首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inheritance of partial resistance to powdery mildew in spring wheat   总被引:7,自引:0,他引:7  
Summary Four spring wheat (Triticum aestivum L.) cultivars exhibiting partial resistance to powdery mildew induced by Erysiphe graminis f.sp. tritici were crossed to a common susceptible cultivar to study the inheritance of resistance. The genetic parameters contributing to resistance were estimated by generation means analyses. Additive gene action was the most important genetic component of variation among generation means in all four crosses. Additive by additive effects were significant in one cross and both additive by additive and additive by dominance effects were significant in another. Dominance effects were not significant. The F2/F3 correlations in three crosses ranged from 0.27 to 0.43. Three additional crosses among resistant cultivars were employed to study the effectiveness of selection in improving resistance. By selecting the most resistant plants from the F2 and evaluating the progenies in the F4, increases in resistance ranging from 21% to 31% were obtained. In all crosses, there was transgressive segregation in both directions indicating that the genes conferring resistance to these cultivars differ and exhibit additive effects.  相似文献   

2.
Genetic effects on controlling stripe rust resistance were determined in two wheat crosses, Bakhiawar-92 × Frontana (cross 1) and Inqilab-91 × Fakhre Sarhad (cross 2) using Area under Disease Progress Curve (AUDPC) as a measure of stripe rust resistance. The resistant and susceptible genotypes for crosses were identified by initial assessment of 45 wheat accessions for stripe rust resistance. Mixed inheritance model was applied to the data analysis of six basic populations P 1, F 1, P 2, B 1, B 2, and F 2 in the crosses. The results indicated that AUDPC in cross 1 was controlled by two major genes with additive-dominance epistatic effect plus polygenes with additive-dominance epistatic effects (model E). Whereas in case of cross 2, it was under the control of two major genes with additive-dominance epistatic effect plus additive-dominant polygenes (model E-1). Additive effect was predominant then all other types of genetic effects suggesting the delay in selection for resistance till maximum positive genes are accumulated in the individuals of subsequent generations. Occurrence of transgressive segregants for susceptibility and resistance indicated the presence of resistance as well as some negative genes for resistance in the parents. The major gene heritability was higher than the polygene heritability in B 1, B 2 and F 2 for the crosses. The major gene as well as the polygene heritability was ranging from 48.99 to 87.12% and 2.26 and 36.80% for the two crosses respectively. The highest phenotypic variations in AUDPC (2504.10 to 5833.14) for segregating progenies (BC 1, BC 2 and F 2) represent that the character was highly influenced by the environment. The article is published in the original.  相似文献   

3.
Parental, F(1) , F (2) , BC (1) and BC (2) generations of four crosses involving four cultivars of durum wheat (Triticum durum Desf.) were evaluated at two sites in Tunisia. A three-parameter model was found inadequate for all cases except crosses Chili x Cocorit 71 at site Sidi Thabet and Inrat 69 x Karim at both sites. In most cases a digenic epistatic model was sufficient to explain variation in generation means. Dominance effects (h) and additive x additive epistasis (i) (when significant) were more important than additive (d) effects and other epistatic components. Considering the genotype-by-environment interaction, the non-interactive model (m, d, h, e) was found adequate. Additive variance was higher than environmental variance in three crosses at both sites. The estimated values of narrow-sense heritability were dependent upon the cross and the sites and were 0%-85%. The results indicate that appropriate choice of environment and selection in later generations would increase grain protein content in durum wheat.  相似文献   

4.
The number of genes controlling slow rusting resistance to leaf rust (Puccinia triticina) was estimated in five spring wheat (Triticum aestivum) cultivars using quantitative formulae. Parents and F6 families were evaluated in replicated field trials under epidemics initiated by artificial inoculation. The F6 families resulted from a diallel cross involving the fast-rusting cultivar Yecora 70 and five slow-rusting wheat cultivars: Sonoita 81, Tanager ‘S’, Galvez 87, Ures 81, and Moncho ‘S’. The area under the disease progress curve (AUDPC) was used to measure leaf rust severity over time. Results indicate that cultivar Sonoita 81 has three or four genes, Tanager ‘S’ has two or three genes, Galvez 87 has three genes, and both Ures 81 and Moncho ‘S’ have two genes for slow rusting resistance to leaf rust. Based on this result and previously reported moderate to high narrow-sense heritability estimates for slow rusting resistance in these materials, early-generation selection for slow leaf rusting would be effective.  相似文献   

