-3 h-1 . Aeration of the culture stabilized flocculating activity and viability of yeast and also permitted long-term operation of the bioreactor. 相似文献
2.
Construction of a flocculating yeast for fuel ethanol production 总被引:1,自引:0,他引:1
The expression vector pYX212 harboring FLO1 gene and kanMX gene was transformed into Saccharomyces. cerevisiae ZWA46. The transformant, ZWA46-F2, showed strong and stable flocculation ability during 20 serial batch cultivations. The
flocculation onset of the strain is in the early stationary growth phase, not coincident with the glucose depletion in the
culture medium. The flocculation ability of the transformant showed no difference with the initial pH ranging from 3.5 to
6.0. Furthermore, the ethanol concentration and other properties of the transformant strain ZWA46-F2 were similar to those
of the wild-type strain ZWA46. 相似文献
3.
4.
5.
AIM: Evaluation of Lantana camara's use as feedstock for fuel ethanol production. METHODS AND RESULTS: Lantana camara plant material was hydrolysed with 1% sulfuric acid for 18 h at room temperature, followed by heat treatment of 121 degrees C for 20 min. Hemicellulosic hydrolyzate was separated and used for detoxification by ethyl acetate and overliming. Cellulosic fraction was hydrolysed with Aspergillus niger crude cellulase enzyme for 18 h at 55 degrees C. Using 15% (dw/v) substrate 73 g l(-1) total reducing sugars were obtained to give 78.7% hydrolysis of carbohydrate content. Acid and enzyme hydrolyzates were mixed equally and used for fermentation with thermotolerant Saccharomyces cerevisiae (VS(3)). Yeast fermented L. camara hydrolyzate well with a fermentation efficiency of 83.7% to give an ethanol yield of 0.431 +/- 0.018 g ethanol pre g sugar and productivity of 0.5 +/- 0.021 g l(-1) h(-1). CONCLUSIONS: Even though inhibitors were present in L. camara hydrolyzate, maximum sugars were utilized by thermotolerant yeast. SIGNIFICANCE AND IMPACT OF THE STUDY: Use of L. camara for fuel ethanol production with improved strains and detoxification can be recommended. 相似文献
6.
An efficient process for the production of fuel ethanol from bamboo that consisted of hydrolysis with concentrated sulfuric acid, removal of color compounds, separation of acid and sugar, hydrolysis of oligosaccharides and subsequent continuous ethanol fermentation was developed. The highest sugar recovery efficiency was 81.6% when concentrated sulfuric acid hydrolysis was carried out under the optimum conditions. Continuous separation of acid from the saccharified liquid after removal of color compounds with activated carbon was conducted using an improved simulated moving bed (ISMB) system, and 98.4% of sugar and 90.5% of acid were recovered. After oligosaccharide hydrolysis and pH adjustment, the unsterilized saccharified liquid was subjected to continuous ethanol fermentation using Saccharomycescerevisiae strain KF-7. The ethanol concentration, the fermentation yield based on glucose and the ethanol productivity were approximately 27.2 g/l, 92.0% and 8.2 g/l/h, respectively. These results suggest that the process is effective for production of fuel ethanol from bamboo. 相似文献
7.
L P Yomano S W York L O Ingram 《Journal of industrial microbiology & biotechnology》1998,20(2):132-138
Genetically engineered Escherichia coli KO11 is capable of efficiently producing ethanol from all sugar constituents of lignocellulose but lacks the high ethanol
tolerance of yeasts currently used for commercial starch-based ethanol processes. Using an enrichment method which selects
alternatively for ethanol tolerance during growth in broth and for ethanol production on solid medium, mutants of KO11 with
increased ethanol tolerance were isolated which can produce more than 60 g ethanol L−1 from xylose in 72 h. Ethanol concentrations and yields achieved by the LY01 mutant with xylose exceed those reported for
recombinant strains of Saccharomyces and Zymomonas mobilis, both of which have a high native ethanol tolerance.
