共查询到20条相似文献,搜索用时 15 毫秒
1.
Renoguanylin (REN) is a recently described member of the guanylin family, which was first isolated from eels and is expressed in intestinal and specially kidney tissues. In the present work we evaluate the effects of REN on the mechanisms of hydrogen transport in rat renal tubules by the stationary microperfusion method. We evaluated the effect of 1 μM and 10 μM of renoguanylin (REN) on the reabsorption of bicarbonate in proximal and distal segments and found that there was a significant reduction in bicarbonate reabsorption. In proximal segments, REN promoted a significant effect at both 1 and 10 μM concentrations. Comparing control and REN concentration of 1 μM, JHCO3−, nmol cm− 2 s− 1 − 1,76 ± 0,11control × 1,29 ± 0,08REN 10 μM; P < 0.05, was obtained. In distal segments the effect of both concentrations of REN was also effective, being significant e.g. at a concentration of 1 μM (JHCO3−, nmol cm− 2 s− 1 − 0.80 ± 0.07control × 0.60 ± 0.06REN 1 μM; P < 0.05), although at a lower level than in the proximal tubule. Our results suggest that the action of REN on hydrogen transport involves the inhibition of Na+/H+exchanger and H+-ATPase in the luminal membrane of the perfused tubules by a PKG dependent pathway. 相似文献
2.
Functional properties and the localization of essential SH-groups of the tonoplast H+-ATPase fromZea mays L. were studied. In contrast to the pyrophosphate-dependent H+-translocation activity of the tonoplast, the H+-ATPase activity was inhibited by SH-blocking agents, such as N-ethylmaleimide and iodoacetic acid. In the case ofp-hydroxymercuribenzoate, HgCl2 and oxidized glutathione, the inhibition could be reversed by adding reduced glutathione or dithiothreitol.
Incubation of tonoplast vesicles with oxidized glutathione or N-ethylmaleimide in the presence of Mg·ADP—a competitive inhibitor
of the ATP-dependent H+ pump—avoided the inhibition of the H+-pumping activity. This effect is an indication for the occurrence of essential SH-groups at the catalytic site of the H+-ATPase.
In order to characterize the active center these thiols were specifically labeled with maleimidobutyrylbiocytin. Subsequently,
the membrane proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to an immobilizing
membrane. The maleimidobutyrylbiocytin-labeled active-center protein was detected by a biotin-streptavidin-peroxidase staining
system and was shown to be a 70-kDa subunit of the tonoplast H+-ATPase. It is suggested that the oxidation state of the critical sulfhydryl groups within the active center of the enzyme
and their reversible blocking by endogenous compounds might be of great importance for the regulation of the enzyme activity
in vivo. 相似文献
3.
The aim of this work was to examine the effects of changes in external K+ concentration (K
o
) around its physiological value, of various K+ channels blockers, including internal Cs+, of vacuolar H+-ATPase inhibitors and of the protonophore CCCP on the resting potential and the voltage-dependent K+ current of differentiated neuroblastoma x glioma hybrid NG108-15 cells using the whole-cell patch-clamp technique. The results are as follows: (i) under standard conditions (K
o
=5 mm) the membrane potential was –60±1 mV. It was unchanged when K
o
was decreased to 1 mm and was depolarized by 4±1 mV when Ko was increased to 10 mm. (ii) Internal Cs+ depolarized the membrane by 21±3 mV. (iii) The internal application of the vacuolar H+-ATPase inhibitors N-ethylmaleimide (NEM), NO
3
–
and bafilomycin A1 (BFA) depolarized the membrane by 15±2, 18±2 and 16±2 mV, respectively, (iv) When NEM or BFA were added to the internal medium containing Cs+, the membrane was depolarized by 45±1 and 42±2 mV, respectively. (v) The external application of CCCP induced a transient depolarization followed by a prolonged hyperpolarization. This hyperpolarization was absent in BFA-treated cells. The voltage-dependent K+ current was increased at negative voltages and decreased at positive voltages by NEM, BFA and CCCP. Taken together, these results suggest that under physiological conditions, the resting potential of NG108-15 neuroblastoma cells is maintained at negative values by both voltage-dependent K+ channels and an electrogenic vacuolar type H+-ATPase.This work was supported by a grant from INSERM (CRE 91 0906). 相似文献
4.
