首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel single-stranded DNA phage, phiMH2K, of Bdellovibrio bacteriovorus was isolated, characterized, and sequenced. This phage is a member of the Microviridae, a family typified by bacteriophage phiX174. Although B. bacteriovorus and Escherichia coli are both classified as proteobacteria, phiMH2K is only distantly related to phiX174. Instead, phiMH2K exhibits an extremely close relationship to the Microviridae of Chlamydia in both genome organization and encoded proteins. Unlike the double-stranded DNA bacteriophages, for which a wide spectrum of diversity has been observed, the single-stranded icosahedral bacteriophages appear to fall into two distinct subfamilies. These observations suggest that the mechanisms driving single-stranded DNA bacteriophage evolution are inherently different from those driving the evolution of the double-stranded bacteriophages.  相似文献   

2.
E Altman  K Young  J Garrett  R Altman    R Young 《Journal of virology》1985,53(3):1008-1011
The gene products of the lethal lysis genes S and E of the bacteriophages lambda and phiX174, respectively, were shown to be associated primarily with inner membrane material by isopycnic sucrose gradient centrifugation of lysates of infected cells. A small amount of each polypeptide appeared to be in the outer membrane fraction.  相似文献   

3.
K K Holder  J J Bull 《Genetics》2001,159(4):1393-1404
The related bacteriophages phiX174 and G4 were adapted to the inhibitory temperature of 44 degrees and monitored for nucleotide changes throughout the genome. Phage were evolved by serial transfer at low multiplicity of infection on rapidly dividing bacteria to select genotypes with the fastest rates of reproduction. Both phage showed overall greater fitness effects per substitution during the early stages of adaptation. The fitness of phiX174 improved from -0.7 to 5.6 doublings of phage concentration per generation. Five missense mutations were observed. The earliest two mutations accounted for 85% of the ultimate fitness gain. In contrast, G4 required adaptation to the intermediate temperature of 41.5 degrees before it could be maintained at 44 degrees. Its fitness at 44 degrees increased from -2.7 to 3.2, nearly the same net gain as in phiX174, but with three times the opportunity for adaptation. Seventeen mutations were observed in G4: 14 missense, 2 silent, and 1 intergenic. The first 3 missense substitutions accounted for over half the ultimate fitness increase. Although the expected pattern of periodic selective sweeps was the most common one for both phage, some mutations were lost after becoming frequent, and long-term polymorphism was observed. This study provides the greatest detail yet in combining fitness profiles with the underlying pattern of genetic changes, and the results support recent theories on the range of fitness effects of substitutions fixed during adaptation.  相似文献   

4.
The change of infectivity of phage DNAs after heat and alkali denaturation (and renaturation) was measured. T7 phage DNA infectivity increased 4- to 20-fold after denaturation and decreased to the native level after renaturation. Both the heavy and the light single strand of T7 phage DNA were about five times as infective as native T7 DNA. T4 and P22 phage DNA infectivity increased 4- to 20-fold after denaturation and increased another 10- to 20-fold after renaturation. These data, combined with other authors' results on the relative infectivity of various forms of phiX174 and lambda DNAs give the following consistent pattern of relative infectivity. Covalently closed circular double-stranded DNA, nicked circular double-stranded DNA, and double-stranded DNA with cohesive ends are all equally infective and also most highly infectious for Escherichia coli lysozyme-EDTA spheroplasts; linear or circular single-stranded DNAs are about 1/5 to 1/20 as infective; double-stranded DNAs are only 1/100 as infective. Two exceptions to this pattern were noted: lambda phage DNA lost more than 99% of its infectivity after alkaline denaturation; this infectivity could be fully recovered after renaturation. This behavior can be explained by the special role of the cohesive ends of the phage DNA. T5 phage DNA sometimes showed a transient increase in infectivity at temperatures below the completion of the hyperchròmic shift; at higher temperatures, the infectivity was completely destroyed. T5 DNA denatured in alkali lost more than 99.9% of its infectivity; upon renaturation, infectivity was sometimes recovered. This behavior is interpreted in terms of the model of T5 phage DNA structure proposed by Bujard (1969). The results of the denaturation and renaturation experiments show higher efficiencies of transfection for the following phage DNAs (free of single-strand breaks): T4 renatured DNA at 10(-3) instead of 10(-5) for native DNA; renatured P22 DNA at 3 x 10(-7) instead of 3 x 10(-9) for native DNA; and denatured T7 DNA at 3 x 10(-6) instead of 3 x 10(-7) for native DNA.  相似文献   

