首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacteria contain secondary carriers for the uptake, exchange or efflux of C4-dicarboxylates. In aerobic bacteria, dicarboxylate transport (Dct)A carriers catalyze uptake of C4-dicarboxylates in a H(+)- or Na(+)-C4-dicarboxylate symport. Carriers of the dicarboxylate uptake (Dcu)AB family are used for electroneutral fumarate:succinate antiport which is required in anaerobic fumarate respiration. The DcuC carriers apparently function in succinate efflux during fermentation. The tripartite ATP-independent periplasmic (TRAP) transporter carriers are secondary uptake carriers requiring a periplasmic solute binding protein. For heterologous exchange of C4-dicarboxylates with other carboxylic acids (such as citrate:succinate by CitT) further types of carriers are used. The different families of C4-dicarboxylate carriers, the biochemistry of the transport reactions, and their metabolic functions are described. Many bacteria contain membraneous C4-dicarboxylate sensors which control the synthesis of enzymes for C4-dicarboxylate metabolism. The C4-dicarboxylate sensors DcuS, DctB, and DctS are histidine protein kinases and belong to different families of two-component systems. They contain periplasmic domains presumably involved in C4-dicarboxylate sensing. In DcuS the periplasmic domain seems to be essential for direct interaction with the C4-dicarboxylates. In signal perception by DctB, interaction of the C4-dicarboxylates with DctB and the DctA carrier plays an important role.  相似文献   

2.
The DctSR two-component system of Bacillus subtilis controls the expression of the aerobic C4-dicarboxylate transporter DctA. Deletion of DctA leads to an increased dctA expression. The inactivation of DctB, an extracellular binding protein, is known to inhibit the expression of dctA. Here, interaction between the sensor kinase DctS and the transporter DctA as well as the binding protein DctB was demonstrated in vivo using streptavidin (Strep) or His protein interaction experiments (mSPINE or mHPINE), and the data suggest that DctA and DctB act as cosensors for DctS. The interaction between DctS and DctB was also confirmed by the bacterial two-hybrid system (BACTH). In contrast, no indication was obtained for a direct interaction between the transporter DctA and the binding protein DctB. Activity levels of uptake of [14C]succinate by bacteria that expressed DctA from a plasmid were similar in the absence and the presence of DctB, demonstrating that the binding protein DctB is not required for transport. Thus, DctB is involved not in transport but in cosensing with DctS, highlighting DctB as the first example of a TRAP-type binding protein that acts as a cosensor. The simultaneous presence of DctS/DctB and DctS/DctA sensor pairs and the lack of direct interaction between the cosensors DctA and DctB indicate the formation of a tripartite complex via DctS. It is suggested that the DctS/DctA/DctB complex forms the functional unit for C4-dicarboxylate sensing in B. subtilis.  相似文献   

3.
4.
Transposon Tn5-induced C4-dicarboxylate transport mutants of Rhizobium meliloti 2011 which could be complemented by cosmid pRmSC121 were subdivided into two classes. Class I mutants (RMS37 and RMS938) were defective in symbiotic C4-dicarboxylate transport and in nitrogen fixation. They were mutated in the structural gene dctA, which codes for the C4-dicarboxylate carrier. Class II mutants (RMS11, RMS16, RMS17, RMS24, and RMS31) expressed reduced activity in symbiotic C4-dicarboxylate transport and in nitrogen fixation. These mutants were mutated in regulatory dct genes which do not play an essential role in the symbiotic state. Thin sections of alfalfa nodules induced by the wild type and class I and class II mutants were analyzed by light microscopy. Class mutants induced typical Fix- nodules, showing a large senescent zone, whereas nodules induced by class II mutants only differed in an enhanced content of starch granules compared with wild-type nodules. Class I mutants could be complemented by a 2.1-kilobase SalI-HindIII subfragment of cosmid pRmSC121. DNA sequencing of this fragment resulted in the identification of an open reading frame, which was designated dctA because Tn5 insertion sites of the class I mutants mapped within this coding region. The dctA gene was preceded by a nif consensus promoter and an upstream NifA-binding element. Upstream of the dctA promoter, the 5' end of the R. meliloti dctB gene could be localized. The amino acid sequence of the N-terminal part of the R. meliloti DctB protein shared 49% homology with the corresponding part of the R. leguminosarum DctB protein. The DctA protein consisted of 441 or 453 amino acids due to two possible ATG start codons, with calculated molecular masses of 46.1 and 47.6 kilodaltons, respectively. The hydrophobicity plot suggests that DctA is a membrane protein with several membrane passages. The amino acid sequences of the R. meliloti and the R. leguminosarum DctA proteins were highly conserved (82%).  相似文献   