Hong J Yokomakura A Nakano Y Ishihara K Kaneda M Onodera M Nakahama K Morita I Niikura K Ahn JW Zee O Ohuchi K 《FEBS letters》2006,580(11):2723-2730
Apicularen A and the known vacuolar-type (H(+))-ATPase (V-ATPase) inhibitor bafilomycin A(1) induced apoptosis of RAW 264.7 cells, while apicularen B, an N-acetyl-glucosamine glycoside of apicularen A, was far less effective. Apicularen A inhibited vital staining with acridine orange of the intracellular organelles of RAW 264.7 cells, inhibited the ATP-dependent proton transport into inside-out microsome vesicles, and inhibited the bafilomycin A(1)-sensitive ATP hydrolysis. The IC(50) values of the proton transport were 0.58 nM for apicularen A, 13 nM for apicularen B, and 0.95 nM for bafilomycin A(1). Furthermore, apicularen A inhibited the bafilomycin A(1)-sensitive ATP hydrolysis more potently than apicularen B. F-ATPase and P-ATPase were not inhibited by apicularen A. We concluded that apicularen A inhibits V-ATPase, and thus induces apoptosis in RAW 264.7 cells. 相似文献
5.
G. Malnic A. G. Lopes A. C. Cassola A. L. Berardi M. Mello Aires G. Giebisch 《The Journal of membrane biology》1990,118(2):121-130
Summary The pH-stat technique has been used to measure H+ fluxes in gastric mucosa and urinary bladder in vitro while keeping mucosal pH constant. We now report application of this method in renal tubules. We perfused proximal tubules with double-barreled micropipettes, blocked luminal fluid columns with oil and used a double-barreled Sb/reference microelectrode to measure pH, and Sb or 1n HC1-filled microelectrodes to inject OH– or H+ ions into the tubule lumen. By varying current injection, pH was kept constant at adjustable levels by an electronic clamping circuit. We could thus obtain ratios of current (nA) to pH change (apparent H+-ion conductance). These ratios were reduced after luminal 10–4
m acetazolamide, during injection of OH–, but they increased during injection of H+. The point-like injection source causes pH to fall off with distance from the injecting electrode tip even in oil-blocked segments. Therefore, a method analogous to cable analysis was used to obtain H+ fluxes per cm2 epithelium. The relation betweenJ
H
+
and pH gradient showed saturation kinetics of H fluxes, both during OH– and H+ injection. This kinetic behavior is compatible with inhibition ofJ
H by luminal H+. It is also compatible with dependence on Na+ and H+ gradients of a saturable Na/H exchanger. H+-ion back-flux into the tubule lumen also showed saturation kinetics. This suggests that H+ flow is mediated by a membrane component, most likely the Na+–H+ exchanger. 相似文献
6.
Molecular and functional characterization of choline transporter in rat renal tubule epithelial NRK-52E cells 总被引:1,自引:0,他引:1
Minako Yabuki Tomoko Yamada Teruhiko Matsumiya 《Archives of biochemistry and biophysics》2009,485(1):88-96
Homeostatic regulation of the plasma choline concentration depends on the effective functioning of a choline transporter in the kidney. However, the nature of the choline transport system in the kidney is poorly understood. In this study, we examined the molecular and functional characterization of choline uptake in the rat renal tubule epithelial cell line NRK-52E. Choline uptake was saturable and mediated by a single transport system, with an apparent Michaelis-Menten constant (Km) of 16.5 μM and a maximal velocity (Vmax) of 133.9 pmol/mg protein/min. The Vmax value of choline uptake was strongly enhanced in the absence of Na+ without any change in Km values. The increase in choline uptake under Na+-free conditions was inhibited by Na+/H+ exchanger (NHE) inhibitors. Choline uptake was inhibited by the choline uptake inhibitor hemicholinium-3 (HC-3) and organic cations, and was decreased by acidification of the extracellular medium and by intracellular alkalinization. Collapse of the plasma membrane H+ electrochemical gradient by a protonophore inhibited choline uptake. NRK-52E cells mainly express mRNA for choline transporter-like proteins (CTL1 and CTL2), and NHE1 and NHE8. CTL1 protein was recognized in both plasma membrane and mitochondria. CTL2 protein was mainly expressed in mitochondria. The biochemical and pharmacological data indicated that CTL1 is functionally expressed in NRK-52E cells and is responsible for choline uptake. This choline transport system uses a directed H+ gradient as a driving force, and its transport functions in co-operation with NHE8. Furthermore, the presence of CTL2 in mitochondria provides a potential site for the control of choline oxidation. 相似文献
7.
