首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We developed a technique to separate nuclei of rooster testis by centrifugation through a discontinuous sucrose density gradient and by sedimentation at unit gravity. Four different major fractions obtained from testicular nuclei and one from the vas deferens were characterized according to their velocity of sedimentation, morphology and DNA content. The ratios (w/w) of basic proteins, non-histone proteins and RNA to DNA decreased during spermiogenesis both in nuclei and chromatin. Changes in the electrophoretic patterns of histones and non-histone proteins were detected especially in the elongated spermatids. The lack of uptake of [3H]uridine in elongating and elongated spermatids and in spermatozoa was demonstrated by radioautography and by the detection of labelled RNA extracted from different fractions of nuclei. Template activity for RNA synthesis and the binding of actinomycin D by testicular nuclei reached a peak in the elongated spermatid stage, when the histones are replaced by the protamine.  相似文献   

2.
Histones of spermatogenous cells in the house cricket   总被引:1,自引:0,他引:1  
Histones were isolated from testis of the house cricket and analyzed by electrophoresis on polyacrylamide gels containing urea and acetic acid. Testes of two different nymphal instars and of adults were examined. The testes contained gonial and meiotic stages in the younger nymphs analyzed, and these same stages plus early spermatids in the older nymphs. At both nymphal instars, testis histone displayed the same five major fractions that are found in somatic nuclei of the cricket; the only unusual feature noted in nymph testis was a high abundance of phosphorylated F1. Adult testis has the same histone fractions as nymph testis and has two new fractions in addition. SDS electrophoresis also shows the presence of two more histones in adult testis than in nymph testis. — The unusual testis histones appear to accumulate during the nuclear elongation stages of spermiogenesis. The occurrence of these stages in adult testis is correlated with the presence of the extra histones. Nuclei of adult testis were separated into fractions enriched for early, mid, and late stages by velocity sedimentation at unit gravity. The unusual histones predominate in the fractions enriched for late spermiogenic stages. Both of the new histones appear to occur in the same stages of spermiogenesis, and display linked accumulation. Eventually they make up at least seventy percent of the histone complement.  相似文献   

3.
Induced erythropoiesis in the mouse spleen was employed to study chromosomal protein synthesis during erythroid cell development. Splenic erythropoiesis occurring after phenylhydrazine induced hemolysis can be divided into an early phase during which nuclear RNA polymerase activity and RNA production are maximal and a late phase in which hemoglobin synthesis and DNA accumulation are maximal. Chromatin was isolated from splenic tissue during both the early and late phases of erythropoiesis as well as from non-anemic animals. The total protein content of chromatin from the early erythroid phase was greater than that of chromatin from the late erythroid phase or from non-anemic controls. The increase was due to a coordinate increase in the concentration of both histone and nonhistone proteins. During late erythropoiesis, the concentration of each returned to pre-anemic levels. Total histone synthesis increased 2.6-fold during early erythropoiesis as compared with the pre-anemic state and remained elevated in late erythropoiesis. The increase in histone synthesis was due to an increase in the synthesis of all five major histone proteins. Nonhistone protein synthesis was more active than that of histones in the pre-anemic spleen and rose only slightly during early erythropoiesis, returning to preanemic levels during late erythropoiesis. Fractionation of nonhistone proteins on SDS-urea polyacrylamide gels revealed complex patterns with significant differences between the pattern of erythroid spleen non-histone proteins and that of the pre-anemic spleen. Analysis of the incorporation of 3H-valine into the non-histone proteins indicated that during early erythropoiesis there was a generalized increase in nonhistone protein synthesis. During the late erythroid phase, the decline in non-histone protein synthesis was most marked for the higher molecular weight proteins.  相似文献   

