首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atrial natriuretic peptide (ANP) binds to a transmembrane receptor having intrinsic guanylyl cyclase activity; this receptor has been designated GC-A. Binding of ANP to GC-A stimulates its catalytic activity, resulting in increased production of the second messenger, cyclic GMP. Here we show that GC-A can be expressed in insect cells using a recombinant baculovirus and that the expressed protein retained its abilities to bind ANP and to function as an ANP-activated guanylyl cyclase. In addition, GC-A produced in insect cells was absolutely dependent on the presence of adenine nucleotides for activation by ANP. Millimolar concentrations of ATP were required for optimal activation. The relative potencies of various nucleotides for activation was adenosine 5'-O-(thiotriphosphate) greater than ATP greater than ADP, adenosine 5'-(beta, gamma-imino)triphosphate greater than ADP beta S. AMP had no effect. These studies suggest that binding of an adenine nucleotide, most likely to the protein kinase-like domain of GC-A, is absolutely required for ANP activation. Regulation of guanylyl cyclase activation by adenine nucleotides represents a novel mechanism for the modulation of signal transduction, possibly analogous in some respects to the role of guanine nucleotides and G proteins in the regulation of adenylyl cyclase activity.  相似文献   

2.
Guanylyl cyclases (GCs), a ubiquitous family of enzymes that metabolize GTP to cyclic GMP (cGMP), are traditionally divided into membrane-bound forms (GC-A-G) that are activated by peptides and cytosolic forms that are activated by nitric oxide (NO) and carbon monoxide. However, recent data has shown that NO activated GC’s (NOGC) also may be associated with membranes. In the present study, interactions of guanylyl cyclase A (GC-A), a caveolae-associated, membrane-bound, homodimer activated by atrial natriuretic peptide (ANP), with NOGC, a heme-containing heterodimer (α/β) β1 isoform of the β subunit of NOGC (NOGCβ1) was specifically focused. NOGCβ1 co-localized with GC-A and caveolin on the membrane in human kidney (HK-2) cells. Interaction of GC-A with NOGCβ1 was found using immunoprecipitations. In a second set of experiments, the possibility that NOGCβ1 regulates signaling by GC-A in HK-2 cells was explored. ANP-stimulated membrane guanylyl cyclase activity (0.05 ± 0.006 pmol/mg protein/5 min; P < 0.01) and intra cellular GMP (18.1 ± 3.4 vs. 1.2 ± 0.5 pmol/mg protein; P < 0.01) were reduced in cells in which NOGCβ1 abundance was reduced using specific siRNA to NOGCβ1. On the other hand, ANP-stimulated cGMP formation was increased in cells transiently transfected with NOGCβ1 (530.2 ± 141.4 vs. 26.1 ± 13.6 pmol/mg protein; P < 0.01). siRNA to NOGCβ1 attenuated inhibition of basolateral Na/K ATPase activity by ANP (192 ± 22 vs. 92 ± 9 nmol phosphate/mg protein/min; P < 0.05). In summary, the results show that NOGCβ1 and GC-A interact and that NOGCβ1 regulates ANP signaling in HK-2 cells. The results raise the novel possibility of cross-talk between NOGC and GC-A signaling pathways in membrane caveolae.  相似文献   

