首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
T-DNA and transposon tagging in aspen   总被引:3,自引:0,他引:3  
Abstract: We have investigated the somatic activity of the maize Activator (Ac) element in haploid and diploid aspen with the objective of developing an efficient transposon-based system for gene isolation in the model tree species Populus. It was shown that Ac is reinserted, frequently into or near coding regions in aspen, and therefore can be used for gene tagging studies. A number of phenotypic variants were also found following transformation of constructs harbouring the rolC gene. Comparative analyses of T-DNA flanking regions of variants and wild type lines indicate that T-DNA insertion has occurred in or near coding regions. However, the frequency of T-DNA insertion into genes is about one half of the frequency of Ac insertion hitting coding sequences. The results obtained give a proof-of-concept for transposon tagging in a tree system. Given the long generation cycles in tree species, gene tagging strategies are practical only to obtain dominant gain-of-function mutants that do not require selfing or test crossing. In order to obtain recessive loss-of-function mutants, we have regenerated haploid lines from immature pollen. These lines were successfully transformed with a construct containing the rolC transgene from Agrobacterium rhizogenes and Ac element from maize. The results indicate that Ac is also active in haploid aspen and hence can be used in general for gene tagging in trees.  相似文献   

2.
With a view to establish an efficient gene tagging system for forest tree species, we assessed the transposition behaviour of the maize transposable element Ac in poplar. In earlier work, we showed that new integration sites were often located within predicted or known coding sequences. However, somatic transposition behaviour of Ac with regard to conserved chromosome specificity or, more specifically, whether Ac transposition is restricted to the chromosome on which the primary insertion locus (donor) is located or whether it is able to pass chromosomal boundaries, remained unclear. To answer these questions, we took advantage of the publicly available Populus trichocarpa genome sequence (Phytozome v5.0; ) and three 35S::Ac-rolC transgenic hybrid aspen lines to determine the flanking sequences of Ac re-integration sites for tissue sectors from which Ac had been excised. Only about one-third of the analysed re-integrations were positioned within the scaffold containing the primary Ac donor locus, and the majority of re-integrations were found scattered over many unlinked sites on other scaffolds confirming that Ac transposition in poplar does in fact cross chromosome boundaries. The majority of re-integration sites (57.1%) were found within or near coding regions demonstrating that Ac/Ds transposon tagging in poplar holds much promise for the efficient induction of mutants and functional genomics studies in forest tree species.  相似文献   

3.
An inducible transposable element, termed INAc (inducible Activator), was constructed for development of a gene tagging system in higher plants. The advantage of such an inducible element is that, unlike the native transposon, its excision can be induced at any time during plant development and the resulting mutants are stable after removal of the inducer. A fusion of the SA inducible promoter (PR-1a) with the Ac transposase gene was inserted together with a hygromycin resistance gene between ca. 400 bp sequences from each end of the maize Ac element, yielding INAc. The INAc element was introduced into tobacco and tomato plants. A high frequency of spontaneous transposition was apparent in primary transformed tomato calli but not in tobacco calli. Treatment of tobacco plants with salicylic acid induced transposition of INAc in both somatic and germinal tissue, with germinal transposition events being revealed by characterization of the progeny of transformed plants whose flowers were exposed to SA. The INAc element thus exhibits potential for development of an inducible transposon system suitable for gene isolation in heterologous plant species.  相似文献   

4.
For the development of an efficient transposon tagging strategy it is important to generate populations of plants containing unique independent transposon insertions that will mutate genes of interest. To develop such a transposon system in diploid potato the behavior of the autonomous maize transposable element Ac and the mobile Ds element was studied. A GBSS (Waxy) excision assay developed for Ac was used to monitor excision in somatic starch-forming tissue like tubers and pollen. Excision of Ac results in production of amylose starch that stains blue with iodine. The frequency and patterns of blue staining starch granules on tuber slices enabled the identification of transformants with different Ac activity. After excision the GBSS complementation was usually not complete, probably due to the segment of DNA flanking Ac that is left behind in the GBSS gene. Molecular and phenotypic analyses of 40 primary transformants classified into 4 phenotypic classes revealed reproducible patterns. A very high percentage (32.5%) of the primary transformants clearly showed early excision in the first transformed cell as displayed both by the analysis of the GBSS excision marker gene as well as DNA blot analyses. Genotypes useful for tagging strategies were used for crosses and the frequency of independent germinal transpositions was assessed. In crosses to Ds genotypes, excision of Ds was revealed that correlated to the activity of the Ac genotype. A line displaying Ac amplification to multiple copies conferred a high frequency of independent Ds transpositions. The genotypes described here are useful in somatic insertion mutagenesis aimed at the isolation of tagged mutations in diploid potato.  相似文献   