5.
Bacteriophages have been widely used as surrogates for human enteric viruses in many studies on virus transport and fate. In this investigation, the fates of three bacteriophages, MS2, R17, and phiX174, were studied in a series of dynamic batch experiments. Both MS2 and R17 readily underwent inactivation in batch experiments where solutions of each phage were percolated through tubes packed with varying ratios of glass and Teflon beads. MS2 and R17 inactivation was the result of exposure to destructive forces at the dynamic air-water-solid interface. phiX174, however, did not undergo inactivation in similar studies, suggesting that this phage does not accumulate at air-water interfaces or is not affected by interfacial forces in the same manner. Other batch experiments showed that MS2 and R17 were increasingly inactivated during mixing in polypropylene tubes as the ionic strength of the solution was raised (phiX174 was not affected). By the addition of Tween 80 to suspensions of MS2 and R17, phage inactivation was prevented. Our data suggest that viral inactivation in simple dynamic batch experiments is dependent upon (i) the presence of a dynamic air-water-solid interface (where the solid is a hydrophobic surface), (ii) the ionic strength of the solution, (iii) the concentration of surface active compounds in the solution, and (iv) the type of virus used.  相似文献   

6.
A mutant (designated mec(-)) has been isolated from Escherichia coli C which has lost DNA-cytosine methylase activity and the ability to protect phage lambda against in vivo restriction by the RII endonuclease. This situation is analogous to that observed with an E. coli K-12 mec(-) mutant; thus, the E. coli C methylase appears to have overlapping sequence specificity with the K-12 and RII enzymes; (the latter methylases have been shown previously to recognize the same sequence). Covalently closed, supertwisted double-standed DNA (RFI) was isolated from C mec(+) and C mec(-) cells infected with bacteriophage phiX174. phiX. mec(-) RFI is sensitive to in vitro cleavage by R.EcoRII and is cut twice to produce two fragments of almost equal size. In contrast, phiX.mec(+) RFI is relatively resistant to in vitro cleavage by R.EcoRII. R.BstI, which cleaves mec(+)/RII sites independent of the presence or absence of 5-methylcytosine, cleaves both forms of the RFI and produces two fragments similar in size to those observed with R. EcoRII. These results demonstrate that phiX.mec(+) RFI is methylated in vivo by the host mec(+) enzyme and that this methylation protects the DNA against cleavage by R.EcoRII. This is consistent with the known location of two mec(+)/ RII sequences (viz., [Formula: see text]) on the phiX174 map. Mature singlestranded virion DNA was isolated from phiX174 propagated in C mec(+) or C mec(-) in the presence of l-[methyl-(3)H]methionine. Paper chromatographic analyses of acid hydrolysates revealed that phiX.mec(+) DNA had a 10-fold-higher ratio of [(3)H]5-methylcytosine to [(3)H]cytosine compared to phiX.mec(-). Since phiX.mec(+) contains, on the average, approximately 1 5-methylcytosine residue per viral DNA, we conclude that methylation of phiX174 is mediated by the host mec(+) enzyme only. These results are not consistent with the conclusions of previous reports that phiX174 methylation is mediated by a phage-induced enzyme and that methylation is essential for normal phage development.  相似文献   

7.
The addition of 25 mug of protamine sulfate per ml to lysozyme-ethylenediamine-tetraacetic acid spheroplasts of Escherichia coli stimulates transfection not only for T1 phage deoxyribonucleic acid (DNA; Hotz and Mauser, 1969) but also for the following phage DNA species: lambda, 10,000-fold to an efficiency of 10(-3) infective centers per DNA molecule; phiX174 replicative form, 300-fold to an efficiency of 5 x 10(-2); fd replicative form, 300-fold to 10(-6); T7, 300-fold to 3 x 10(-7). Three native phage DNA species were not infective at all in the absence of protamine sulfate but were infective in the presence of protamine sulfate with the following efficiencies: T4, 10(-5); T5, 3 x 10(-6); and P22, 3 x 10(-9). The effect of protamine sulfate is specific for double-stranded DNA. The application of infectivity assays to the study of phage DNA replication, recombination, prophage integration, prophage excision, and interspecies transfection are discussed.  相似文献   