3.
The crucial functions of atrial natriuretic peptide (ANP) and endothelial nitric oxide/NO in the regulation of arterial blood pressure have been emphasized by the hypertensive phenotype of mice with systemic inactivation of either the guanylyl cyclase-A receptor for ANP (GC-A-/-) or endothelial nitric-oxide synthase (eNOS-/-). Intriguingly, similar levels of arterial hypertension are accompanied by marked cardiac hypertrophy in GC-A-/-, but not in eNOS-/-, mice, suggesting that changes in local pathways regulating cardiac growth accelerate cardiac hypertrophy in the former and protect the heart of the latter. Our recent observations in mice with conditional, cardiomyocyte-restricted GC-A deletion demonstrated that ANP locally inhibits cardiomyocyte growth. Abolition of these local, protective effects may enhance the cardiac hypertrophic response of GC-A-/- mice to persistent increases in hemodynamic load. Notably, eNOS-/- mice exhibit markedly increased cardiac ANP levels, suggesting that increased activation of cardiac GC-A can prevent hypertensive heart disease. To test this hypothesis, we generated mice with systemic inactivation of eNOS and cardiomyocyte-restricted deletion of GC-A by crossing eNOS-/- and cardiomyocyte-restricted GC-A-deficient mice. Cardiac deletion of GC-A did not affect arterial hypertension but significantly exacerbated cardiac hypertrophy and fibrosis in eNOS-/- mice. This was accompanied by marked cardiac activation of both the mitogen-activated protein kinase (MAPK) ERK 1/2 and the phosphatase calcineurin. Our observations suggest that local ANP/GC-A/cyclic GMP signaling counter-regulates MAPK/ERK- and calcineurin/nuclear factor of activated T cells-dependent pathways of cardiac myocyte growth in hypertensive eNOS-/- mice.  相似文献   

4.
We established clonal cell lines stably expressing each of two subtypes of membrane bound guanylate cyclases (GC-A and GC-B), which are known as natriuretic peptide receptors. Using these cell lines, we showed that GC-A is an ANP/BNP receptor, whereas GC-B is a specific receptor for CNP. Effects of HS-142-1, a novel non-peptide ANP antagonist, on GC-A and GC-B were examined by using these cells. In cells expressing either GC-A or GC-B, HS-142-1 inhibited cGMP production elicited by ANP or CNP with IC50 values of 1.8 micrograms/ml and 1.5 micrograms/ml, respectively, and also competitively blocked specific binding of the natriuretic peptides with IC50 values of 2.2 micrograms/ml and 3.3 micrograms/ml, respectively. These results indicate that HS-142-1 is a potent antagonist of CNP as well as ANP. We also showed that CNP suppressed the growth of cells expressing GC-B by 22% and that HS-142-1 blocked the antiproliferative action of CNP.  相似文献   

5.
S Schulz  S Singh  R A Bellet  G Singh  D J Tubb  H Chin  D L Garbers 《Cell》1989,58(6):1155-1162
Atrial natriuretic peptide (ANP) binds directly to a plasma membrane form of guanylate cyclase (GC-A), stimulating the production of the second messenger cyclic GMP. We show that a second guanylate cyclase/receptor (GC-B) exists, with distinctly different specificities for various natriuretic peptides. A cDNA clone encoding GC-B was isolated by low-stringency screening of a rat brain cDNA library using GC-A cDNA as a probe. The deduced amino acid sequence of GC-B is 78% identical with GC-A within the intracellular region, but 43% identical within the extracellular domain. Cyclic GMP concentrations in cells transfected with GC-A were half-maximally elevated at 3 nM ANP, 25 nM brain natriuretic peptide (BNP), and 65 nM atriopeptin 1, while 25 microM ANP, 6 microM BNP, and greater than 100 microM atriopeptin 1 were required for half-maximal stimulation of GC-B. The potencies of natriuretic peptides on GC-A and GC-B activity are therefore markedly different; furthermore, despite the specificity of GC-B for BNP, the relatively high BNP concentration required to elicit a response suggests the possible presence of a more potent, unidentified natural ligand.  相似文献   

6.
A recombinant vaccinia virus has been used to direct the expression of the atrial natriuretic peptide clearance receptor (ANP C-receptor) in mammalian cell lines normally deficient in this protein. The recombinant receptor binds 125I-ANP-(102-126) in a specific and saturable manner and carboxyl-terminal truncated and internal-deleted ANP analogs bind to this site with high affinity. Following the covalent attachment of 125I-ANP-(102-126) to the recombinant ANP C-receptor, the protein exhibits an electrophoretic mobility identical to that of the native ANP C-receptor of cultured vascular cells. Expression of the ANP C-receptor in heterologous cells does not affect ANP-stimulated cyclic GMP accumulation, confirming previous reports that this novel ANP receptor subpopulation is not coupled to cyclic GMP metabolism. Furthermore, specific antisera, generated by inoculating rabbits with living recombinant virus, block 125I-ANP binding to the ANP C-receptor but do not inhibit ANP stimulation of cyclic GMP, supporting the existence of two receptor subpopulations that are functionally and immunologically distinct.  相似文献   