Sugar beet grown in pots was sprayed with N6-(m-hydroxybenzyl)adenosine, (mOH)- [9R]BAP, one of the synthetic cytokinins. Root tissue was then examined for respiration and for H+-adenosinetriphosphatase activity and both leaf and root tissue served as the object for 6-deoxy-D-glucose and 2-aminoisobutyric
acid uptake estimations. Treatment with (mOH)[9R]BAP depressed the uptake of oxygen by the roots of both young and old plants by 17 – 30 % while addition of (mOH)[9R]BAP to the respiring slices decreased it by 10 – 23 %. Uptake of 6-deoxy-D-glucose was mostly diminished byin vivo spraying with the cytokinin (by up to 12 % in leaves and by up to 60 % in roots), as well as by adding it to the experimental
vessel (insignificantly in the leaves but by up to 80 % in the roots). The H+-ATPase activity was stimulated bothin vivo andin vitro appreciably in young plants but not at all in plants at the end of their vegetation period.
Acknowledgement: The work described here was supported by grant No. 501/94/0413 of the Grant Agency of the Czech Republic 相似文献
8.
Summary An attempt has been made to simulate the light-induced oscillations of the membrane potential of Potamogeton lucens leaf cells in relation to the apoplastic pH changes. Previously it was demonstrated that the membrane potential of these cells can be described in terms of proton movements only. It is hypothesized that the membrane potential is determined by an electrogenic H+-ATPase with a variable H+/ATP stoichiometry. The stoichiometry shifts from a value of two in the dark to a value of one in the light. Moreover, this H+ pump shows the characteristics of either a pump or a passive H+ conductance: the mode of operation of the H+ translocator is considered to be regulated by the external pH. The pump conductance is assumed to be dominant at low or neutral pH, while the passive H+ conductance becomes more significant at alkaline pH. The pH dependence of the transport characteristic is expressed by protonation reactions in the plasma membrane. The proposed model can account for most features of the light-induced oscillations but not for the absolute level of the membrane potential.This research was supported by the Foundation of Biophysics, part of the Dutch Organization for Scientific Research (NWO) ECOTRANS publication No. 34. 相似文献
9.
Ramos AC Martins MA Okorokova-Façanha AL Olivares FL Okorokov LA Sepúlveda N Feijó JA Façanha AR 《Mycorrhiza》2009,19(2):69-80
Roots undergo multiple changes as a consequence of arbuscular mycorrhizal (AM) interactions. One of the major alterations expected is the induction of membrane transport systems, including proton pumps. In this work, we investigated the changes in the activities of vacuolar and plasma membrane (PM) H(+) pumps from maize roots (Zea mays L.) in response to colonization by two species of AM fungi, Gigaspora margarita and Glomus clarum. Both the vacuolar and PM H(+)-ATPase activities were inhibited, while a concomitant strong stimulation of the vacuolar H(+)-PPase was found in the early stages of root colonization by G. clarum (30 days after inoculation), localized in the younger root regions. In contrast, roots colonized by G. margarita exhibited only stimulation of these enzymatic activities, suggesting a species-specific phenomenon. However, when the root surface H(+) effluxes were recorded using a noninvasive vibrating probe technique, a striking activation of the PM H(+)-ATPases was revealed specifically in the elongation zone of roots colonized with G. clarum. The data provide evidences for a coordinated regulation of the H(+) pumps, which depicts a mechanism underlying an activation of the root H(+)-PPase activity as an adaptative response to the energetic changes faced by the host root during the early stages of the AM interaction. 相似文献
10.