8.
The large pyrimidine oligonucleotides from the DNAs of the two related bacteriophages phiX174 and S13 have been sequenced. The largest pyrimidine oligonucleotide present is unique to S13 DNA and is the undecanucleotide C5T6, sequence C-T-T-C-C-T-C-T-T-C-T. Considerable sequence homology has been found between the pyrimidine oligonucleotides of the two phage DNAs. Out of 14 oligonucleotide sequences from S13 DNA (120 bases) at least ten are identical with sequences of oligonucleotides from phiX174 DNA (92 bases) and two are closely related (17 bases), the only difference being a single thymine to cytosine transition in each sequence (a total of 107 identical bases). The pyrimidine oligonucleotides of each phage DNA show extensive internal sequence homology among each other with up to eight bases identical in sequence in pairs of different oligonucleotides. Another interesting observation is the occurrence of symmetrical sequences (true palindromes) which read the same forwards as backwards. The longest symmetrical sequence is the nonanucleotide C4T5 sequence, C-T-C-T-T-T-C-T-C, present in both S13 and phiX174 DNAs. The extensive sequence homology observed between the pyrimidine oligonucleotides of S13 and phiX174 supports the close relationship of the two phages and provides further evidence that they were derived from recent common ancestors.  相似文献   

9.
10.
Groman, Neal B. (University of Washington, Seattle), and Grace Suzuki. Effect of ribonucleic acid phage superinfection on lysis-inhibited Escherichia coli. J. Bacteriol. 90:1007-1012. 1965.-Induced culturesof Escherichia coli K-12(lambda112)F(+) were superinfected with ribonucleic acid phage f2 at various times to test for the specificity of lysis inhibition and the concurrent inhibition of growth. When f2 superinfection occurred within 90 min after induction, lysis was observed in normally lysis-inhibited cultures. Later superinfections produced very little lysis. Following early superinfection, both lambda112 and f2 phages were produced in induced cells. When superinfection occurred during the period in which growth was inhibited, f2 production was totally inhibited. The inhibition of f2 was not due to its inability to adsorb, nor was it due to damage inflicted on cells by ultraviolet irradiation or to exhaustion of the medium. The data suggest that inhibition of lysis of induced K-12(lambda112)F(+) is phage-specific, whereas the accompanying inhibition of growth is nonspecific.  相似文献   

11.
The only compound which fully replaced protamine sulfate in facilitating transfection of Escherichia coli spheroplasts by phage DNAs was spermine; poly-l-lysine, poly-l-arginine, DEAE-dextran, histones, and many other polyamines were only slightly effective. Higher-molecular-weight compounds were effective at lower concentrations, and each compound had a sharp concentration optimum. The specificity of the facilitation of transfection is discussed in light of Leonard and Cole's (1972) isolation of a polyamine- or protamine-like, natural competence factor from Streptococci. By standardizing growth conditions for spheroplast cultures, storing spheroplasts in minimal medium, and adding both protamine sulfate and polyamines to spheroplasts, reproducible competence levels were obtained. Thus, 95% of all spheroplast preparations gave efficiencies of transfection between 10(-3) and 3 x 10(-4) for lambda DNA; between 10(-6) and 3 x 10(-8) for T7 DNA; and between 3 x 10(-6) and 10(-7) for T5 phage DNA. The stability of the spheroplasts was extended from 10 h to between 2 and 5 days, depending on the DNA used for transfection.  相似文献   

12.
Guyader S  Burch CL 《PloS one》2008,3(4):e1946
We explore the ability of optimal foraging theory to explain the observation among marine bacteriophages that host range appears to be negatively correlated with host abundance in the local marine environment. We modified Charnov's classic diet composition model to describe the ecological dynamics of the related generalist and specialist bacteriophages phiX174 and G4, and confirmed that specialist phages are ecologically favored only at high host densities. Our modified model accurately predicted the ecological dynamics of phage populations in laboratory microcosms, but had only limited success predicting evolutionary dynamics. We monitored evolution of attachment rate, the phenotype that governs diet breadth, in phage populations adapting to both low and high host density microcosms. Although generalist phiX174 populations evolved even broader diets at low host density, they did not show a tendency to evolve the predicted specialist foraging strategy at high host density. Similarly, specialist G4 populations were unable to evolve the predicted generalist foraging strategy at low host density. These results demonstrate that optimal foraging models developed to explain the behaviorally determined diets of predators may have only limited success predicting the genetically determined diets of bacteriophage, and that optimal foraging probably plays a smaller role than genetic constraints in the evolution of host specialization in bacteriophages.  相似文献   