7.
Heat shock protein 90 (hsp90) is a chaperone required for the proper folding and trafficking of many proteins involved in signal transduction. We tested whether hsp90 plays a role as a chaperone for GC-A, the membrane guanylate cyclase that acts as a receptor for atrial natriuretic peptide (ANP). When cultured cells expressing recombinant GC-A were treated with geldanamycin, an inhibitor of hsp90 function, the ANP-stimulated production of cyclic GMP was inhibited. This suggested that hsp90 was required for GC-A processing and/or stability. A physical association between hsp90 and GC-A was demonstrated in coimmunoprecipitation experiments. Treatment with geldanamycin disrupted this association and led to the accumulation of complexes containing GC-A and heat shock protein 70 (hsp70). Protein folding pathways involving hsp70 and hsp90 include several pathway-specific co-chaperones. Complexes between GC-A and hsp90 contained the co-chaperone p50(cdc37), typically found associated with protein kinase.hsp90 heterocomplexes. GC-A immunoprecipitates did not contain detectable amounts of Hop, FKBP51, FKBP52, PP5, or p23, all co-chaperones found in hsp90 complexes with other signaling proteins. The association of hsp90 and p50(cdc37) with GC-A was dependent on the kinase homology domain of this receptor but not on its ANP-binding, transmembrane, or guanylate cyclase domains. The data suggest that GC-A is regulated by hsp90 complexes similar to those involved in the maturation of protein kinases.  相似文献   

8.
9.
We elucidated the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in human and bovine adrenocortical steroidogenesis. The urinary volume, sodium excretion and cyclic GMP (cGMP) excretion and plasma cGMP were markedly increased by the synthetic alpha-human ANP (alpha-hANP) infusion in healthy volunteers. Plasma arginine vasopressin (AVP) and aldosterone levels were significantly suppressed. Both ANP and BNP inhibited aldosterone, 19-OH-androstenedione, cortisol and DHEA secretion dose-dependently and increased the accumulation of intracellular cGMP in cultured human and bovine adrenal cells. alpha-hANP significantly suppressed P450scc-mRNA in cultured bovine adrenal cells stimulated by ACTH. Autoradiography and affinity labeling of [125I]hANP, and Scatchard plot demonstrated a specific ANP receptor in bovine and human adrenal glands. Purified ANP receptor from bovine adrenal glands identified two distinct types of ANP receptors, one is biologically active, the other is silent. A specific BNP receptor was also identified on the human and bovine adrenocortical cell membranes. The binding sites were displaced by unlabelled ANP as well as BNP. BNP showed an effect possibly via a receptor which may be shared with ANP. The mean basal plasma alpha-hANP level was 25 +/- 5 pg/ml in young men. We confirmed the presence of ANP and BNP in bovine and porcine adrenal medulla. Plasma or medullary ANP or BNP may directly modulate the adrenocortical steroidogenesis. We demonstrated that the lack of inhibitory effect of alpha-hANP on cultured aldosterone-producing adenoma (APA) cells was due to the decrease of ANP-specific receptor, which caused the loss of suppression of aldosterone and an increase in intracellular cGMP.  相似文献   

10.
Nitric oxide (NO)- and atrial natriuretic peptide (ANP)-initiated cGMP signaling cascades are important in the maintenance of cardiovascular homeostasis. The molecular signaling mechanisms downstream of cGMP are not well understood, however. We have used small interfering RNA (siRNA) approaches to specifically knock down a series of signaling proteins in bovine aortic endothelial cells, and we have combined biochemical analyses with physiological assays to investigate cGMP-mediated signal transduction pathways. Activation of particulate guanylate cyclase (GC-A) by ANP leads to a substantial, dose-dependent, rapid, and sustained increase in intracellular cGMP. In contrast, stimulation of soluble guanylate cyclase by NO yields only a weak and transient increase in cGMP. ANP-induced cGMP production is selectively suppressed by siRNA-mediated knockdown of GC-A. ANP greatly enhances the phosphorylation at Ser-239 of the vasodilator-stimulated phosphoprotein (VASP), a major substrate of cGMP-dependent protein kinase (PKG) that significantly influences actin dynamics. Moreover, the ANP-induced phosphorylation of VASP at Ser-239 is accompanied by increased actin stress fiber formation and enhanced endothelial tube formation. siRNA-mediated knockdown of GC-A, VASP, or PKG abolishes ANP-induced VASP Ser-239 phosphorylation, stress fiber formation, and endothelial tube formation. We have demonstrated similar findings in human umbilical vein endothelial cells, where ANP substantially enhances intracellular cGMP content, phosphorylation of VASP at Ser-239, and endothelial tube formation. Taken together, our findings suggest that ANP-mediated cGMP signal transduction pathways regulate PKG phosphorylation of VASP Ser-239 in endothelial cells, resulting in reorganization of the actin cytoskeleton and enhancement of angiogenesis.  相似文献   

