首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integration of bovine leukemia virus (BLV) in the genomes of infected cells was investigated in cattle with enzootic bovine leukosis (EBL) and sporadic bovine leukosis (SBL). Southern blot hybridization of BLV cDNA to Eco RI and Xba I restriction fragments of EBL tumor DNAs revealed that: 1) one to four or more copies of proviral DNA were integrated per genome; 2) the restriction pattern of the integrated proviral DNA was the same in two or three different tumors from the same animals; and 3) different patterns were observed among tumors from four different animals. These findings suggest the monoclonal origin of different tumors in an individual animal and the existence of multiple chromosomal integration sites of BLV provirus. DNAs from several SBL tumors were also analyzed with the same restriction enzymes, but with both representative and cDNA3'-enriched's of BLV RNA. No hybridization bands reactive with representative BLV cDNA could be detected, while several bands appeared to hybridize with cDNA3'-enriched.  相似文献   

2.
N Sagata  Y Ogawa  J Kawamura  M Onuma  H Izawa  Y Ikawa 《Gene》1983,26(1):1-10
The bovine leukemia virus (BLV) DNA harbored in the bovine tumor cell genome was cloned in lambda Charon 4A phage. Using either representative or 3' half-enriched BLV cDNA as a blot hybridization probe, clone lambda BLV-1 was shown to carry 9 kb of the BLV genome, flanked by cellular sequences at both ends. Restriction mapping with twelve endonucleases and hybridization of the DNA fragments to BLV cDNA representing a 3'-end portion of the viral genome revealed the presence and precise location of two long terminal repeats (LTRs) and virus-cell junctions. Thus, lambda BLV-1 appears to contain the complete BLV genome and flanking tumor cellular sequences. The restriction map of the cloned BLV proviral DNA closely resembles that previously reported for unintegrated linear proviral DNA, but differs significantly from that of the integrated provirus of another BLV isolate, the difference occurring preferentially in the putative gag and pol genes.  相似文献   

3.
A bovine leukemia virus (BLV)-producing cell line, fetal lamb kidney cells infected with BLV (FLK) contains one or a few copies of BLV proviral DNA in its genome. These cells contain 0.002% of viral RNA which sediments, in a sucrose gradient, at about 35S and between 18S and 28S.In cattle affected by enzootic bovine leukosis, tumor cells and circulating lymphocytes also contain one or a few copies of BLV proviral DNA integrated in their genome. However, in all cases tested (except one), no viral RNA was detected in these cells in conditions where one or two copies of viral genomic RNA per cell would have been easily detected.  相似文献   

4.
Defective proviruses of bovine leukemia virus (BLV) in the genomes of infected cells were investigated by using Southern blotting hybridization analysis with various portions of a cloned BLV DNA as probes. When nine independent tumors of enzootic bovine leukosis with a single proviral copy per cell were examined, a single defective provirus of BLV was found in one tumor and also in a bovine B cell line derived from this tumor. Hybridization analysis of this defective provirus revealed that it underwent deletion between the pol and env genes and contained no major deletion in the other regions.  相似文献   

5.
For attempt to detect an etiological agent, cultures from bovine lymphosarcoma cases (adult form (ALS), calf form (CLS), and thymic form (TLS) were maintained in vitro for over a 18 month period. In two cultures from ALS, bovine leukemia virus (BLV) antigen was constantly detected. On the other hand, BLV antigen remained negative in cultures from two CLS and one TLS cases up to 40 passages. The RNA dependent DNA polymerase activities in these cultures were also negative. Treatment of a culture from CLS (3178) originated from liver tumor with 5'-iodo-2'-deoxyuridine (IdU) and dexamethasone (DXM) resulted in production of an agent serologically and morphologically similar to BLV and in alteration of cell morphology. No virus was detected in culture from TLS after treatment with IdU and DXM.  相似文献   

6.
7.
Bovine papillomavirus (BPV) DNA sequences were detected in different tissues, in addition to epithelium. Cytogenetic abnormalities were observed in blood lymphocytes. The presence of more than one virus in a single tissue is a difficult aspect to evaluate, especially when the DNA sequences are detected in tissues that are not specifically targeted by the virus. BPV and bovine leukemia virus (BLV) are clastogenic, causing chromosome aberrations in peripheral blood lymphocytes. In the present study, we investigated the simultaneous presence of DNA sequences of both viruses and the possibility of vertical transmission and compared the types of chromosome aberrations related to viral action. BPV 1, 2, and 4 DNA sequences were found in three females of the herd and in their offspring. BLV DNA sequences were not detected in their progeny. A newborn calf that was negative for BLV infection showed specific chromosome rearrangements possibly related to the effect of infection with BPV.  相似文献   