Masayoshi Maeshima Yoichi Nakanishi Chie Matsuura-Endo Yoshiyuki Tanaka 《Journal of plant research》1996,109(1):119-125
Plant growth results from the division, enlargement and specialization of cells. The two processes of the enlargement and
the differentiation of cells are not spatially separated in plant tissue. We focus our attention here on the enlargement and
elongation of cells. In most cases, growing plant cells contain a large central vacuole. The acid growth theory is based on
the space-filling function of the large vacuole. The active transport systems in the vacuolar membrane are essential for maintenance
of high osmotic pressure and for the expansion of the vacuole. The secondary active transport systems of the vacuole for sugars
and ions are driven by the proton-motive force which is generated by the vacuolar H+-ATPase and H+-translocating inorganic pyrophosphatase. In this review, the relationship between cell elongation and these enzymes of the
vacuolar membrane is emphasized. 相似文献
11.
The auxin sensitivity of the plasma-membrane H+-ATPase from tobacco leaves (Nicotiana tabacum L. cv. Xanthi) depends on the physiological state of the plant (Santoni et al., 1990, Plant Sci. 68, 33–38). Results based on the study of auxin sensitivity according to culture conditions which accelerate or delay tobacco development demonstrate that the highest auxin sensitivity is always associated with the end of the period of induction to flowering. Auxin stimulation of H+-translocation activity corresponds to an increase of the apparent ATPase affinity for ATP. The plasma-membrane H+-ATPase content, measured with an enzyme-linked immunosorbent assay using a specific anti-H+-ATPase antibody, varies according to plant development, and was found to increase by 100% during floral induction. The specific molecular ATPase activity also changes according to plant development; more particularly, the decrease in molecular ATPase activity upto and during the floral-induction period parallels the increase of sensitivity to indole-3-acetic acid.Abbreviations ELISA
enzyme-linked immunosorbent assay
- PAGE
polyacrylamide gel electrophoresis
- SDS
sodium dodecyl sulfate
Authors are grateful to Mrs. Grosclaude (Lab. Virologie, INRA, Jouy-en-Josas, France) and Mrs. Boudon (Lab. Mycoplasmes, INRA, Dijon, France) for support and advice in the preparation of antibodies. This work was supported by grants No. 89/512/6 from the E.P.R of Bourgogne and No. 89 C 0662 from M.R.T. 相似文献
12.
The effects of indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA3) and kinetin on the hydrolytic activity of proton pumps (adenosine triphosphatase, H+-ATPase, pyrophosphatase, H+-PPase) of tonoplasts isolated from stored red beet (Beta vulgaris L. cv. Bordo) roots were studied. Results suggest that the phytohormones can regulate the hydrolytic activities of H+-ATPase and H+-PPase of the vacuolar membrane. Each of the proton pumps of the tonoplast has its own regulators in spite of similar localization and functions. IAA and kinetin seem to be regulators of the hydrolytic activity for H+-PPase whereas for H+-ATPase it may be GA3. Stimulation of enzyme activity by all hormones occurred at concentrations of 10–6 to 10–7
M.Abbreviations IAA
indole-3-acetic acid
- ABA
abscisic acid
- GA3
gibberellic acid
- H+-ATPase
adenosine triphosphatase
- H+-PPase
pyrophosphatase
- ATP
adenosine triphosphate
- Tris
Tris (hydroxymethyl)-aminomethane
- MES
(2[N-Morpholino]) ethane sulfonic acid
- EDTA
ethylene diamine tetraacetic acid
- Pi
inorganic phosphate 相似文献
13.