11.
This study aimed to characterize the vasorelaxing effects of ANP, BNP and CNP in isolated renal resistance arteries (RRA) from wild-type mice and mice with either systemic (GC-A -/-) or smooth muscle-restricted deletion of GC-A (SMC GC-A KO). In RRA from wild-type (GC-A +/+) mice natriuretic peptides (NP) induced concentration-dependent vasorelaxations with the rank order of potency ANP>BNP>CNP. In RAA obtained from mice with systemic or smooth muscle-restricted deletion of GC-A, the effects of ANP and BNP were abolished. In contrast, CNP induced concentration-dependent vasorelaxations of GC-A -/- and SMC GC-A KO RRA. However, the efficacy of CNP for vasorelaxation was markedly diminished compared with wild-type RRA. Such changes in CNP responsiveness did not affect large arteries as the aorta and they were not due to vascular changes secondary to chronic arterial hypertension in GC-A -/- mice. Unaltered vasorelaxing effects of acetylcholine and sodium nitroprusside demonstrated unaltered function of downstream targets regulated by cGMP in vascular smooth muscle. An increased expression of the clearance receptor (NPR-C) or diminished expression of GC-B were not found to account for the differences in CNP responsiveness. In conclusion, observations in isolated aortic rings do not necessarily allow conclusions concerning the physiology of natriuretic peptides in the smaller resistance size arteries. Changes at the GC-B receptor level are likely to explain the diminished responsiveness of GC-A-deficient RRA to CNP.  相似文献   

12.
Atrial natriuretic peptide (ANP) is a cardiovascular hormone secreted mainly by the cardiac atria and regulates the volume-pressure homeostasis. The action of ANP is mediated by its receptor, guanylyl cyclase-coupled receptor A (GC-A). In this study, we explored the possibility that ANP and GC-A may play a role in the dendritic cell (DC)-mediated immune regulation. We first examined the expression of GC-A in human monocyte-derived DCs in comparison with monocytes and found that DCs but not monocytes express GC-A at both the mRNA and protein levels. DCs responded to ANP with an increase in intracellular cGMP in a dose-dependent manner, indicating that GC-A expressed on DCs is functional. Furthermore, treatment of DCs with ANP decreased production of IL-12 and TNF-alpha and conversely increased that of IL-10 upon stimulation with LPS. In accordance with this change of cytokine production, DCs treated with ANP plus LPS promoted differentiation of naive CD4(+) T cells into a Th2 phenotype. Finally, we presented evidence that ANP affected cytokine production of fresh whole blood stimulated with LPS in line with the above-mentioned results. These results indicate that ANP polarizes human DCs toward a Th2-promoting phenotype through GC-A and thus can regulate immune responses.  相似文献   