Received 18 September 1997/ Accepted in revised form 07 January 1998 相似文献
8.
自絮凝酵母SPSC01在组合反应器系统中酒精连续发酵的研究 总被引:2,自引:3,他引:2
建立了一套由四级磁力搅拌发酵罐串联组成、总有效容积4000mL的小型组合生物反应器系统 ,其中一级罐作为种子培养罐。以脱胚脱皮玉米粉双酶法制备的糖化液为种子培养基和发酵底物 ,进行了自絮凝颗粒酵母酒精连续发酵的研究。种子罐培养基还原糖浓度为100g L ,添加 (NH4)2HPO4 和KH2PO4 各 20g L ,以0.017h-1 的恒定稀释速率流加 ,并溢流至后续酒精发酵系统。发酵底物初始还原糖浓度 220g/L ,添加 (NH4)2HPO4 15g/L和KH2PO42 5g/L ,流加至第一级发酵罐 ,稀释速率分别为 0.017、0.025、0.033、0.040和0.05 0h-1。实验数据表明 ,自絮凝颗粒酵母在各发酵罐中呈部分固定化状态 ,在稀释速率0.040h-1 条件下 ,发酵系统呈一定的振荡行为 ,其他四个稀释速率实验组均能够达拟稳态。当稀释速率不超过 0 0 33h-1 ,流出末级发酵罐的发酵液中酒精浓度可以达到 12 % (V/V)以上 ,残还原糖和残总糖分别在 0 11%和 0 35 % h-1,流出末级发酵罐的发酵液中酒精浓度可以达到12%(V/V)以上,残还原糖和残总糖分别在0.11%和0.35%(W/V)以下。在稀释速率为0.033h-1时,计算发酵系统酒精的设备生产强度指标为3.32(g·L-1·h-1),与游离酵母细胞传统酒精发酵工艺相比,增加约1倍。 相似文献
9.
Comparisons of five Saccharomyces cerevisiae strains for ethanol production from SPORL‐pretreated lodgepole pine 下载免费PDF全文
Haifeng Zhou Tianqing Lan Bruce S. Dien Ronald E. Hector J. Y. Zhu 《Biotechnology progress》2014,30(5):1076-1083
The performances of five yeast strains under three levels of toxicity were evaluated using hydrolysates from lodgepole pine pretreated by Sulfite Pretreatment to Overcome the Recalcitrance of Lignocelluloses (SPORL). The highest level of toxicity was represented by the whole pretreated biomass slurry, while intermediate toxicity was represented by the hydrolysate with partial loading of pretreatment spent liquor. The zero toxicity was represented using the enzymatic hydrolysate produced from thoroughly washed SPORL lodgepole pine solids. The results indicate that strains D5A and YRH400 can tolerate the whole pretreated biomass slurry to produce 90.1 and 73.5% theoretical ethanol yield. Strains Y1528, YRH403, and FPL450 did not grow in whole hydrolysate cultures and were observed to have lower ethanol productivities than D5A and YRH400 on the hydrolysate with intermediate toxicity. Both YRH400 and YRH403 were genetically engineered for xylose fermentation but were not able to consume xylose efficiently in hydrolysate. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1076–1083, 2014 相似文献
10.
An experimental method for producing ethanol continuously was designed and tested with a cell-recycling two-tank system, which was composed of two fermentors, each of which was individually equipped with a settler for recycling flocculent yeast. This system was effective for the continuous fermentation of ethanol from sucrose at high cell-recycling (r = 0.8–0.9) and dilution (up to 0.48 h?1) rates. The system has several advantages; the high cell concentration in the fermentors and relief of substrate and product inhibition. Thus, the enhanced productivity using this continuous fermentation with the two-tank cell-recycling system was significantly higher compared with that of the batch fermentation. The results indicate that increased recycling ratios caused an increase in biomass concentration and subsequently, product concentration in the tank. The ethanol productivity increased with the dilution rate, but higher dilution rates could render increasing amounts of sugar unconverted. Continuous fermentation with the sugar feed concentration of 160 g/l at r = 0.9 and dilution rate of 0.2 h?1 achieved the highest productivity with less than 2% of the unconverted sugar in the product steam. Under the same cell recycling ratios a productivity range of 6.9–7.5 g/l h?1 could be achieved with feeding concentrations of 80–200 g/l, while batch fermentation at these sugar concentrations led to productivities of 3.85–4.48 g/l h?1. 相似文献
11.