4.
To ascertain the activity and substrate specificity of nuclear protein kinases during various stages of the cell cycle of HeLa S3 cells, a nuclear phospho-protein-enriched sample was extracted from synchronised cells and assayed in vitro in the presence of homologous substrates. The nuclear protein kinases increased in activity during S and G2 phase to a level that was twice that of kinases from early S phase cells. The activity was reduced during mitosis but increased again in G1 phase. When the phosphoproteins were separated into five fractions by cellulose-phosphate chromatography each fraction, though not homogenous, exhibited differences in activity. Variations in the activity of the protein kinase fractions were observed during the cell cycle, similar to those observed for the unfractionated kinases. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the proteins phosphorylated by each of the five kinase fractions demonstrated a substrate specificity. The fractions also exhibited some cell cycle stage-specific preference for substrates; kinases from G1 cells phosphorylated mainly high molecular weight polypeptides, whereas lower molecular weight species were phosphorylated by kinases from the S, G2 and mitotic stages of the cell cycle. Inhibition of DNA and histone synthesis by cytosine arabinoside had no effect on the activity or substrate specificity of S phase kinases. Some kinase fractions phosphorylated histones as well as non-histone chromosomal proteins and this phosphorylation was also cell cycle stage dependent. The presence of histones in the in vitro assay influenced the ability of some fractions to phosphorylate particular non-histone polypeptides; non-histone proteins also appeared to affect the in vitro phosphorylation of histones.  相似文献   

5.
N Agell  M Chiva  C Mezquita 《FEBS letters》1983,155(2):209-212
Electrophoretic analysis of acid-soluble chromosomal proteins isolated from rooster testis cell nuclei at different stages of spermatogenesis, revealed that the nuclear content of a protein identified by its solubility, electrophoretic mobility and amino acid analysis as the protein conjugate histone H2A-ubiquitin (uH2A, A24) changed markedly from meiotic cells to late spermatids. The protein was not detectable in tetraploid primary spermatocytes; it was present in 1.7% of the total amount of nucleosomal core histones in early spermatids and reached its maximum level (3.5% and 11%) at the end of spermiogenesis, when histones are replaced by the protamine galline.  相似文献   

6.
Changes of chromosomal basic proteins of rats have been followed during transformation of spermatids into spermatozoa in the testis and during maturation of spermatozoa in the epididymis. Rat testis chromatin has been fractionated on the basis of differing sensitivity to shearing, yielding a soluble fraction and a condensed fraction. The sperm histone is found in the condense fraction. Somatic-type histones are found in both fractions. The somatic-type histones in the condensed fraction contains much more lysine-rich histone I, than does the somatic-type histones in the soluble fraction. This may suggest that the lysine-rich histone I is the last histone to be displaced during the replacement of somatic-type histones by sperm histone. After extensive shearing followed by sucrose centrifugation, the condensed portion of testis chromatin can be further fractionated into two morphologically distinctive fractions. One is a heavy fraction possessing an elongated shape typical of the head of late spermatids. The other is a light fraction which is presumably derived from spermatids at earlier stages of chromatin condensation and which is seen as a beaded structure in the light microscope. Sperm histone of testis chromatin can be extractable completely by guanidinium chloride without a thiol, wheras 2-mercaptoethanol is required for extraction of sperm histone from caput and cauda epididymal spermatozoa. The light fraction of the condensed testis chromatin contains unmodified and monophospho-sperm histone. The sperm histones of the heavy fraction is mainly of monophospho and diphospho species, whereas unmodified and monophosphosperm histones are found in caput and cauda epididymal spermatozoa. Labeling of cysteine sulfhydryl groups of sperm histone releases by 2-mercaptoethanol treatment shows that essentially all of the cysteine residues of sperm histone in testis chromatin are present as sulfhydryl groups, while those of sperm histone isolated from mature (cauda epididymal) spermatozoa are present as disulfide forms and approximately 50% of the cysteine residues of sperm histone obtained from caput epididymal spermatozoa are in disulfide forms. These results suggest that phosphorylation of sperm histone is involved in the process of chromatin condensation during transformation of spermatozoa in the epididymis.  相似文献   