5.
Gene action for adult-plant resistance to powdery mildew in wheat.   总被引:4,自引:0,他引:4  
M K Das  C A Griffey 《Génome》1995,38(2):277-282
Gene action for adult-plant resistance to powdery mildew was studied using generation mean analyses of parents and of F1, F2, and backcross populations derived from a diallel cross of one susceptible and three adult-plant resistant wheat cultivars. Joint scaling tests showed that an additive-dominance model was sufficient to explain the variability in the expression of adult-plant resistance in one cross, while digenic epistasis was involved in the other five crosses. Additive gene effects were predominant; however, dominance was significant in four crosses, additive x additive interaction was significant in three crosses, additive x dominance interaction was significant in three crosses, and dominance x dominance interaction was significant in one cross. Therefore, selection for adult-plant resistance would likely be most effective in advanced generations derived from crosses among the adult-plant resistant cultivars Redcoat, Houser, and Massey.  相似文献   

6.
Preharvest sprouting (PHS) in rain-affected wheat (Triticum aestivum) is a major constraint to the production of high-quality wheat, especially in regions where white grain wheat cultivars are preferred. To characterize quantitative trait loci (QTLs) for PHS resistance and seed dormancy (SD), we evaluated 162 recombinant inbred lines developed from the cross between PHS-resistant white wheat landrace Tutoumai A and PHS-susceptible white wheat cultivar ‘Siyang 936’ for PHS resistance and SD in field and greenhouse experiments. Composite interval mapping (CIM) identified four QTLs for PHS resistance and long SD that explained up to 45 and 40.8% of the phenotypic variation in five PHS and four SD experiments, respectively. Qphs.pseru-4A.1 was detected in three of the five PHS experiments, and Qphs.pseru-5B.1, Qphs.pseru-5B.2, and Qphs.pseru-4B.1 were detected in two of the five PHS experiments, respectively. All four QTLs for PHS resistance also affected SD. Qphs.pseru-4A.1 was significant in all four SD experiments; the other three QTLs were detected only in one experiment. Additive and epistatic effects were observed for PHS resistance and SD. Besides three additive QTLs for PHS resistance and two for long SD, an additional 11 and 10 QTLs were detected with epistatic effects on PHS resistance and SD, respectively. The major genetic component of PHS resistance was SD, and other genetic factors may also contribute to PHS resistance in this population.  相似文献   

7.
选用来自我国不同地区的20个白粉病菌毒性菌株,对54个CIMMYT小麦品种(系)进行抗病性分析.结果表明:(1)34个品种(系)含有抗病基因,以Pm8基因出现频率最高,有15个品种(系)携带该基因;(2)参试主效基因中,Pm1、Pm3e、Pm5、Pm6和Pm7基因已丧失对我国白粉菌的抗性,Pm16和Pm20基因的抗性最强;(3)50个1B/1R易位系品种(系)中31个含有抗病基因,48%的抗病1B/1R易位系可检测到Pm8基因.根据田间成株期病程曲线下面积(AUDPC)聚类分析结果,可将54份材料分为高抗、中抗、中感和高感4类,7个品种(系)不含任何主效抗病基因而田间表现中到高的抗性,是典型慢病性品种.  相似文献   