13.
AIMS: To study the effects of competitive microbiota, temperature and nutrient availability on Salmonella, Enterococcus, Campylobacter spores of sulphite reducing anaerobes and bacteriophages MS2 and phiX174 in sediments from a greywater treatment system. METHODS AND RESULTS: Standard culture methods were used. Bacteria died off rapidly under normal conditions (20 degrees C, competitive microbiota) but remained stable or grew in the other conditions studied. When the sediments became nutrient depleted after 2 weeks, a log-linear die-off was observed for Salmonella, which was higher at 20 degrees C than at 4 degrees C. Bacteriophage decay was shown to be log-linear from day 0, with T90 values ranging from 9 (phiX174, 20 degrees C) to 55 days (phiX174, 4 degrees C). The MS2 phage had a significantly higher decay rate in tyndallized sediments (T90 = 17 days) than in original sediments (T90 = 47 days) (P < 0.001), with temperature not shown to affect the decay rate. Spores of sulphite-reducing anaerobes were not significantly reduced during the study period (35 days). Campylobacter died-off rapidly or entered a viable but non-culturable state and subsequently results were not provided. CONCLUSIONS: Competition was the most important factor to suppress pathogenic bacterial growth in an eutrophic environment. When nutrient depleted conditions prevailed, temperature was more important and log-linear decay of microorganisms could be observed. SIGNIFICANCE AND IMPACT OF THE STUDY: These findings suggest that the normally occurring microbiota will suppress pathogenic bacterial growth in nutrient rich sediments. With lower nutrient status, temperature is the more important factor in reducing pathogens.  相似文献   

14.
Bacteriophage phiX174 is an icosahedral phage which attaches to host cells without the aid of a complex tail assembly. When phiX174 was mixed with cell walls isolated from the bacterial host, the virions attached to the wall fragments and the phage deoxyribonucleic acid (DNA) was released. Attachment was prevented if the cell walls were treated with chloroform. Release of phage DNA, but not viral attachment, was prevented if the cell walls were incubated with lysozyme or if the virions were inactivated with formaldehyde. Treatment of the cell walls with lysozyme released structures which were of uniform size (6.5 by 25 nm). These structures attached phiX174 at the tip of one of its 12 vertices, but the viral DNA was not released. The virions attached to these structures were oriented with their fivefold axis of symmetry normal to the long axis of the structure. No virions were attached to these structures by more than one vertex. Freeze-etch preparations of phiX174 adsorbed to intact bacteria showed that the virions were submerged to one half their diameter into the host cell wall, and the fivefold axis of symmetry was normal to the cell surface. A second cell could not be attached to the outwardly facing vertex of the adsorbed phage and thus the phage could not cross-link two cells. When the virions were labeled with (3)H-leucine, purified, and adsorbed to Escherichia coli cells, about 15% of the radioactivity was recovered as low-molecular-weight material from spheroplasts formed by lysozyme-ethylenediaminetetraacetic acid. Other experiments revealed that about 7% of the total parental virus protein label could be recovered in newly formed progeny virus.  相似文献   

15.
The object of this work was to study the effect of freezing down to--196 degrees C at different cooling and warming rates on the survival of T3, T4 and phiX174 phages. Phage particles survived when T3 phage was frozen at a rate of 20-400 degrees/min and phiX174 phage at a rate of 20-45 degrees/min. The survival rate of T4 phage was highest when it was frozen at a rate of 45 degrees/min. The survival of the phages depended also on the regime of warming. The susceptibility of the phages to freezing correlated with their sensitivity to osmotic shock in NaCl and sucrose solutions.  相似文献   

16.
A number of specialized lambda transducing bacteriophages which carry the Escherichia coli gene guaB were isolated from E. coli. One of these bacteriophages, lambda cI857 Sam7 d guaB-2, also carries hisS, the structural gene for histidyl-transfer ribonucleic acid synthetase (EC 6.1.1.21). Histidyl-transfer ribonucleic acid synthetase activities in induced and uninduced lysogens carrying lambda d guaB-2 indicate that the phage carries the entire structural gene and that the gene is under the control of an E. coli promoter. These conclusions were confirmed by the in vivo production of a protein encoded by the phage which comigrates with authentic histidyl-transfer ribonucleic acid synthetase on two-dimensional polyacrylamide gels.  相似文献   