5.
Effective transposon tagging with theAc/Ds system in heterologous plant species relies on the accomplishment of a potentially high transposon-induced mutation frequency. The primary parameters that determine the mutation frequency include the transposition frequency and the transposition distance. In addition, the development of a generally applicable transposon tagging strategy requires predictable transposition behaviour. We systematically analysedDs transposition frequencies andDs transposition distances in tobacco. An artificialDs element was engineered with reporter genes that allowed transposon excision and integration to be monitored visually. To analyse the variability ofDs transposition between different tobacco lines, eight single copy T-DNA transformants were selected. Fortrans-activation of theDs elements, differentAc lines were used carrying an unmodifiedAc + element, an immobilizedsAc element and a stableAc element under the control of a heterologous chalcone synthas (chsA) promoter. With allAc elements, eachDs line showed characteristic and heritable variegation patterns at the seedling level. SimilarDs line-specificity was observed for the frequency by whichDs transpositions were germinally transmitted, as well as for the distances of theDs transpositions. ThesAc element induced transposition ofDs late in plant development, resulting in low germinal transposition frequencies (0.37%) and high incidences of independent transposition (83%). The majority of theseDs elements (58%) transposed to genetically closed linked sites (10 cM).  相似文献   

6.
This review compares the activity of the plant transposable elements Ac, Tam3, En/Spm and Mu in heterologous plant species and in their original host. Mutational analysis of the autonomous transposable elements and two-element systems have supplied data that revealed some fundamental properties of the transposition mechanism. Functional parts of Ac and En/Spm were detected by in vitro binding studies of purified transposase protein and have been tested for their importance in the function of these transposable elements in heterologous plant species. Experiments that have been carried out to regulate the activity of the Ac transposable element are in progress and preliminary results have been compiled. Perspectives for manipulated transposable elements in transposon tagging strategies within heterologous plant species are discussed.  相似文献   

7.
Many of the systems currently employed for heterologous transposon tagging in plants rely on an excision assay to monitor transposon activity. We have used the streptomycin phosphotransferase (SPT) reporter system to assayAc activity inPetunia hybrida. In other species, such as tobacco orArabidopsis, excision ofAc from the SPT gene in sporogenous tissue gives rise to streptomycin-resistant seedlings in the following generation. The frequency of fully streptomycin-resistant seedlings in petunia was low (0.4%) but molecular analysis of these indicated that the actual excision frequency may be as low as 0.05%. This indicates that the SPT assay is not a reliable selection criterion for germinal excision in petunia. Extensive molecular screening for reinsertion ofAc was consistent with a low primary transposition frequency (0%–0.6%). In contrast to these findings, the progeny of confirmed germinal transpositions for three independent transformants showed frequent transposition to new sites (9.5%–17.0%). This suggests a high frequency of secondary transposition compared with primary transposition from the T-DNA. Segregation analysis indicates that the high transposition activity is closely associated with transposed copies ofAc. No evidence was found for an altered methylation state forAc following transposition. The implications of these results for heterologous transposon tagging in petunia are discussed in the context of the reliability of excision reporter systems in general.  相似文献   

8.
A GFP excision assay was developed to monitor the excision of Ac introduced into rice by Agrobacterium-mediated transformation. The presence of a strong double enhancer element of the CaMV 35S promoter adjacent to the Ac promoter induced very early excision, directly after transformation into the plant cell, exemplified by the absence of Ac in the T-DNA loci. Excision fingerprint analysis and characterization of transposition events from related regenerants revealed an inverse correlation between the number of excision events and transposed Ac copies, with single early excisions after transformation generating Ac amplification. New transpositions were generated at a frequency of 15–50% in different lines, yielding genotypes bearing multiple insertions, many of which were inherited in the progeny. The sequence of DNA flanking Ac in three representative lines provided a database of insertion tagged sites suitable for the identification of mutants of sequenced genes that can be examined for phenotypes in a reverse genetics strategy to elucidate gene function. Remarkably, two-thirds of Ac tagged sites showing homology to sequences in public databases were in predicted genes. A clear preference of transposon insertions in genes that are either predicted by protein coding capacity or by similarity to ESTs suggests that the efficiency of recovering knockout mutants of genes could be about three times higher than random. Linked Ac transposition, suitable for targeted tagging, was documented by segregation analysis of a crippled Ac element and by recovery of a set of six insertions in a contiguous sequence of 70 kb from chromosome 6 of rice.  相似文献   