7.
Nuclei of the seminiferous epithelial cells of rat testis were filtered through glass wool to remove sperm heads, flagellae and late-stage spermatids and then centrifuged through sucrose gradients to yield three fractions. The cellular origins of the predominant nuclei in these fractions were identified through the kinetics of labeling with [3H]thymidine. The relative amounts of the different histone fractions changed during the various stages of spermatogenesis in an interesting and systematic manner. For example, the ratio of the trailing (acetylated) to the leading member of the histone F2a1 doublet was greater in spermatid nuclei than in nuclei of a fraction enriched in primary spermatocytes. Similarly, the ratio X1F1 was greatest in spermatid nuclei. On the other hand, the ratio X3F2b was greater in the nuclei of pachytene-diplotene primary spermatocytes than in the fraction enriched in nuclei of spermatogonia and preloptotene primary spermatocytes.A basic protein fraction with some of the properties of a protamine was extracted from rat sperm heads and from the nuclei of spermatids. This protein fraction has high contents of arginine and cysteine (after reduction), and it appears to be identical with the protamine described by Kistler et al. In addition, a new protamine was isolated from rat sperm heads which has high arginine content but appears to be devoid of lysine and cyst(e)ine. Two other basic protein fractions with high electrophoretic mobilities were extracted with acid from the nuclei of testicular seminiferous epithetial cells without prior reduction. One of these proteins may be identical with the testis-specific protein of Kistler et al.  相似文献   

8.
Separation of labelled nuclei by sedimentation velocity at unit gravity (Staput method) was used to study the timing of histone synthesis and replacement by testis-specific basic nuclear protein (TSP) during spermatogenesis in the mouse. Animals were injected (intratesticularly) with 1.25 micronCi per testis 3H-arginine or 2.5 micronCi per testis 3H-lysine, testis nuclei were separated, and the acid extract of each nuclear fraction was analyzed by acrylamide gel electrophoresis. The distribution of labelled histones and TSP in separated nuclei was assessed 2 h after incorporation. Changes in the labelled histone and TSP content of nuclei during subsequent differentiation (1--34 days post-label) was followed in fractions of separated testis cell nuclei and in nuclei of cauda epididymal spermatozoa. Analysis of total histone and (TSP) content indicated quantitative changes during development. Nuclei from primary spermatocytes had relatively larger amounts of histones H1 and H4. Spermatid nuclei showed a relative reduction in histones H1 and H4, coincident with the appearance of TSP in these nuclei. These results suggested that synthesis and/or removal of certain histones must occur in late primary spermatocyte and early spermatid stages of spermatogenesis. Results of labelling experiments indicated several periods of histone synthesis during spermatogenesis: (1) closely associated with the last DNA synthesis(i.e., in early primary spermatocytes), (2) late in meiotic prophase (i.e., in pachytene primary spermatocytes) and (3) simultaneous with TSP synthesis (i.e., in late spermatids). Histone H1 was more heavily labelled toward the end of the primary spermatocyte period. Histone H4 was more heavily labelled in the early primary spermatocyte period, and again at the time of TSP synthesis in spermatids. Histones synthesized before the pachytene primary spermatocyte stage appeared to be replace, but histones synthesized later in spermatogenesis appeared to be at least partially retained in epididymal spermatozoa. These results suggested that repeated specific alterations in the protein complement of the nucleus are an integral part of spermatogenic differentiation in the mouse.  相似文献   

9.
10.
11.
Histones were extracted from frog livers and testes and analyzed by electrophoresis on long polyacrylamide gels and on sodium dodecyl sulfate (SDS)-containing polyacrylamide gels. Frog histones were found to be similar to those of calf thymus except that frog histone fraction F2A2 showed a marked dependence on the temperature at which the long gels were run, and frog histone fraction F3 could be separated from frog F2B on SDS-containing gels. Comparisons between frog liver and frog testis histones indicated that the testis contains as its major F1 component a fast migrating species not found in liver. Testis histones also showed less microheterogeneity of fractions F3 and F2A1 than liver histones. These were the only differences observed between liver and testis histones, even when testis histones were prepared from sperm suspensions that were rich in cells in the late stages of spermiogenesis. Thus it seems that, in Rana, the electrophoretic properties of the basic proteins of sperm differ from those of somatic cells only in the nature of histone F1 and in the degree of microheterogeneity of fractions F2A1 and F3.  相似文献   