5.
Dicarboxylate transport by rhizobia   总被引:3,自引:0,他引:3  
Soil bacteria collectively known as rhizobia are able to convert atmospheric dinitrogen to ammonia while participating in a symbiotic association with legume plants. This capability has made the bacteria an attractive research subject at many levels of investigation, especially since physiological and metabolic specialization are central to this ecological niche. Dicarboxylate transport plays an important role in the operation of an effective, nitrogen-fixing symbiosis and considerable evidence suggests that dicarboxylates are a major energy and carbon source for the nitrogen-fixing rhizobia. The dicarboxylate transport (Dct) system responsible for importing these compounds generally consists of a dicarboxylate carrier protein, DctA, and a two component kinase regulatory system, DctB/DctD. DctA and DctB/D differ in the substrates that they recognize and a model for substrate recognition by DctA and DctB is discussed. In some rhizobia, DctA expression can be induced during symbiosis in the absence of DctB/DctD by an alternative, uncharacterized, mechanism. The DctA protein belongs to a subgroup of the glutamate transporter family now thought to have an unusual structure that combines aspects of permeases and ion channels. While the structure of C(4)-dicarboxylate transporters has not been analyzed in detail, mutagenesis of S. meliloti DctA has produced results consistent with the alignment of the rhizobial protein with the more characterized bacterial and eukaryotic glutamate transporters in this family.  相似文献   

6.
Modular structure of the Rhizobium meliloti DctB protein   总被引:1,自引:0,他引:1  
Abstract To investigate the modular structure of the Rhizobium meliloti dicarboxylic acid sensor protein, DctB, three truncated DctB proteins (DctB4, DctB5 and DctB4G) were constructed, overproduced in Escherichia coli and purified. The DctB4G protein was composed of 446 amino acids of the DctB C-terminus and displayed strong autophosphorylation activity in vitro. This activity was sustained when a further 120 amino acids at the N-terminus of the polypeptide were deleted (DctB5). This protein which has an intact transmitter domain exhibits specific but inefficient phospho-transfer capabilities. Removal of 58 amino acids from the DctB4G C-terminus which included blocks F and G2 of the transmitter domain, rendered the resultant protein (DctB4) incompetent in autophosphorylation. Phosphorylation activity was restored to DctB4 through intramolecular complementation with DctB. Therefore, it would appear that the R. meliloti DctB protein is active as a dimer (or higher order oligomer). Furthermore, the intramolecular complementation experiments indicate that the amino acids 171–291, a predicted periplasmic stretch, play an important role in the dimerization process.  相似文献   

7.
Pseudomonas aeruginosa utilizes preferentially C(4)-dicarboxylates such as malate, fumarate, and succinate as carbon and energy sources. We have identified and characterized two C(4)-dicarboxylate transport (Dct) systems in P. aeruginosa PAO1. Inactivation of the dctA(PA1183) gene caused a growth defect of the strain in minimal media supplemented with succinate, fumarate or malate, indicating that DctA has a major role in Dct. However, residual growth of the dctA mutant in these media suggested the presence of additional C(4)-dicarboxylate transporter(s). Tn5 insertion mutagenesis of the ΔdctA mutant led to the identification of a second Dct system, i.e., the DctPQM transporter belonging to the tripartite ATP-independent periplasmic (TRAP) family of carriers. The ΔdctA ΔdctPQM double mutant showed no growth on malate and fumarate and residual growth on succinate, suggesting that DctA and DctPQM are the only malate and fumarate transporters, whereas additional transporters for succinate are present. Using lacZ reporter fusions, we showed that the expression of the dctA gene and the dctPQM operon was enhanced in early exponential growth phase and induced by C(4)-dicarboxylates. Competition experiments demonstrated that the DctPQM carrier was more efficient than the DctA carrier for the utilization of succinate at micromolar concentrations, whereas DctA was the major transporter at millimolar concentrations. To conclude, this is the first time that the high- and low-affinity uptake systems for succinate DctA and DctPQM have been reported to function coordinately to transport C(4)-dicarboxylates and that the alternative sigma factor RpoN and a DctB/DctD two-component system regulates simultaneously the dctA gene and the dctPQM operon.  相似文献   