8.
Quantitative trait loci (QTLs) for plant height in wheat (Triticum aestivum L.) were studied using a set of 168 doubled haploid (DH) lines, which were derived from the cross Huapei 3/Yumai 57. A genetic linkage map was constructed using 283 SSR and 22 EST-SSR markers. The DH population and the parents were evaluated for wheat plant height in 2005 and 2006 in Tai'an and 2006 in Suzhou. QTL analyses were performed using the software of QTLNetwork version 2.0 based on the mixed linear model. Four additive QTLs and five pairs of epistatic effects were detected, which were distributed on chromosomes 3A, 4B, 4D, 5A, 6A, 7B, and 7D. Among them, three additive QTLs and three pairs of epistatic QTLs showed QTLxenvironment interactions (QEs). Two major QTLs, QphAB and Qph4D, which accounted for 14.51 % and 20.22% of the phenotypic variation, were located similar to the reported locations of the dwarfing genes Rhtl and Rht2, respectively. The Qph3A-2 with additive effect was not reported in previous linkage mapping studies. The total QTL ef fects detected for the plant height explained 85.04% of the phenotypic variation, with additive effects 46.07%, epistatic effects 19.89%, and QEs 19.09%. The results showed that both additive effects and epistatic effects were important genetic bases of wheat plant height, which were subjected to environmental modifications, and caused dramatic changes in phenotypic effects. The information obtained in this study will be useful for manipulating the QTLs for wheat plant height by molecular marker-assisted selection (MAS).  相似文献   

9.
Quantitative trait loci (QTLs) for plant height in wheat (Triticum aestivum L.) were studied using a set of 168 doubled haploid (DH) lines, which were derived from the cross Huapei 3/Yumai 57. A genetic linkage map was constructed using 283 SSR and 22 EST-SSR markers. The DH population and the parents were evaluated for wheat plant height in 2005 and 2006 in Tai’an and 2006 in Suzhou. QTL analyses were performed using the software of QTLNetwork version 2.0 based on the mixed linear model. Four additive QTLs and five pairs of epistatic effects were detected, which were distributed on chromosomes 3A, 4B, 4D, 5A, 6A, 7B, and 7D. Among them, three additive QTLs and three pairs of epistatic QTLs showed QTL×environment interactions (QEs). Two major QTLs, Qph4B and Qph4D, which accounted for 14.51% and 20.22% of the phenotypic variation, were located similar to the reported locations of the dwarfing genes Rht1 and Rht2, respectively. The Qph3A-2 with additive effect was not reported in previous linkage mapping studies. The total QTL effects detected for the plant height explained 85.04% of the phenotypic variation, with additive effects 46.07%, epistatic effects 19.89%, and QEs 19.09%. The results showed that both additive effects and epistatic effects were important genetic bases of wheat plant height, which were subjected to environmental modifications, and caused dramatic changes in phenotypic effects. The information obtained in this study will be useful for manipulating the QTLs for wheat plant height by molecular marker-assisted selection (MAS).  相似文献   

10.
Imtiaz M  Ogbonnaya FC  Oman J  van Ginkel M 《Genetics》2008,178(3):1725-1736
Aegilops tauschii, the wild relative of wheat, has stronger seed dormancy, a major component of preharvest sprouting resistance (PHSR), than bread wheat. A diploid Ae. tauschii accession (AUS18836) and a tetraploid (Triticum turgidum L. ssp. durum var. Altar84) wheat were used to construct a synthetic wheat (Syn37). The genetic architecture of PHS was investigated in 271 BC(1)F(7) synthetic backcross lines (SBLs) derived from Syn37/2*Janz (resistant/susceptible). The SBLs were evaluated in three environments over 2 years and PHS was assessed by way of three measures: the germination index (GI), which measures grain dormancy, the whole spike assay (SI), which takes into account all spike morphology, and counted visually sprouted seeds out of 200 (VI). Grain color was measured using both Chroma Meter- and NaOH-based approaches. QTL for PHSR and grain color were mapped and their additive and epistatic effects as well as their interactions with environment were estimated by a mixed linear-model approach. Single-locus analysis following composite interval mapping revealed four QTL for GI, two QTL for SI, and four QTL for VI on chromosomes 3DL and 4AL. The locus QPhs.dpiv-3D.1 on chromosome 3DL was tightly linked to the red grain color (RGC) at a distance of 5 cM. The other locus on chromosome 3D, "QPhs.dpiv-3D.2" was independent of RGC locus. Two-locus analysis detected nine QTL with main effects and 18 additive x additive interactions for GI, SI, and VI. Two of the nine main effects QTL and two epistatic QTL showed significant interactions with environments. Both additive and epistatic effects contributed to phenotypic variance in PHSR and the identified markers are potential candidates for marker-assisted selection of favorable alleles at multiple loci. SBLs derived from Ae. tauschii proved to be a promising tool to dissect, introgress, and pyramid different PHSR genes into adapted wheat genetic backgrounds. The enhanced expression of PHS resistance in SBLs enabled us to develop white PHS-resistant wheat germplasm from the red-grained Ae. tauschii accession.  相似文献   