Yeast selection for fuel ethanol production in Brazil 总被引:1,自引:0,他引:1
Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation. 相似文献
12.
Continuous ethanol production by immobilized yeast reactor coupled with membrane pervaporation unit 总被引:5,自引:0,他引:5
Shabtai Y Chaimovitz S Freeman A Katchalski-Katzir E Linder C Nemas M Perry M Kedem O 《Biotechnology and bioengineering》1991,38(8):869-876
A system comprised of an immobilized yeast reactor producing ethanol, with a membrane pervaporation module for continuously removing and concentrating the produced ethanol, was developed. The combined system consisted of two integrated circulation loops: In one the sugar-containing medium is circulated through the membrane pervaporation module. The two loops were interconnected in a way allowing for separate parameter optimization (e.g., flow rate, temperature, pH) for each loop.The fermentation unit was 2.0 L bioreactor with five equal segments, packed with 5-mm beads of immobilized yeasts. The bead matrix was a crosslinked polyacrylamide hydrazide gel coated with calcium alginate. The fast circulation loop of the bioreactor allowed for efficient liberation of CO(2) at the top of the immobilized yeast reactor. Continuous operation of the uncoupled reactor for over 50 days with inflowing defined medium or dilute molasses at a residence time of 1.25 h yielded ethanol at a rate of about 10 g/L h.The pervaporation unit was constructed from four 60-cm-long tubular membranes of silicone composite on a polysulfone support. The output from the fermentor was circulated through the inside of the tubes of a unit with a total surface area of 800 cm(2), having an average flux of 150 mL/h, and selectivities to ethanol vs. water up to 7. A vacuum of 30 mb was applied to the outside of the tubes, removing 20-30 g of ethanol per hour, which was collected in condensors. The continuous removal of ethanol, avoiding inhibition of the fermentation process, resulted in an improved productivity and allowed the use of high sugar concentrations (40% wt/vol) offering the potential of a compact system with reduced stillage.The combined system of ethanol production and removal enabled an operative steady state at which the liquid volume of the system, and the concentrations of ethanol within the reactor ( 4% wt/vol), as well as within the flux crossing the pervaporation membrane (17%-20% wt/vol) were kept constant. At the steady state, a 40% wt/vol sugar solution could be continuously added to the fermentor when 12%-20% wt/vol clear ethanol solution was continuously removed by the pervaporation unit. Membrane fouling was reversed by short washing steps, and continuous step operation was maintained by working with two different modules that were interchanged. In this manner, long term continuous operation (over 40 days) was achieved with a productivity of 20-30 g/L h, representing over a twofold increase relative to the continuously operated reactor uncoupled from the membrane and a fivefold increase in comparison with the value obtained fro a corresponding batch fermentation. 相似文献
13.
14.
高生物量富硒酵母的选育及发酵条件的研究 总被引:1,自引:0,他引:1
采用硒浓度耐性培养,从8株酿酒酵母中筛选驯化得到一株高生物量富硒酵母菌株NH-7,并对其发酵条件进了行优化。采取流加培养,在菌株稳定期,即18 h开始分批添加亚硒酸钠至总硒浓度为30μg/mL,控制乙醇浓度为0.4%和0.7%,分别得到20.14 g的高生物量(每升培养液中获得的酵母菌体干重)和82.52%的硒转化率。在60μg/mL总硒浓度的流加培养中,得到高达2 411μg/g的有机硒含量,每升发酵液菌体干重为18.83 g。 相似文献
15.