9.
The maize transposon Ac can move to a new location within the genome to create knockout mutants in transgenic plants. In rice, Ac transposon is very active but sometimes undergoes further transposition and leaves an empty mutated gene. Therefore, we developed a one-time transposon system by locating one end of the transposon in the intron of the Ac transposase gene, which is under the control of the inducible promoter (PR-1a). Treatment with salicylic acid induced transposition of this transposon, COYA, leading to transposase gene breakage in exons. The progeny plants inheriting the transposition events become stable knockout mutants, because no functional transposase could be yielded. The behavior of COYA was analyzed in single-copy transgenic rice plants. We determined the expression of the modified transposase gene and its ability to trigger transposition events in transgenic rice plants. The COYA element thus exhibits potential for development of an inducible transposon system suitable for gene isolation in heterologous plant species. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Various functional genomic tools are being used to identify and characterize genes in plants. The Activator/Dissociation (Ac/Ds) transposon-based approach offers great potential, especially in barley, due to its limited success of genetic transformation and its large genome size. The bias of the Ac/Ds system towards genic regions and its tendency toward localized transpositions can greatly enhance the discovery and tagging of genes linked to Ds. Barley is a key ingredient in malting and brewing industry; therefore, gene discovery in relation to malting has an industrial perspective. Malting quality in barley is a complex and quantitatively inherited trait. Two major quantitative trait loci (QTLs) affecting malting quality traits have been located on chromosome 4H. In this study, Ds was reactivated from parent transposants (TNP) lines, TNP-29 and TNP-79, where Ds was mapped in the vicinity of important malting QTLs. Reactivation of Ds was carried out both by conventional breeding and in vitro approaches. A threefold increase in reactivation frequency through the in vitro approach enabled the development of a new genomic resource for the dissection of malting QTL and gene discovery in barley. Identification of unique flanking sequences, using high-efficiency thermal asymmetric interlaced PCR and inverse PCR from these populations, has further emphasized the new location of Ds in the barley genome and provided new transposon mutants especially in β-GAL1, β-amylase-like gene and ABC transporter for functional genomic studies.  相似文献   

11.
Summary A line of flax, homozygous for four genes controlling resistance to flax rust, was transformed with T-DNA vectors carrying the maize transposable elements Ac and Ds to assess whether transposition frequency would be high enough to allow transposon tagging of the resistance genes. Transposition was much less frequent in flax than in Solanaceous hosts such as tobacco, tomato and potato. Transposition frequency in callus tissue, but not in plants, was increased by modifications to the transposase gene of Ac. Transactivation of the excision of a Ds element was achieved by expressing a cDNA copy of the Ac transposase gene from the Agrobacterium T-DNA 2 promoter. Progeny of three plants transformed with Ac and 15 plants transformed with Ds and the transposase gene, were examined for transposition occurring in the absence of selection. Transposition was observed in the descendants of only one plant which contained at least nine copies of Ac. Newly transposed Ac elements were observed in 25–30% of the progeny of some members of this family and one active Ac element was located 28.8 (SE=6.3) map units from the L 6 rust-resistance gene. This family will be potentially useful in our resistance gene tagging program.  相似文献   

12.
Summary To study regulation of the (Ds) transposition process in heterologous plant species, the transposase gene of Ac was fused to several promoters that are active late during plant development. These promoters are the flower-specific chalcone synthase A promoter (CHS A), the anther-specific chalcone isomerase B promoter CHI B and the pollen-specific chalcone isomerase A2 promoter CHI A2. The modified transposase genes were introduced into a tobacco tester plant. This plant contains Ds stably inserted within the leader sequence of the hygromycin resistance (HPT II) gene. As confirmed with positive control elements, excision of Ds leads to the restoration of a functional HPT II gene and to a hygromycin resistant phenotype. No hygromycin resistance was observed in negative control experiments with Ac derivatives lacking 5 regulatory sequences. Although transactivation of Ds was observed after the introduction of transposase gene fusions in calli, excision in regenerated plants was observed only for the CHS A- or CHI B-transposase gene fusions. With these modified transposase genes, somatic excision frequencies were increased (68%) and decreased (22%), respectively, compared to the situation with the Ac element itself (38%). The shifts in transactivation frequencies were not associated with significant differences in the frequencies of germinally transmitted excision events (approximately 5%). The relative somatic stability of Ds insertions bearing the CHI B-transposase gene fusion suggests the usefulness of this activator element for transposon tagging experiments.  相似文献   