8.
9.
The dcuB gene of Escherichia coli encodes an anaerobic C4-dicarboxylate transporter that is induced anaerobically by FNR, activated by the cyclic AMP receptor protein, and repressed in the presence of nitrate by NarL. In addition, dcuB expression is strongly induced by C4-dicarboxylates, suggesting the presence of a novel C4-dicarboxylate-responsive regulator in E. coli. This paper describes the isolation of a Tn10 mutant in which the 160-fold induction of dcuB expression by C4-dicarboxylates is absent. The corresponding Tn10 mutation resides in the yjdH gene, which is adjacent to the yjdG gene and close to the dcuB gene at ~93.5 min in the E. coli chromosome. The yjdHG genes (redesignated dcuSR) appear to constitute an operon encoding a two-component sensor-regulator system (DcuS-DcuR). A plasmid carrying the dcuSR operon restored the C4-dicarboxylate inducibility of dcuB expression in the dcuS mutant to levels exceeding those of the dcuS+ strain by approximately 1.8-fold. The dcuS mutation affected the expression of other genes with roles in C4-dicarboxylate transport or metabolism. Expression of the fumarate reductase (frdABCD) operon and the aerobic C4-dicarboxylate transporter (dctA) gene were induced 22- and 4-fold, respectively, by the DcuS-DcuR system in the presence of C4-dicarboxylates. Surprisingly, anaerobic fumarate respiratory growth of the dcuS mutant was normal. However, under aerobic conditions with C4-dicarboxylates as sole carbon sources, the mutant exhibited a growth defect resembling that of a dctA mutant. Studies employing a dcuA dcuB dcuC triple mutant unable to transport C4-dicarboxylates anaerobically revealed that C4-dicarboxylate transport is not required for C4-dicarboxylate-responsive gene regulation. This suggests that the DcuS-DcuR system responds to external substrates. Accordingly, topology studies using 14 DcuS-BlaM fusions showed that DcuS contains two putative transmembrane helices flanking a ~140-residue N-terminal domain apparently located in the periplasm. This topology strongly suggests that the periplasmic loop of DcuS serves as a C4-dicarboxylate sensor. The cytosolic region of DcuS (residues 203 to 543) contains two domains: a central PAS domain possibly acting as a second sensory domain and a C-terminal transmitter domain. Database searches showed that DcuS and DcuR are closely related to a subgroup of two-component sensor-regulators that includes the citrate-responsive CitA-CitB system of Klebsiella pneumoniae. DcuS is not closely related to the C4-dicarboxylate-sensing DctS or DctB protein of Rhodobacter capsulatus or rhizobial species, respectively. Although all three proteins have similar topologies and functions, and all are members of the two-component sensor-kinase family, their periplasmic domains appear to have evolved independently.  相似文献   

10.
C4-dicarboxylates are the major carbon and energy sources during the symbiotic growth of rhizobia. Responses to C4-dicarboxylates depend on typical two-component systems (TCS) consisting of a transmembrane sensor histidine kinase and a cytoplasmic response regulator. The DctB-DctD system is the first identified TCS for C4-dicarboxylates sensing. Direct ligand binding to the sensor domain of DctB is believed to be the first step of the sensing events. In this report, the water-soluble periplasmic sensor domain of Sinorhizobium meliloti DctB (DctBp) was studied, and three crystal structures were solved: the apo protein, a complex with C4 succinate, and a complex with C3 malonate. Different from the two structurally known CitA family of carboxylate sensor proteins CitA and DcuS, the structure of DctBp consists of two tandem Per-Arnt-Sim (PAS) domains and one N-terminal helical region. Only the membrane-distal PAS domain was found to bind the ligands, whereas the proximal PAS domain was empty. Comparison of DctB, CitA, and DcuS suggests a detailed stereochemistry of C4-dicarboxylates ligand perception. The structures of the different ligand binding states of DctBp also revealed a series of conformational changes initiated upon ligand binding and propagated to the N-terminal domain responsible for dimerization, providing insights into understanding the detailed mechanism of the signal transduction of TCS histidine kinases.  相似文献   

11.
12.
Fibronectin is a large cell adhesion molecule that is composed of several functional domains. The cell-binding domain that binds to cell surface integrins consists of repeated homologous type III modules. In this study, recombinant fragments from the cell-binding domain of human fibronectin that participate in a newly characterized fibronectin-fibronectin interaction with FNIII1 were crystallized. In each case, the crystals had more than one fibronectin fragment in the asymmetric unit. Crystals of FNIII10-11 grew in the space group C2 with a = 117.1 A, b = 38.6 A, c = 80.6 A, beta = 97.2 degrees, and two molecules in the asymmetric unit. These crystals diffracted to 2.5 A resolution. Fragment FNIII8-11 and a shorter fragment, FNIII8-10, crystallized in hexagonal space groups with large unit cells and two to four molecules per asymmetric unit. Even very large crystals of these fragments did not diffract beyond 4 A. The crystal packing for this collection of fibronectin fragments suggests conformational flexibility between linked type III modules. The functional relevance of this flexibility for elongated versus compact models of the cell-binding domain of fibronectin is discussed.  相似文献   