12.
Spermatogenesis in the dogfish is characterized by the synchronous development of germinal cells inside follicles. This particularity has permitted studies on precise stages of cell differentiation, especially on the evolution of chromatin structure. A microelectrophoretic method has been devised for the determination of the basic nuclear protein content of accurately identified homogeneous stages of spermatid differentiation. No significant difference was observed during the first stages of spermiogenesis, i.e., in round spermatids, where a typical histone complement was present. At the beginning of nuclear elongation, two new basic protein fractions appeared and coexisted for some time with typical histones; they replaced somatic histones progressively. Later, during elongation, four proteins of high electrophoretic mobility appeared and gradually replaced the intermediary basic proteins. In elongated spermatids, DNA was found tightly packed by these four proteins: three are arginine- and cysteine-rich (Z1, Z2 and S4), the fourth is arginine-rich (Z3). At first, these fractions are all soluble in 0.25 M HCl but during sperm maturation only one (Z3) remains acid-soluble, the others being extractable only after reducing and alkylating treatments. This modification of solubility of Z1, Z2 and S4 corresponded to the oxidation of cysteine residues to form ---S---S--- crosslinks in chromatin of mature sperm cells. Thus spermiogenesis of the dogfish shows two basic nuclear protein transitions which both occur during nuclear elongation.  相似文献   

13.
The changes in basic nuclear proteins throughout cuttle-fish spermiogenesis were investigated both by immunocytochemical procedures and by isolation of late spermatid nuclei (by virtue of their resistance to sonication). Antibodies were raised in rabbits to a protein, named protein T, isolated from testis chromatin. The anti-protein T immune serum was found to recognize protein T and not histones from the testis. Immunoperoxidase staining of sections or of smears of testis with anti-protein T antibodies showed that protein T appears in the nuclei of round spermatids, is abundant in elongating spermatid nuclei, but cannot be detected in elongated spermatids. Nuclei from these elongated spermatids were isolated by sonication treatment of testis cells. A protein, named protein Sp, with the characteristic mobility of a protamine, was isolated from elongated spermatid nuclei. This protein has the same mobility as the protamine present in mature spermatozoa. Taken together, the results indicate that in cuttle-fish, nuclear protein transitions involve the replacement of histones by a spermatid-specific protein (protein T), which is replaced at the end of elongation of the nucleus by a protamine (protein Sp). Thus, spermiogenesis of the cuttle-fish (and perhaps of other cephalopods), shows two basic nuclear protein transitions, which are similar to the transitions observed in higher vertebrates such as mammals.  相似文献   

14.
Acetylation of rat testis histones H2B and TH2B   总被引:3,自引:1,他引:2  
The in vivo acetylation of rat testis histones H3 and H4 has been demonstrated in previous studies. In this study, analysis of purified histone fractions revealed the in vivo acetylation of histone H2B, the testis histone variant designated TH2B, and two or more of the histone H2A variants. These findings are quite significant, because it is possible that all of the core histones are acetylated in elongating spermatids at the time of removal of the entire histone complement for replacement by basic spermatidal transition proteins (S.R. Grimes and N. Henderson, 1983, Arch. Biochem. Biophys. 221, 108-116).  相似文献   

15.
A new method for isolation of the constitutive heterochromatin (chromocenters) from interphase nuclei of mouse liver has been developed. This method allows separation of chromocenters of different size. Chromocenter fractions are essentially free of nucleoli and other contaminants. In contrast to nuclei and nucleoli, the chromocenter fraction is characterized by simpler protein composition, this fraction having a reduced number of proteins (especially high molecular weight proteins). Chromocenters contain all histone fractions; however, the relative proportion of histone H1 is lower and histone H3 is higher than in the total nuclear chromatin. The amount of non-histone proteins of 51, 63, 73, and 180 kD is higher in the chromocenter fraction than in nuclei and nucleoli. The use of immunocytochemistry and immunoblotting methods revealed the presence of the specific kinetochore component, CENP A protein. This suggests tight association of some molecular kinetochore components with chromocenters in the interphase.  相似文献   