17.
Bacteriophages are present in every environment that supports bacterial growth, including manmade ecological niches. Virulent phages may even slow or, in more severe cases, interrupt bioprocesses driven by bacteria. Escherichia coli is one of the most widely used bacteria for large-scale bioprocesses; however, literature describing phage-host interactions in this industrial context is sparse. Here, we describe phage MED1 isolated from a failed industrial process. Phage MED1 (Microviridae family, with a single-stranded DNA [ssDNA] genome) is highly similar to the archetypal phage phiX174, sharing >95% identity between their genomic sequences. Whole-genome phylogenetic analysis of 52 microvirus genomes from public databases revealed three genotypes (alpha3, G4, and phiX174). Phage MED1 belongs to the phiX174 group. We analyzed the distribution of single nucleotide variants in MED1 and 18 other phiX174-like genomes and found that there are more missense mutations in genes G, B, and E than in the other genes of these genomes. Gene G encodes the spike protein, involved in host attachment. The evolution of this protein likely results from the selective pressure on phages to rapidly adapt to the molecular diversity found at the surface of their hosts.  相似文献   

18.
Virus particles banding at 1.34 g/ml in CsCl and sedimenting at 160S in sucrose gradients were isolated from fecal specimens of patients suffering from hepatitis. In the presence of 4 M urea and about 90% formamide, these particles released linear nucleic acid molecules of the kinked appearance characteristic of single-stranded RNA or single-stranded DNA. They could be distinguished from the nucleic acid of phage lambda added to the preparation as a marker for double-stranded configuration. Experiments in which the virus particles under investigation were incubated at pH 12.9 at 50 degrees C for 30 min revealed that their nucleic acid molecules were hydrolyzed as readily as the RNA genome of poliovirus type 2 analyzed in parallel. Both the single-stranded DNA of phage phiX174 and that of parvovirus LuIII, however, proved unaffected by this treatment, and the double-stranded DNA of phage lambda was denatured to single-stranded molecules. It was concluded, therefore, that the virus of human hepatitis A contains a linear genome of single-stranded RNA and has to be classified with the picornaviruses.  相似文献   

19.
A highly efficient and much more reproducible system for the heterologous transfection of several kinds of Gram-negative bacterial spheroplasts with bacteriophage phiX174 DNA was established. By mild washing of the speroplasts, the efficiency of transfection of all non-host heterologous bacterial species tested increased one or more orders of magnitude in producing the progeny phages and/or the infectious intermediates. Using the improved heterologous transfection systems, it has become clearer that a strong suppression system operates on the processes of phiX174 progeny phage production and not on those of phiX174 dougle-stranded replicative form DNA synthesis in the heterologous bacterial cells. Similar stimulatory effects of this washing procedure were observed in the homologous transfection. With this improved assay system, even less than 100 molecules of phage phiX174 DNA can be detected and the number of molecules can be determined with accuracy.  相似文献   

20.
The am3 revertant frequencies (RF) in spleens from male mice transgenic for phiX174 am3, cs70 were analyzed 14 weeks after ethylnitrosourea (ENU) treatment, both by the single burst assay (SBA) and the mixed burst assay (MBA). The mean in vivo (burst size >30/assay plate) revertant frequency (MRF) for the vehicle control was 2.6x10(-7). The ENU induced in vivo RF were linear over the dose range 0-150mg/kg, (r(2)=0.999). The concomitant in (burst size G transitions. Sequence analysis of in vivo revertants from ENU treated animals revealed revertants that were 17% A-->G transitions and 83% A-->T transversions, the latter being consistent with the reported A:T base pair alterations induced by ENU. No A-->C transitions were seen. This suggests the occurrence of an ENU-induced O(2) ET-dT lesion leading to a dT base mismatch. The observations in this report both confirm and validate the use of the SBA for distinguishing between in vivo mutations that are fixed in the animal and in vitro mutations that arise from other sources. The ability of the SBA to distinguish the in vivo from the in vitro origin of mutations has increased the specificity, sensitivity and utility of the phiX transgenic system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号