11.
F Shiwani  R G Saini 《Génome》1994,37(3):436-439
Genetic studies for leaf-rust resistance were conducted on four Indian (CPAN1235, HD2135, HP1209, and VL404) and two Australian (CSP44 and Oxley) bread wheat cultivars. The F2 and F3 plants from their crosses with each other and with susceptible cultivar Agra Local were tested against a mixture of pathotypes 77-1 and 77-2 (variants of race 77). Disease scores on F1's from resistant/susceptible parent crosses indicated partial dominance of resistance in these wheats. The six cultivars have two adult-plant resistance genes each. Their intercrosses revealed similar resistance gene(s) in CSP44 and Oxley, and CPAN1235 and HP1209. The six wheats appear to carry at least seven diverse leaf-rust resistance genes (temporarily named LrI to LrO) against pathotypes 77-1 + 77-2. Adult-plant resistance is additive and therefore the combinations of partially effective resistance genes identified in this study can provide higher levels of resistance. Because these genes are of hexaploid origin, they can be easily exploited in breeding programs. Furthermore, two or more resistance genes from the six wheat cultivars when combined with Lr34 are likely to impart durable resistance to leaf rust.  相似文献   

12.
During vegetative period 2004–2005 powdery mildew (Erysiphe graminis DC. f. sp. hordei Em. Marchal) field resistance of spring barley cultivars was investigated at the Lithuanian Institute of Agriculture. The spring barley genotypes tested were Lithuania-registered cultivars, cultivars from genetic resources collection, and the new cultivars used for initial breeding. In total, 23 resistance genes were present in the 84 cultivars studied. Among mono-genes only mlo and 1-B-53 showed very high resistance. Slight powdery mildew necroses (up to 3 scores) formed on cultivars possessing these genes. The maximal powdery mildew (PM) severity reached a score of 8.5 and the area under disease progress curve (AUDPC) a value of 1216.8. The cultivars ‘Primus’, ‘Astoria’, ‘Power’, ‘Harrington’ and ‘Scarlett’ were the most resistant among the non mlo cultivars. Severity of PM on ‘Primus’ reached a score of 3.5 (3.0 of PM necrosis) in average, the other cultivars were diseased from 4.5 (3.0) to 5.0 (2.0). The AUDPC values for these cultivars except ‘Scarlett’ were the lowest (85.0–145.3) among the other cultivars. The highest contrast in development of the other leaf diseases was between highly resistant and susceptible to PM cultivar groups. The fast development of PM depressed development of the other diseases 4.7 times.  相似文献   

13.
Ten varieties and eight generations (2F1, 2F2, 2B1 and 2B2) of durum wheat derived from two crosses were evaluated for resistance to natural infection by Stagonospora nodorum blotch (SNB) at the 2-3 and 6-7 leaf stages at two sites over two years. There were significant differences in the incidence of SNB between leaf stages in most of the wheat varieties, with resistance being most evident at the 6-7 leaf stage. Separate analyses of the mean values for each generation showed that the genetic mechanism of defense against the pathogen depended upon the leaf stage. At the 2-3 leaf stage, only additive and dominance effects were implicated in the control of SNB for the two crosses at the two sites and for the two replications. For the 6-7 leaf stage, inheritance was more complicated and an epistatic effect was involved. Narrow-sense heritability values (range: 0.63-0.67) were consistent between crosses and leaf stages. These findings indicate a lack of resistance to SNB at the 2-3 leaf stage whereas resistance was observed at the 6-7 leaf stage and involved the genetic mechanisms of plant defense such as epistasis.  相似文献   