16.
Lipid content and composition of DNA, histone and non-histone proteins of Ehrlich ascites tumor cell chromatin were investigated. All fractions contained small amounts of lipids, mostly neutral ones, in a specific distribution. According to isotopic studies with labeled lipid precursors, incorporation took place mainly in the non-histone fraction. These findings suggest that neutral lipids attached to non-histone chromosomal proteins may also contribute to the regulatory functions ascribed to phospholipids.  相似文献   

17.
18.
Cytochemical and radioautographic techniques define and confirm a staging scheme for developing spermatids of the decapod crab, Emerita analoga. Quantitative photometric data demonstrate that developing spermatids lose a significant proportion of their nuclear proteins, as evidenced by diminishing binding of fluorodinitrobenzene. Photometric results also show that much (but not all) of the spermatid nuclear protein loss is in somatic-type histone, as evidenced by a dramatic fall in the histone/DNA ratio of these cells during a period in which nuclear DNA content remains constant. By the end of spermiogenesis, the sperm nuclear histone and protamine content is approximately zero, whereas some nonbasic protein persists. Loss of spermatid nuclear somatic-type histone is not accompanied by synthesis of gamete-type histone (e.g. protamine or arginine-rich histone), showing that the processes of displacement and synthesis of nuclear basic proteins during histone transition are not subject to obligatory coupling. Labeling studies suggest that nonbasic acrosomal proteins (presumably partly enzymes) are synthesized in the cytoplasm, after which they move into the acrosome. Stainable basic proteins accumulate in the acrosome during precisely the period of nuclear somatic histone loss, suggesting nuclear-cytoplasmic transfer.  相似文献   

19.
When [1-14C]acetate was injected into rats intratesticularly in the presence of cycloheximide to inhibit protein synthesis, the label was incorporated into histone fractions F2a1 and F3 and into non-histone chromosomal proteins of each of the following stages of spermatogenesis: spermatogonia-preleptotene spermatocytes, leptotene-zygotene-pachytene-diplotene primary spermatocytes, and spermatids. Acetylation of histones was particularly active in the spermatid stages. There was no significant incorporation of acetate into the lysine-rich histone fractions F1 and X1.In early periods of in vivo incorporation of [3H]amino acids into histones the acetylated histone F2a1 fractions had higher specific activities than the main band of F2a1, but with the passage of time the label moved into the principal band to the extent that specific activities in the acetylated and principal bands were approximately equal at 6 days. However, at 24–36 days the specific activities were again higher in the acetylated bands than in the principal band of F2a1. These data support the conclusions of Candido, Louie, and Dixon, from experiments with trout testis, that acetylation of histone F2a1 may be important in the process of combination of this protein with DNA in chromatin at the spermatogonia-primary spermatocyte stage and also in the subsequent removal of this histone for replacement by protamines at the spermatid stage.[3H]Amino acids were incorporated into histone fractions X1 and F1 at approximately equal rates, and there was no evidence that one of these fractions was a precursor of the other.Chromatin of the seminiferous epithelial cells of rat testis has a firmly bound acetylase which catalyzes the in vitro acetylation of histones F3 and F2a1 by acetyl CoA.  相似文献   

20.
Histones were isolated from late spermatids and spermatozoa of the house cricket Acheta domesticus, and the individual histone fractions were separated by electrophoresis on polyacrylamide-urea gels. The stained gels were cut so as to isolate the different histone fractions, and the amino acid compositions were determined using the technique of Houston (Houston, L.L.: Anal. Biochem. 44, 81-88 (1971). Five of the histones had amino acid compositions resembling those for the histones of calf thymus and were thus identified as fractions F1, F3, F2a2, F2b, and F2al. Another protein (SH) located exclusively in the late spermatids and spermatozoa was found to be basic and histone-like. It is a protein containing relatively high amounts of arginine (12.6%) and low amounts of lysine (7.6%), and, as a result, it has a low ratio of lysine-arginine (0.6). Other noteworthy features are its high contents of serine, glutamic acid, and glycine. It is arginine rich histone and in this regard resembles other such proteins, but it does contain unique features which distinguish it from all previously described histones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号