13.
Mutants deficient in orotate utilization (initially termed out mutants) were isolated by selection for resistance to 5-fluoroorotate (FOA), and the mutations of 12 independently obtained isolates were found to map at 79 to 80 min on the Salmonella typhimurium chromosome. A gene complementing the mutations was cloned and sequenced and found to possess extensive sequence identity to characterized genes for C4-dicarboxylate transport (dctA) in Rhizobium species and to the sequence inferred to be the dctA gene of Escherichia coli. The mutants were unable to utilize succinate, malate, or fumarate as sole carbon source, an expected phenotype of dctA mutants, and introduction of the cloned DNA resulted in restoration of both C4-dicarboxylate and orotate utilization. Further, succinate was found to compete with orotate for entry into the cell. The S. typhimurium dctA gene encodes a highly hydrophobic polypeptide of 45.4 kDa, and the polypeptide was found to be enriched in the membrane fraction of minicells harboring a dctA+ plasmid. The DNA immediately upstream of the deduced -35 region contains a putative cyclic AMP-cyclic AMP receptor protein complex binding site, thus affording an explanation for the more effective utilization of orotate with glycerol than with glucose as carbon source. The E. coli dctA gene was cloned from a lambda vector and shown to complement C4-dicarboxylate and orotate utilization in FOA-resistant mutants of both E. coli and S. typhimurium. The accumulated results demonstrate that the dctA gene product, in addition to transporting C4-dicarboxylates, mediates the transport of orotate, a cyclic monocarboxylate.  相似文献   

14.
Sinorhizobium meliloti DctB is a typical transmembrane sensory histidine kinase, which senses C4‐dicarboxylic acids (DCA) and regulates the expression of DctA, the DCA transporter. We previously reported the crystal structures of its periplasmic sensory domain (DctBp) in apo and succinate‐bound states, and these structures showed dramatic conformational changes at dimeric level. Here we show a ligand‐induced dimeric switch in solution and a strong correlation between DctBp's dimerization states and the in vivo activities of DctB. Using site‐directed mutagenesis, we identify important determinants for signal perception and transduction. Specifically, we show that the ligand‐binding pocket is essential for DCA‐induced ‘on’ activity of DctB. Mutations at different sections of DctBp's dimerization interface can lock full‐length DctB at either ‘on’ or ‘off’ state, independent of ligand binding. Taken together, these results suggest that DctBp's signal perception and transduction occur through a ‘ligand‐induced dimeric switch’, in which the changes in the dimeric conformations upon ligand binding are responsible for the signal transduction in DctB.  相似文献   

15.
The DcuS-DcuR system of Escherichia coli is a two-component sensor-regulator that controls gene expression in response to external C(4)-dicarboxylates and citrate. The DcuS protein is particularly interesting since it contains two PAS domains, namely a periplasmic C(4)-dicarboxylate-sensing PAS domain (PASp) and a cytosolic PAS domain (PASc) of uncertain function. For a study of the role of the PASc domain, three different fragments of DcuS were overproduced and examined: they were PASc-kinase, PASc, and kinase. The two kinase-domain-containing fragments were autophosphorylated by [gamma-(32)P]ATP. The rate was not affected by fumarate or succinate, supporting the role of the PASp domain in C(4)-dicarboxylate sensing. Both of the phosphorylated DcuS constructs were able to rapidly pass their phosphoryl groups to DcuR, and after phosphorylation, DcuR dephosphorylated rapidly. No prosthetic group or significant quantity of metal was found associated with either of the PASc-containing proteins. The DNA-binding specificity of DcuR was studied by use of the pure protein. It was found to be converted from a monomer to a dimer upon acetylphosphate treatment, and native polyacrylamide gel electrophoresis suggested that it can oligomerize. DcuR specifically bound to the promoters of the three known DcuSR-regulated genes (dctA, dcuB, and frdA), with apparent K(D)s of 6 to 32 micro M for untreated DcuR and < or =1 to 2 microM for the acetylphosphate-treated form. The binding sites were located by DNase I footprinting, allowing a putative DcuR-binding motif [tandemly repeated (T/A)(A/T)(T/C)(A/T)AA sequences] to be identified. The DcuR-binding sites of the dcuB, dctA, and frdA genes were located 27, 94, and 86 bp, respectively, upstream of the corresponding +1 sites, and a new promoter was identified for dcuB that responds to DcuR.  相似文献   