微藻广泛分布于自然界,其易培养,生长快且应用价值高,普遍用于生物燃料、医学原料、优质食品源及畜牧养殖业等。近年来,通过对光生物反应器改造设计、高产藻株筛选、代谢通路基因改造等方法实现微藻产量的提高,而在微藻处理的下游过程的研究与创新不足,特别是微藻采收已经成为其产业发展的瓶颈。本文综述了絮凝法在微藻采收中的作用,重点讨论了絮凝微生物在微藻采收中的作用,并对絮凝微生物对微藻的絮凝机制进行广泛探讨,为絮凝微生物采收微藻提供理论依据。 相似文献
16.
耐高温酵母乙醇间歇发酵动力学研究 总被引:2,自引:0,他引:2
该研究采用耐高温型酵母,在不同葡萄糖浓度(5%~30%wt)下进行了乙醇间歇发酵的动力学研究,确定了适合该酵母的最佳底物浓度范围为16%~20%(wt)。同时选取合适的动力学模型,通过实验数据的非线性性拟合,得出了不同底物浓度下对应的动力学参数值,并分析了各动力学参数值随底物浓度增加而变化的趋势。结果显示,该酵母的最大比生长速率μmax随着葡萄糖浓度的增加而有所降低,且呈线性关系:μmax=0.3161-4.1820×104s(100g/L相似文献
17.
18.
采用固定化生长细胞方法,以柱式生物反应器连续发酵甜菜糖蜜酒精。酒精能力为39.45g/L凝胶/h,停留时间1.8小时。生物反应器具有良好的稳定性,连续工作50天,发酵醪酒精含量在8.5%(v/v)以上。系统研究了最适固定化条件,用L_(16)(4~5)正交试验确定了最佳发酵条件。 相似文献
19.
针对海带的碳水化合物不易被单一菌株发酵转化为乙醇的难题,通过酸化、匀浆和消化等预处理和正交试验,利用多酶系多菌种微生物复合发酵剂的酿酒曲,研究海带发酵制取生物乙醇的影响因素与优化条件。结果表明:在预处理试验中,加入一定量的Na2CO3,可以提高海带液中还原性糖和总糖的含量;消化温度对总糖影响相对较大,而对还原性糖的影响较小;过滤不利于得到较高浓度的乙醇;在优化条件中,发酵液的初始酸碱度是最重要的,其次是发酵温度和基质浓度,发酵液体积的影响程度相对较小。在基质(海带)质量浓度为0.15 g/L、温度34℃、起始pH 6.5和发酵液体积200 mL时,可以获得最大的乙醇产量4.09 g(以100 g海带计)。 相似文献
20.
Bacterial contaminants of fuel ethanol production 总被引:2,自引:0,他引:2
Bacterial contamination is an ongoing problem for commercial fuel ethanol production facilities. Both chronic and acute infections are of concern, due to the fact that bacteria compete with the ethanol-producing yeast for sugar substrates and micronutrients. Lactic acid levels often rise during bouts of contamination, suggesting that the most common contaminants are lactic acid bacteria. However, quantitative surveys of commercial corn-based fuel ethanol facilities are lacking. For this study, samples were collected from one wet mill and two dry grind fuel ethanol facilities over a 9 month period at strategic time points and locations along the production lines, and bacterial contaminants were isolated and identified. Contamination in the wet mill facility consistently reached 106 bacteria/ml. Titers from dry grind facilities were more variable but often reached 108/ml. Antibiotics were not used in the wet mill operation. One dry grind facility added antibiotic to the yeast propagation tank only, while the second facility dosed the fermentation with antibiotic every 4 h. Neither dosing procedure appeared to reliably reduce overall contamination, although the second facility showed less diversity among contaminants. Lactobacillus species were the most abundant isolates from all three plants, averaging 51, 38, and 77% of total isolates from the wet mill and the first and second dry grind facilities, respectively. Although populations varied over time, individual facilities tended to exhibit characteristic bacterial profiles, suggesting the occurrence of persistent endemic infections.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable. 相似文献