14.
Spot blotch, caused by Cochliobolus sativus, is a serious wheat (Triticum aestivum L.) disease in the warm areas of South Asia. Breeding for resistance in the past 15 years has produced limited progress, and newly developed wheat cultivars suffer considerable yield reductions under spot blotch epidemics in the region. Resistance is often controlled by multiple genes with additive effects. Marker‐assisted selection, in combination with field selection, could accelerate the identification of progeny with multiple genes for resistance early in the breeding process. A study was conducted to determine microsatellite markers associated with resistance in the F7 progeny from a cross between the spot blotch‐susceptible Sonalika and resistant G162 wheat genotypes. A parental survey using 171 simple sequence repeats (SSR) primer sets and spread over 21 chromosomes of wheat identified 52% polymorphic loci. However, only 15 polymorphic markers showed association with two bulks, one each of progeny with low and with high spot blotch severity. The detailed analysis indicated that progeny lines with low spot blotch severity could be separated from those with high severity using three SSR markers located on three wheat chromosomes. The findings may be useful in developing a marker‐assisted selection strategy for spot blotch resistance in wheat.  相似文献   

15.
Variation, genetic parameters, interrelationships and phenotypic and genetic path analyses for components of field resistance of potatoes to Phytophthora infestuns were studied using detached leaves from 16 potato cultivars. Inter-genotypic variability was significant for the components and the Area Under Disease Progress Curve (AUDPC). The resistant cultivars generally had a longer latent period and lower lesion size and spore production than the susceptible cultivars. The correlations between AUDPC and infection efficiency, and between AUDPC and spore density were not significant, but latent period, lesion size and sporulation did correlate significantly with AUDPC. Genetic and phenotypic path-coefficient analyses indicated lesion size to be the most important component of field resistance. The genetic correlation coefficients between the AUDPC and infection efficiency, latent period and spore density arose mainly because of their indirect effects on AUDPC via lesion size. Lesion size and AUDPC had a high genetic coefficient of variation, heritability and genetic advance (genetic gain).  相似文献   

16.
Quantitative trait loci (QTLs) for chlorophyll content were studied using a doubled haploid (DH) population with 168 progeny lines, derived from a cross between two elite Chinese wheat cultivars Huapei 3 × Yumai 57. Chlorophyll content was evaluated at the maximum tillering stage (MS), the heading stage (HS), and the grain filling stage (GS), at three different environments in 2005 and 2006 cropping seasons. QTL analyses were performed using a mixed linear model approach. A total of 17 additive QTLs and nine pairs of epistatic QTLs were detected. Ten of 17 additive QTLs for chlorophyll content were persistently expressed at more than two growth stages, which suggest developmentally regulated loci controlling genetics for chlorophyll content in different growth stages in wheat. One novel major QTL for chlorophyll content was closely linked with the PCR marker Xwmc215 and was persistently expressed at three growth stages.  相似文献   