Recognition of sodium- and potassium-dependent adenosine triphosphatase on mouse lymphoid cells by means of a monoclonal antibody 总被引:3,自引:0,他引:3
Summary Previous evidence has established the similarity between (Na++K+)-ATPase (ATP phosphohydrolase, EC.3.6.1.3) and the antigen recognized by the rat antimouse monoclonal antibody anti-BSP-3. This antibody has been used for investigation of the surface expression and biochemical analysis of the enzyme in different mouse lymphoid populations. The BSP-3 determinant is found on almost all thymocytes and concanavalin A-induced thymocytes, to a lesser extent on bone marrow cells and also on a minor population of spleen cells. Spleen cells from athymic mice are negative. The (Na++ K+)-ATPase purified from mouse thymus by affinity chromatography migrates in SDS-polyacrylamide gels in the form of two polypeptide chains of 105000 and 51000 daltons. Chains of the same molecular weight, fractionated on SDS-PAGE from microsomes of mouse thymuses, are shown to react with subunit-specific polyclonal antisera against ATPase in immunoblotting experiments. Immunoprecipitation with anti-BSP-3 from surface iodinated thymocytes yields only the small subunit. Comparison of the chains isolated from thymus and brain shows molecular weight differences in both subunits. These results, and variations in the reactivity pattern of the anti-BSP-3 antibody on several cell types, may indicate a possible heterogeneity of the (Na++K+)ATPase expressed by various tissues and cells. 相似文献
14.
Summary [14C]Phthalate is transported into L1210 cells via two separate routes, an anion exchange system whose primary substrates are folate compounds, and a second less active system which is sensitive to bromosulfophthalein. When the principal uptake component was blocked by a specific irreversible inhibitor of this system, the remaining route (at pH 7.4) appeared to be saturable and was inhibited by several anions in addition to bromosulfophthalein (K
i
=2 m), including 8-anilino-1-naphthalein sulfonate (K
i
=25 m), unlabeled phthalate (K
i
=500 m), and chloride (K
i
=3500 m). A pronounced effect by pH was also observed. Influx and total uptake of phthalate both increased progressively with decreasing pH and reached values that were 20-fold higher at pH 6.0, compared with pH 7.4. This pH-dependent increase could be blocked, however, by the addition of compounds (nigericin and carbonylcyanidem-chlorophenylhydrazone) which, in combination, collapse proton gradients. Phthalate efflux was relatively insensitive to changes in extracellular pH but could be inhibited (up to 90%) by bromosulfophthalein. Several other anions also inhibited efflux, but to a lesser extent, while chloride, phthalate, lactate, glycolate and acetate enhanced efflux up to 1.8-fold. Efflux also increased at pH 6.0, but not at pH 7.5, upon addition of nigericin and carbonylcyanidem-chlorophenylhydrazone. These results suggest that phthalate is a nonphysiological substrate for a carrier system which mediates transport via an anion/H+ symport mechanism. This system is not the lactate/H+ symport carrier of L1210 cells since: (A) phthalate and lactate influx were inhibited to differing degrees by various anions; and (B) lactic anhydride inhibited the influx and efflux of lactate but had no effect on the transmembrane movement of phthalate. The specificity of this system suggests that its primary anion substrate may be chloride. 相似文献
15.
Harry Holthöfer M.D. Ph.D. Bradley A. Schulte Samuel S. Spicer 《Cell and tissue research》1987,249(3):481-485
Summary To identify precisely the structural and functional cell type in the collecting duct of the rat kidney expressing binding sites for Dolichos biflorus agglutinin (DBA), we stained serial paraffin sections of kidney with horseradish peroxidase-labeled DBA and with immunocytochemical methods for localizing (Na++K+)-ATPase and carbonic anhydrase II (CA II), enzymes found preferentially in principal and intercalated cells, respectively. Most principal cells expressing a strong basolateral staining for (Na+ + K+)-ATPase showed binding sites for DBA at their luminal surfaces. However, a minority of cells rich in CA II and showing morphologic characteristics of intercalated cells also expressed DBA binding sites at their luminal surface and apical cytoplasm. These data suggest that DBA cytochemistrycan provide a useful tool for studying the functional polarity of the main cell types of the collecting duct of the rat kidney. 相似文献
16.
Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast 总被引:11,自引:0,他引:11
Nitric oxide (NO), an endogenous signaling molecule in animals and plants, mediates responses to abiotic and biotic stresses. Our previous work demonstrated that 100 μM sodium nitroprusside (SNP, an NO donor) treatment of maize seedlings increased K+ accumulation in roots, leaves and sheathes, while decreasing Na+ accumulation (Zhang et al. in J Plant Physiol Mol Biol 30:455–459, 2004b). Here we investigate how NO regulates Na+, K+ ion homeostasis in maize. Pre-treatment with 100 μM SNP for 2 days improved later growth of maize plants under 100 mM NaCl stress, as indicated by increased dry matter accumulation, increased chlorophyll content, and decreased membrane leakage from leaf cells. An NO scavenger, methylene blue (MB-1), blocked the effect of SNP. These results indicated that SNP-derived NO enhanced maize tolerance to salt stress. Further analysis showed that NaCl induced a transient increase in the NO level in maize leaves. Both NO and NaCl treatment stimulated vacuolar H+-ATPase and H+-PPase activities, resulting in increased H+-translocation and Na+/H+ exchange. NaCl-induced H+-ATPase and H+-PPase activities were diminished by MB-1. 1-Butanol, an inhibitor of phosphatidic acid (PA) production by phospholipase D (PLD), reduced NaCl- and NO-induced H+-ATPase activation. In contrast, applied PA stimulated H+-ATPase activity. These results suggest that NO acts as a signal molecule in the NaCl response by increasing the activities of vacuolar H+-ATPase and H+-PPase, which provide the driving force for Na+/H+ exchange. PLD and PA play an important role in this process. 相似文献
17.
Summary Exposure of porcine renal brush-border membrane vesicles to 1.2% cholate and subsequent detergent removal by dialysis reorients almost all N-ethylmaleimide (NEM)-sensitive ATPases from the vesicle inside to the outside. ATP addition to cholate-pretreated, but not to intact, vesicles causes H+ uptake as visualized by the pH indicator, acridine organge. The reoriented H+-pump is electrogenic because permeant extravesicular anions or intravesicular K+ plus valinomycin enhance H+ transport. ATP stimulates H+ uptake with an apparentK
m
of 93 m. Support of H+ uptake andP
i
liberation by ATP>GTPITP> UTP indicates a preference for ATP and utilization of other nucleotides at lower efficiency. ADP is a potent, competitive inhibitor of ATP-driven H+ uptake,(K
i
, 24 m). Mg2+ and Mn2– support ATP-driven H+ uptake, but Ca2+, Ba2+ and Zn2+ do not. Imm Zn2+ inhibits MgATP-driven H+ transport completely. NEM-sensitiveP
i
liberation is stimulated by Mg2+ and Mg2– and, unlike H+ uptake, also by Ca2+ suggesting Ca2+-dependent ATP hydrolysis unrelated to H+ transport. The inside-out oriented H+-pump is relatively insensitive toward oligomycin, azide, N,N-dicyclohexylcarbodiimide (DCCD) and vanadate, but efficiently inhibited by NEM (apparentK
i
, 0.77 m), and 4-chloro-7-nitro-benzoxa-1,3-diazole (NBD-Cl; apparentK
i
, 0.39 m). Taken together, the H+-ATPase of proximal tubular brush-border membranes exhibits characteristics very similar to those of vacuolar type (V-type) H+-ATPases. Hence,V-type H+-ATPases occur not only in intracellular organelles but also in specialized plasma membrane areas. 相似文献
18.