13.
Atrial natriuretic peptide (ANP) binds to the guanylyl cyclase-A (GC-A) receptor found in tissues such as the kidney and adrenal gland, resulting in marked elevations of the intracellular signaling molecule, cGMP. Here, GC-A is shown to exist as a phosphoprotein when expressed in human embryonic 293 cells. The 32P is principally associated with phosphoserine, with only trace amounts of phosphothreonine. The addition of ANP causes a time-dependent dephosphorylation of the receptor, as well as desensitization, which is not due to an ANP-mediated decrease in the amount of receptor protein. The mobility of GC-A on sodium dodecyl sulfate-polyacrylamide gel electrophoresis increases after treatment of cells with ANP, and protein phosphatase 2A induces the same mobility shift. The protein phosphatase also catalyzes dephosphorylation of GC-A, and this is directly correlated with decreases in ANP-stimulatable guanylyl cyclase activity. Okadaic acid, an inhibitor of protein phosphatase 2A, blocks both the dephosphorylation and the desensitization. Therefore, in contrast to many other cell surface receptors, GC-A is desensitized by ligand-induced dephosphorylation.  相似文献   

14.
In a previous study, we reported that cyclic GMP (cGMP) selectively down-regulates the clearance receptor (C-receptor) for atrial natriuretic peptide (ANP) in the cultured bovine pulmonary artery endothelial (CPAE) cell line. The present study was undertaken in order to examine the effect of cGMP on the internalization of the ANP-receptor complex in CPAE cells. Maximum binding of [125I]APIII to the cells significantly decreased following the treatment with 1 mM 8-bromo-cGMP for 48 or 72 h. Scatchard analysis of the binding assay data from the treated cells showed a decrease in Bmax (616 to 411 fmol/mg protein) without a significant change in Kd. Removal of cell surface-bound APIII by acetic acid revealed that not only the surface binding, but also the internalization of APIII significantly decreased in 8-bromo-cGMP-treated cells, indicating a decrease in receptor-mediated uptake of ANP into the cells. These results suggest that cGMP regulates the clearance of ANP by vascular endothelial cells.  相似文献   

15.
16.
Two classes of guanylyl cyclases (GC) form intracellular cGMP. One is a receptor for atrial natriuretic peptide (ANP) and the other for nitric oxide (NO). The ANP receptor guanylyl cyclase (GC-A) is a membrane-bound, single subunit protein. Nitric oxide activated or soluble guanylyl cyclases (NOGC) are heme-containing heterodimers. These have been shown to be important in cGMP mediated regulation of arterial vascular resistance and renal sodium transport. Recent studies have shown that cGMP produced by both GCs is compartmentalized in the heart and vascular smooth muscle cells. To date, however, how intracellular cGMP generated by ANP and NO is compartmentalized and how it triggers specific downstream targets in kidney cells has not been investigated. Our studies show that intracellular cGMP formed by NO is targeted to cytosolic and cytoskeletal compartments whereas cGMP formed by ANP is restricted to nuclear and membrane compartments. We used two dimensional difference in gel electrophoresis and MALDI-TOF/TOF to identify distinct sub-cellular targets that are specific to ANP and NO signaling in HK-2 cells. A nucleocytoplasmic shuttling protein, heterogeneous nuclear ribonucleo protein A1 (hnRNP A1) is preferentially phosphorylated by ANP/cGMP/cGK signaling. ANP stimulation of HK-2 cells leads to increased cGK activity in the nucleus and translocation of cGK and hnRNP A1 to the nucleus. Phosphodiestaerase-5 (PDE-5 inhibitor) sildenafil augmented ANP-mediated effects on hnRNPA1 phosphorylation, translocation to nucleus and nuclear cGK activity. Our results suggest that cGMP generated by ANP and SNAP is differentially compartmentalized, localized but not global changes in cGMP, perhaps at different sub-cellular fractions of the cell, may more closely correlate with their effects by preferential phosphorylation of cellular targets.  相似文献   

17.
Two natriuretic peptides, atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), are found principally in the heart. In preliminary experiments with mouse kidney cells or slices, we found mouse BNP1-45 much more potent than ANP1-28 in causing elevations of cGMP (>50-fold). The guanylyl cyclase-A (GC-A) receptor has been suggested to represent the primary means by which both peptides signal. In cultured cells overexpressing GC-A, BNP and ANP were almost equivalent in potency, suggesting that a receptor unique for BNP exists in the kidney. However, in mice lacking the GC-A gene, neither BNP nor ANP significantly elevated cGMP in kidney slices. Phosphoramidon, a neutral endopeptidase inhibitor, shifted the apparent potency of ANP to values equivalent to that of BNP, suggesting these kidney cell/slices rapidly degrade ANP but not BNP. Mass spectroscopic analysis confirmed that ANP is rapidly cleaved at the first cysteine of the disulfide ring, whereas BNP is particularly stable to such cleavage. Other tissues (heart, aorta) failed to significantly degrade ANP or BNP, and therefore the kidney-specific degradation of ANP provides a mechanism for preferential regulation of kidney function by BNP independent of peripheral ANP concentration.  相似文献   