8.
An immunoscreening strategy was used to isolate a cDNA clone encoding the binding domain for the external glycoprotein gp51 of the bovine leukemia virus (BLV). Three recombinant phages demonstrating BLV binding activity and containing 2.3-kbp cDNA inserts with identical nucleotide sequences were isolated from a lambda gt11 cDNA library of bovine kidney cells (MDBK). One clone, BLVRcp1, hybridized with a 4.8-kb mRNA from cells of bovine origin and was also found to be conserved as a single-copy gene in murine, bovine, ovine, primate, canine, feline, and porcine DNAs. The same gene is amplified in caprine DNA isolated from a BLV-induced tumor. The longest open reading frame of BLVRcp1 encodes a protein fragment of 729 amino acids with a putative receptor structure. BLVRcp1 cDNA was cloned in the eucaryotic expression vector pXT-1 and transfected into murine NIH 3T3 and human HEp-2 cells. Cells expressing BLVRcp1 mRNA became susceptible to BLV infection. BLVRcp1 has no known physiological function and has no significant homology with sequences registered in the GenBank and EMBL data libraries (31 July 1992). Expression of deleted constructs of BLVRcp1 indicates that the BLV binding region is encoded at the 5' side of the receptor clone.  相似文献   

9.
10.
11.
The polymerase-chain reaction was applied for detection of provirus DNA of the bovine leukaemia virus (BLV). A short fragment of 292 bp including region R and U5 LTR 5' of BLV was amplified, and the optimum parameters of amplification of this fragment were established. Electrophoresis revealed the presence of the 292 bp fragment from the leucocytes of four out of six cows showing a positive serological response to BLV antigens. Application of the polymerase-chain reaction in diagnosis of bovine leukaemia is suggested.  相似文献   

12.
13.
Bovine embryonic spleen cell cultures were examined to find several factors influencing the specificity, sensitivity and reproducibility of the syncytia infectivity assay of bovine leukemia virus (BLV). The highest sensitivity of the assay were observed when cell sheets of 30 to 50% confluence were inoculated with a stock of BLV, and when cells containing 4 or more nuclei were counted as syncytial cells. Treatment of the cell sheets with a diethylamino-ethyl-dextran solution (25 micrograms/ml) prior to BLV inoculation was found to be essential for the optimal induction of syncytia. Low-passage cultures were found to be more susceptible to the induction of syncytia by BLV than high-passage cultures. Cell-free BLV preparations decreased in syncytia-inducing ability to some extent by the first cycle of freezing (at -70 degrees C) and thawing. No further decrease, however, was caused by repeated cycles of freezing and thawing or by prolonged incuvation at -80 degrees C. The syncytia-inducing activity of BLV was inhibited by all the BLV-precipitating antibody-positive sera originated from both cases of the adult form of bovine leukosis and cases of persistent lymphocytosis. It was not inhibited by the sera of 16 of 17 cattle apparently healthy and negative for BLV-precipitating antibody. These results indicate that the syncytia infectivity assay and syncytia inhibition test are specific for BLV.  相似文献   

14.
15.
16.
The nucleic acid-binding proteins of bovine leukemia virus (BLV) and feline leukemia virus (FeLV) were isolated in a high state of purity with chloroform-methanol extraction followed by reversed-phase liquid chromatography. Selective solubilization and purity of BLV p12 and FeLV p10 was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The compositions and molecular weights were determined by amino acid analysis. An abundance of lysine and arginine residues along with their size identifies both BLV p12 and FeLV p10 as small basic proteins similar to well-defined type C viral nucleoproteins. NH2-terminal degradation by the semiautomated Edman method provided the sequence of the first 40 amino acids for both proteins. The putative nucleic acid binding site found in several type C viral nucleoproteins was contained within this sequence, with the most homology centered around an eight-amino acid region involving seven identical residues and one substitution. Antisera were developed in rabbits, and specificity and titers were determined by electroblotting and immunoautoradiography. By this technique, an immunological cross-reaction was found between BLV p12 and FeLV p10. The shared antigenic determinant most likely exists in the highly conserved eight-amino acid region. Although this sequence is also highly conserved in the nucleic acid-binding proteins of murine leukemia viruses, the shared antigenic determinant is not found in these or any other type C viruses tested. It is suggested that substitution of arginine (BLV p12/FeLV p10) to lysine (murine leukemia virus p10) is sufficient to elicit a change in antibody specificity.  相似文献   