Histamine treatment induces rearrangements of orthogonal arrays of particles (OAPs) in human AQP4-expressing gastric cells 总被引:6,自引:0,他引:6 下载免费PDF全文
Carmosino M Procino G Nicchia GP Mannucci R Verbavatz JM Gobin R Svelto M Valenti G 《The Journal of cell biology》2001,154(6):1235-1243
To test the involvement of the water channel aquaporin (AQP)-4 in gastric acid physiology, the human gastric cell line (HGT)-1 was stably transfected with rat AQP4. AQP4 was immunolocalized to the basolateral membrane of transfected HGT-1 cells, like in native parietal cells. Expression of AQP4 in transfected cells increased the osmotic water permeability coefficient (Pf) from 2.02 +/- 0.3 x 10-4 to 16.37 +/- 0.5 x 10-4 cm/s at 20 degrees C. Freeze-fracture EM showed distinct orthogonal arrays of particles (OAPs), the morphological signature of AQP4, on the plasma membrane of AQP4-expressing cells. Quantitative morphometry showed that the density of OAPs was 2.5 +/- 0.3% under basal condition and decreased by 50% to 1.2 +/- 0.3% after 20 min of histamine stimulation, mainly due to a significant decrease of the OAPs number. Concomitantly, Pf decreased by approximately 35% in 20-min histamine-stimulated cells. Both Pf and OAPs density were not modified after 10 min of histamine exposure, time at which the maximal hormonal response is observed. Cell surface biotinylation experiments confirmed that AQP4 is internalized after 20 min of histamine exposure, which may account for the downregulation of water transport. This is the first evidence for short term rearrangement of OAPs in an established AQP4-expressing cell line. 相似文献
19.
Maeda A Amano M Fukata Y Kaibuchi K 《Biochemical and biophysical research communications》2002,297(5):1231-1237
The distribution of transmembrane proteins is considered to be crucial for their activities because these proteins mediate the information coming from outside of cells. A small GTPase Rho participates in many cellular functions through its downstream effectors. In this study, we examined the effects of RhoA on the distribution of Na(+),K(+)-ATPase, one of the transmembrane proteins. In polarized renal epithelium, Na(+),K(+)-ATPase is known to be localized at the basolateral membrane. By microinjection of the constitutively active mutant of RhoA (RhoA(Val14)) into cultured renal epithelial cells, Na(+),K(+)-ATPase was translocated to the spike-like protrusions over the apical surfaces. Microinjection of the constitutively active mutant of other Rho family GTPases, Rac1 or Cdcd42, did not induce the translocation. The translocation induced by RhoA(Val14) was inhibited by treatment with Y-27632, a Rho-kinase specific inhibitor, or by coinjection of the dominant negative mutant of Rho-kinase. These results indicate that Rho and Rho-kinase are involved in the regulation of the localization of Na(+),K(+)-ATPase. We also found that Na(+),K(+)-ATPase seemed to be colocalized with ERM proteins phosphorylated at T567 (ezrin), T564 (radixin), and T558 (moesin) in cells microinjected with RhoA(Val14). 相似文献
20.
Solange S. Samarão Carlos E.S. Teodoro Flavia E. Silva Camila C. Ribeiro Thais M. Granato Cláudio A. Retamal Anna L. Okorokova-Façanha 《生物化学与生物物理学报:生物膜》2009,1788(2):303-313
H+ transport driven by V H+-ATPase was found in membrane fractions enriched with ER/PM and Golgi/Golgi-like membranes of Saccharomyces cerevisiae efficiently purified in sucrose density gradient from the vacuolar membranes according to the determination of the respective markers including vacuolar Ca2+-ATPase, Pmc1::HA. Purification of ER from PM by a removal of PM modified with concanavalin A reduced H+ transport activity of P H+-ATPase by more than 75% while that of V H+-ATPase remained unchanged. ER H+ ATPase exhibits higher resistance to bafilomycin (I50 = 38.4 nM) than Golgi and vacuole pumps (I50 = 0.18 nM). The ratio between a coupling efficiency of the pumps in ER, membranes heavier than ER, vacuoles and Golgi is 1.0, 2.1, 8.5 and 14 with the highest coupling in the Golgi. The comparative analysis of the initial velocities of H+ transport mediated by V H+-ATPases in the ER, Golgi and vacuole membrane vesicles, and immunoreactivity of the catalytic subunit A and regulatory subunit B further supported the conclusion that V H+-ATPase is the intrinsic enzyme of the yeast ER and Golgi and likely presented by distinct forms and/or selectively regulated. 相似文献