18.
Dendroaspis natriuretic peptide (DNP) is a newly-described natriuretic peptide which lowers blood pressure via vasodilation. The natriuretic peptide clearance receptor (NPR-C) removes natriuretic peptides from the circulation, but whether DNP interacts with human NPR-C directly is unknown. The purpose of this study was to test the hypothesis that DNP binds to NPR-C. ANP, BNP, CNP, and the NPR-C ligands AP-811 and cANP(4-23) displaced [(125)I]-ANP from NPR-C with pM-to-nM K(i) values. DNP displaced [(125)I]-ANP from NPR-C with nM potency, which represents the first direct demonstration of binding of DNP to human NPR-C. DNP showed high pM affinity for the GC-A receptor and no affinity for GC-B (K(i)>1000 nM). DNP was nearly 10-fold more potent than ANP at stimulating cGMP production in GC-A expressing cells. Blockade of NPR-C might represent a novel therapeutic approach in augmenting the known beneficial actions of DNP in cardiovascular diseases such as hypertension and heart failure.  相似文献   

19.
Using an antiserum raised against the purified atrial natriuretic peptide (ANP) receptor that has a disulfide-linked homodimeric structure and represents one subtype of the multiple ANP receptors, we showed that the receptor is coupled to the guanylate cyclase activation; formerly, this type of ANP receptor is not considered to be coupled to the cyclase. The specificity of the antiserum was determined by immunoblot analysis and immunoprecipitation. The anti-receptor antiserum did not compete with 125I-ANP for binding to the receptor but it lowered the affinity of the receptor. When added to bovine endothelial cell cultures, the antiserum blocked the cyclic GMP response of the cells triggered by ANP. These results indicate that the subtype of the ANP receptor recognized by the antiserum is responsible for the activation of particulate guanylate cyclase as well as the double function type receptor that has been assumed to contain both the receptor domain and the catalytic domain for cGMP synthesis on the same molecule. The presence of dissociative complexes of ANP receptor and particulate guanylate cyclase was also demonstrated by radiation inactivation analysis.  相似文献   

20.
Penile corpus cavernosum smooth muscle relaxation can be induced by both cyclic AMP and cyclic GMP-elevating agents, but possible interactions between these two signalling pathways are still poorly understood. Using in vitro cultured rat penile corpus cavernosum smooth muscle (CCSM) cells, we have characterized the local expression and functional activities of receptors for the cAMP-elevating peptides, PACAP and VIP, and for the cGMP-elevating peptides, CNP and ANP. Stimulation of the cells with various concentrations of PACAP(-27/-38) or VIP resulted in rapid and dose-dependent increases in cyclic AMP levels. RT-PCR analyses revealed gene expression of PAC(1) and VPAC(2) but not of VPAC(1) receptors in the cells. The natriuretic peptide, CNP, and the nitric oxide donor, sodium nitroprusside, were capable of enhancing cyclic GMP formation, indicating the presence of membrane-associated in addition to soluble guanylate cyclase (sGC) activities in these cells. Findings that cyclic GMP formation was preferentially activated by CNP but not by the related peptide, ANP, were consistent with RT-PCR analyses, demonstrating gene expression of the CNP receptor, GC-B, but not of the ANP receptor, GC-A, in these cells. Prior exposure of the cells to 10(-8) M PACAP resulted in a marked down-regulation of GC-B activity, whereas sGC was not affected. These findings provide functional and molecular evidence for the presence of three receptors, PAC(1), VPAC(2) and GC-B, involved in cyclic nucleotide signalling in penile CCSM cells. The observed cross-talk of the PACAP/VIP receptors with GC-B but not with sGC may have implications for the therapy of erectile dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号