17.
Fusarium head blight (FHB) is one of the most important fungal wheat diseases worldwide. Understanding the genetics of FHB resistance is the key to facilitating the introgression of different FHB resistance genes into adapted wheat. The objectives of the present study were to detect and map quantitative trait loci (QTL) associated with FHB resistance genes and characterize the genetic components of the QTL in a doubled-haploid (DH) spring wheat population using both single-locus and two-locus analysis. A mapping population, consisting of 174 DH lines from the cross between DH181 (resistant) and AC Foremost (susceptible), was evaluated for type I resistance to initial infection during a 2-year period in spray-inoculated field trials, for Type II resistance to fungal spread within the spike in 3 greenhouse experiments using single-floret inoculation, and for resistance to kernel infection in a 2001 field trial. One-locus QTL analysis revealed 7 QTL for type I resistance on chromosome arms 2DS, 3AS, 3BS, 3BC (centromeric), 4DL, 5AS, and 6BS, 4 QTL for type II resistance on chromosomes 2DS, 3BS, 6BS, and 7BL, and 6 QTL for resistance to kernel infection on chromosomes 1DL, 2DS, 3BS, 3BC, 4DL, and 6BS. Two-locus QTL analysis detected 8 QTL with main effects and 4 additive by additive epistatic interactions for FHB resistance and identified novel FHB resistance genes for the first time on chromosomes 1DL, 4AL, and 4DL. Neither significant QTL by environment interactions nor epistatic QTL by environment interactions were found for either type I or type II resistance. The additive effects of QTL explained most of the phenotypic variance for FHB resistance. Marker-assisted selection for the favored alleles at multiple genomic regions appears to be a promising tool to accelerate the introgression and pyramiding of different FHB resistance genes into adapted wheat genetic backgrounds.  相似文献   

18.
 Complete F1 and F2 diallel crosses were used to investigate the inheritance of yellow rust resistance among eight bread wheat lines, developed by CIMMYT for the East African Highlands, which showed a wide response to this disease. Both diallel sets were grown at a site with a high incidence of yellow rust, although for one season, during which the F1 diallel was grown, disease incidence was unusually low. Analyses disclosed the presence of additive, dominance and epistatic effects among those genes controlling rust resistance, with the former being the most important. At normal disease levels, excluding two arrays having resistant common parents removed non-allelic interactions from the F1 diallels. For all F2 diallels, and the remaining F1 diallel, omitting two arrays based on susceptible parents removed these interactions. Local selection of material from a broadly based germplasm appears to be a feasible method of developing adapted cultivars resistant to endemic diseases. Received: 1 March 1998 / Accepted: 19 March 1998  相似文献   

19.
小麦赤霉病是危害小麦安全生产的重要病害之一,种植抗病品种是防治赤霉病最经济有效的手段。目前在生产上应用的抗源很少,越来越多的研究者将目光转移到小麦的近缘属种,寻找新的抗源以及寻求新的育种突破。携带抗性基因的外源染色体可以通过染色体工程手段以附加系、代换系和易位系等形式导入小麦。综述了将大赖草等多个小麦近缘种的抗赤霉病基因导入普通小麦、创制抗病外源种质和育种利用的最新研究进展,以期为小麦抗赤霉病育种提供参考信息。  相似文献   

20.
Stripe rust caused by Puccinia striiformis f.sp. tritici is the most serious disease of wheat globally including south‐eastern Anatolia of Turkey, where wheat originated. In this study, 12 spring wheat genotypes were artificially inoculated and preserved in two locations, Diyarbak?r and Ad?yaman, during the 2011–2012 season to investigate loss in yield and yield components. Genotypes were evaluated at the adult plant stage using two partial resistance parameters: final disease severity and area under the disease progress curve (AUDPC). AUDPC ranged from 14.8 to 860 in Diyarbak?r, and 74 to 760 in Ad?yaman. Yield loss ranged from 0.6 to 68.5% in Diyarbak?r and 9.8 to 56.8% in Ad?yaman. Genotypes G1, G5, G7 and G8 were found to lose less yield, while higher yield loss was observed in G3, G4 (Nurkent), G5 and G9 (Karacada?‐98). The highest loss in thousand kernel weight was observed in a susceptible cultivar Karacada?‐98 in Diyarbak?r followed by 43.4 and 24.4% in Ad?yaman. Test weight loss reached 8.89% in Diyarbak?r and 20.8% in Ad?yaman. Yield loss and AUDPC had a positive significant relationship. Based on the values of AUDPC, final disease severity and yield loss, three major clusters were formed for 12 wheat genotypes. Partially resistant genotypes were found to lose less grain yield and seemed to be stronger against severe stripe rust pressure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号