13.
The targeted (or directed) tagging is a strategy aimed to mobilize a tranposon into a specific gene (target). Only a very few Arabidopsis genes have been tagged by this way, thus the efficiency of the strategy, as well as the diversity of the alleles obtained are not well documented. We have used a maize Ds element in a directed tagging of HY2. The starting Ds element, located 22kb proximal to HY2, has been remobilized in a cross with an Ac transposase source line. From the F2 progeny of 4800 F1 we phenotypically isolated seven hy2 mutants. Molecular analysis of these alleles revealed that two contained a Ds element in HY2 and were instable, three have a large deletion that partially or completely removed HY2, one has a footprint in a HY2 exon and one leaky allele consisted of a 22 kb inversion upstream the HY2 coding sequence. Thus, the transposon-based directed tagging strategy generates a wide diversity of tagged and non-tagged alleles that can be used to generate allelic series or deletion of clustered genes.  相似文献   

14.
Summary This article reviews techniques for gene identification and cloning in allohexaploid bread wheat (Triticum aestivum L.). Gene identification and cloning in wheat are complicated by the large size and high redundancy of the genome. Both classical mutagenesis and transposon tagging are important tools for the study of grain dormancy and plant hormone signaling in wheat. While classical mutagenesis can be used to identify wheat mutants with altered hormone sensitivity, it can be difficult to clone the corresponding genes. We review the techniques available for gene identification in wheat, and propose that transposon-based activation tagging will be an important tool for wheat genetics.  相似文献   

15.
A transposon tagging system for heterologous hosts, based on the maize En/Spm transposable element, was developed in transgenic tobacco. In this system, the two En-encoded trans-acting factors necessary for excision are expressed by fusing their cDNAs to the CaMV 35S promoter. The dSpm receptor component is inserted in the 5-untranslated leader of the bar gene. Germinal revertants can therefore be selected by seed germination on L-PPT-containing medium or by spraying seedlings with the herbicide Basta. Using this bar-based excision reporter construct, an average frequency of germinal excision of 10.1% was estimated for dSpm-S, an En/Spm native internal deletion derivative. Insertion of En-foreign sequences in a receptor, such as a DHFR selectable marker gene in dSpm-DHFR, does not abolish its capacity to transpose. However, dSpm-DHFR has a lower frequency of somatic and germinal excision than dSpm-S. Revertants carrying a transposed dSpm-DHFR element can be selected with methotrexate. Germinal excision is frequently associated with reinsertion but, as in maize, dSpm has a tendency to integrate at chromosomal locations linked to the donor site. Concerning the timing of excision, independent germinal transpositions are often found within a single seed capsule. All activity parameters analysed suggest that transposon tagging with this system in heterologous hosts should be feasible.  相似文献   

16.
A new transposable element of tobacco, Slide, was isolated from thetl mutant line, which shows somatic instability, after its transposition into a locus encoding nitrate reductase (NR). The Slide-124 element is 3733 bp long and its coding sequences show similarities with conserved domains of the transposases ofAc, Tam3 andhobo. Excision from the NR locus is detectable in somatic leaf tissues and Slide mobility is triggered by in vitro tissue culture. Slide excision events create footprints similar to those left byAc and Tam3. Tobacco lines derived from thetl mutant line seem characterized by unmethylated copies of a few members of the highly repetitive Slide family. Slide mobility was monitored in transient expression assays. In wild-type tobacco protoplasts, the complete Slide element, as well as a defective copy, is able to excise. The complete Slide element, but not the defective version, is able to excise in protoplasts of the heterologous species lettuce (Lactuca sativa). These results show that Slide carries the functions required for its own mobility, and represents the first autonomousAc-like element characterized inSolanaceae species.  相似文献   