16.
E Zientz  S Six    G Unden 《Journal of bacteriology》1996,178(24):7241-7247
In Escherichia coli, two carriers (DcuA and DcuB) for the transport of C4 dicarboxylates in anaerobic growth were known. Here a novel gene dcuC was identified encoding a secondary carrier (DcuC) for C4 dicarboxylates which is functional in anaerobic growth. The dcuC gene is located at min 14.1 of the E. coli map in the counterclockwise orientation. The dcuC gene combines two open reading frames found in other strains of E. coli K-12. The gene product (DcuC) is responsible for the transport of C4 dicarboxylates in DcuA-DcuB-deficient cells. The triple mutant (dcuA dcuB dcuC) is completely devoid of C4-dicarboxylate transport (exchange and uptake) during anaerobic growth, and the bacteria are no longer capable of growth by fumarate respiration. DcuC, however, is not required for C4-dicarboxylate uptake in aerobic growth. The dcuC gene encodes a putative protein of 461 amino acid residues with properties typical for secondary procaryotic carriers. DcuC shows sequence similarity to the two major anaerobic C4-dicarboxylate carriers DcuA and DcuB. Mutants producing only DcuA, DcuB, or DcuC were prepared. In the mutants, DcuA, DcuB, and DcuC were each able to operate in the exchange and uptake mode.  相似文献   

17.
18.
Two-component signaling systems allow bacteria to adapt to changing environments. Typically, a chemical or other stimulus is detected by the periplasmic sensor domain of a transmembrane histidine kinase sensor, which in turn relays a signal through a phosphotransfer cascade to the cognate cytoplasmic response regulator. Such systems lead ultimately to changes in gene expression or cell motility. Mechanisms of ligand binding and signal transduction through the cell membrane in histidine kinases are not fully understood. In an effort to further understand such processes, we have solved the crystal structures of the periplasmic sensor domains of Escherichia coli DcuS and of Vibrio cholerae DctB in complex with the respective cognate ligands, malate and succinate. Both proteins are involved in the regulation of the transport and metabolism of C(4)-dicarboxylates, but they are not highly related by sequence similarity. Our work reveals that despite disparate sizes, both structures contain a similar characteristic alpha/beta PDC (PhoQ-DcuS-CitA) sensor-domain fold and display similar modes of ligand binding, suggesting similar mechanisms of function.  相似文献   

19.
A 3.6-kb EcoRI fragment containing the ntrA gene of Agrobacterium tumefaciens was cloned by using the homologous ntrA gene of Rhizobium meliloti as a probe. Construction of an ntrA mutant of A. tumefaciens by site-directed insertional mutagenesis demonstrated the requirement of the ntrA gene for nitrate utilization and C4-dicarboxylate transport but not for vir gene expression or tumorigenesis.  相似文献   

20.
Chlamydia trachomatis is an obligate intracellular bacteria that undergo dynamic morphologic and physiologic conversions upon gaining an access to a eukaryotic cell. These conversions likely require the detection of key environmental conditions and regulation of metabolic activity. Chlamydia encodes homologs to proteins in the Rsb phosphoregulatory partner-switching pathway, best described in Bacillus subtilis. ORF CT588 has a strong sequence similarity to RsbU cytoplasmic phosphatase domain but also contains a unique periplasmic sensor domain that is expected to control the phosphatase activity. A 1.7 Å crystal structure of the periplasmic domain of the RsbU protein from C. trachomatis (PDB 6MAB) displays close structural similarity to DctB from Vibrio and Sinorhizobium. DctB has been shown, both structurally and functionally, to specifically bind to the tricarboxylic acid (TCA) cycle intermediate succinate. Surface plasmon resonance and differential scanning fluorimetry of TCA intermediates and potential metabolites from a virtual screen of RsbU revealed that alpha-ketoglutarate, malate and oxaloacetate bound to the RsbU periplasmic domain. Substitutions in the putative binding site resulted in reduced binding capabilities. An RsbU null mutant showed severe growth defects which could be restored through genetic complementation. Chemical inhibition of ATP synthesis by oxidative phosphorylation phenocopied the growth defect observed in the RsbU null strain. Altogether, these data support a model with the Rsb system responding differentially to TCA cycle intermediates to regulate metabolism and key differentiation processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号