17.
The replication-competent bovine leukemia virus (BLV) has been modified for use as a vector for foreign genes. The gag, pol, env, and pX regions of the virus were replaced by an exogenous nuclear location signal LacZ (nlsLacZ) or SVnlsLacZ gene. Transfection of the ovine cell line FLK-BLV, which expresses all BLV proteins from a wild-type provirus, with this viral DNA resulted in a viral titer of 10(4) CFU/ml. The inclusion of a large portion of the gag region did not significantly increase the titer. Both activator-dependent and activator-independent retroviruses were constructed. In activator-dependent vectors, the expression of the insert was dependent on the presence of the Tax protein, which activated the BLV long terminal repeat. In activator-independent vectors, the expression of the insert was constitutive because of the presence of an internal promoter. Infections with the recombinant retrovirus were inhibited by specific neutralizing antibodies. The structure of the transduced genetic material was not rearranged. BLV vectors encoding a reporter nlsLacZ gene, the product of which can be detected in single cells, greatly simplified studies of their biological properties. Determination of the host range of BLV vectors established that BLV-based recombinant retroviruses are effective in the transduction of genes in a variety of species and cell types.  相似文献   

18.
19.
Pathogenicity of molecularly cloned bovine leukemia virus.   总被引:1,自引:1,他引:0       下载免费PDF全文
To delineate the mechanisms of bovine leukemia virus (BLV) pathogenesis, four full-length BLV clones, 1, 8, 9, and 13, derived from the transformed cell line FLK-BLV and a clone construct, pBLV913, were introduced into bovine spleen cells by microinjection. Microinjected cells exhibited cytopathic effects and produced BLV p24 and gp51 antigens and infectious virus. The construct, pBLV913, was selected for infection of two sheep by inoculation of microinjected cells. After 15 months, peripheral blood mononuclear cells from these sheep served as inocula for the transfer of infection to four additional sheep. All six infected sheep seroconverted to BLV and had detectable BLV DNA in peripheral blood mononuclear cells after amplification by polymerase chain reaction. Four of the six sheep developed altered B/T-lymphocyte ratios between 33 and 53 months postinfection. One sheep died of unrelated causes, and one remained hematologically normal. Two of the affected sheep developed B lymphocytosis comparable to that observed in animals inoculated with peripheral blood mononuclear cells from BLV-infected cattle. This expanded B-lymphocyte population was characterized by elevated expression of B-cell surface markers, spontaneous blastogenesis, virus expression in vitro, and increased, polyclonally integrated provirus. One of these two sheep developed lymphocytic leukemia-lymphoma at 57 months postinfection. Leukemic cells had the same phenotype and harbored a single, monoclonally integrated provirus but produced no virus after in vitro cultivation. The range in clinical response to in vivo infection with cloned BLV suggests an important role for host immune response in the progression of virus replication and pathogenesis.  相似文献   

20.
The matrix (MA) domain of retroviral Gag proteins plays a crucial role in virion assembly. In human immunodeficiency virus type 1 (HIV‐1), a lentivirus, the presence of phosphatidylinositol‐(4,5)‐bisphosphate triggers a conformational change allowing the MA domain to bind the plasma membrane (PM). In this study, the MA protein from bovine leukemia virus (BLV) was used to investigate the mechanism of viral Gag binding to the membrane during replication of a deltaretrovirus. Fluorescence spectroscopy was used to measure the binding affinity of MA for two RNA constructs derived from the BLV genome as well as for single‐stranded DNA (ssDNA). The importance of electrostatic interactions and the ability of inositol hexakisphosphate (IP6) to compete with nucleic acids for binding to MA were also investigated. Our data show that IP6 effectively competes with RNA and DNA for BLV MA binding, while [NaCl] of greater than 100 mM is required to produce any observable effect on DNA‐MA binding. These results suggest that BLV assembly may be highly dependent on the specific interaction of the MA domain with components of the PM, as observed previously with HIV‐1. The mode of MA binding to nucleic acids and the implications for BLV assembly are discussed. Proteins 2013; 81:1377–1385. © 2013 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号