17.
Summary The deposition of zein protein in maize endosperm is under the control of several regulatory loci. The isolation of DNA sequences corresponding to Opaque-2 (O2), one of such loci, is described in this paper. The mutable allele, o2-m5 was first induced moving the Ac transposable element present at the wx-m7 allele to the O2 locus. Genetic data suggest that a functional Ac element is responsible for the observed somatic mutability of o2-m5. The isolation of genomic clones containing flanking sequences corresponding to the O2 gene was possible by screening an o2-m5 genomic libary with a probe corresponding to internal Ac sequences usually absent in the defective element Ds. Out of 27 clones isolated with homology to the central part of Ac element, only clones 6IP and 21IP generated a 2.5 kb internal fragment size of an active Ac element when digested with PvuII restriction enzyme. A sequence representing a XhoI fragment of 0.9 kb lying, in the 6IP clone, adjacent to the Ac elements, was subcloned and utilized to prove that it corresponded to a part of the O2 gene. To obtain this information we made use of: (1) DNAs from several reversions originating from the unstable (o2mk-(r) allele, which, when digested with SstI, showed a correct 3.4 kb fragment typical of non-inserted alleles of the O2 locus; and (2) recessive alleles of the O2 locus which were devoid of a 2.0 kb mRNA, present on the contrary in the wild type and in other zein regulating mutants different from O2.This paper is dedicated to the memory of R. Marotta, who actively participated in the realization of this work  相似文献   

18.
Many of the systems currently employed for heterologous transposon tagging in plants rely on an excision assay to monitor transposon activity. We have used the streptomycin phosphotransferase (SPT) reporter system to assayAc activity inPetunia hybrida. In other species, such as tobacco orArabidopsis, excision ofAc from the SPT gene in sporogenous tissue gives rise to streptomycin-resistant seedlings in the following generation. The frequency of fully streptomycin-resistant seedlings in petunia was low (0.4%) but molecular analysis of these indicated that the actual excision frequency may be as low as 0.05%. This indicates that the SPT assay is not a reliable selection criterion for germinal excision in petunia. Extensive molecular screening for reinsertion ofAc was consistent with a low primary transposition frequency (0%–0.6%). In contrast to these findings, the progeny of confirmed germinal transpositions for three independent transformants showed frequent transposition to new sites (9.5%–17.0%). This suggests a high frequency of secondary transposition compared with primary transposition from the T-DNA. Segregation analysis indicates that the high transposition activity is closely associated with transposed copies ofAc. No evidence was found for an altered methylation state forAc following transposition. The implications of these results for heterologous transposon tagging in petunia are discussed in the context of the reliability of excision reporter systems in general.  相似文献   

19.
A two-element transposon system based on the maize elements Ac and Ds is currently being used for insertional mutagenesis in Arabidopsis. With the aim of making this system as efficient as possible we have continued to analyse several parameters which affect Ds activity in Arabidopsis. The influence of genomic position on Ds excision has been analysed in five lines carrying Ds integrated in different genomic locations. Differences in both somatic and germinal excision were observed between the different lines. The relationship between somatic and germinal excision, the timing of excision events and environmental influences on transposition frequency have been investigated. The effect of varying dosage of the different elements was also analysed. A strong positive dosage effect was observed for the transposase source, but not for the Ds element. Analysis of germinal excision events showed that the majority of them occurred very late in the development of the plant, resulting in the majority of Ds transpositions being independent events.  相似文献   

20.
There is an inverse relationship between the level of cytosine methylation in genomic DNA and the activity of plant transposable elements. Increased transpositional activity is seen during early plant development when genomic methylation patterns are first erased and then reset. Prolonging the period of hypomethylation might therefore result in an increased transposition frequency, which would be useful for rapid genome saturation in transposon-tagged plant lines. We tested this hypothesis using transgenic rice plants containing Activator (Ac) from maize. R1 seeds from an Ac-tagged transgenic rice line were either directly germinated and grown to maturity, or induced to dedifferentiate in vitro, resulting in cell lines that were subsequently regenerated into multiple mature plants. Both populations were then analyzed for the presence, active reinsertion and amplification of Ac. Plants from each population showed excision-reinsertion events to both linked and unlinked sites. However, the frequency of transposition in plants regenerated from cell lines was more than nine-fold greater than that observed in plants germinated directly from seeds. Other aspects of transposon behavior were also markedly affected. For example, we observed a significantly larger proportion of transposition events to unlinked sites in cell line-derived plants. The tendency for Ac to insert into transcribed DNA was not affected by dedifferentiation. The differences in Ac activity coincided with a pronounced reduction in the level of genomic cytosine methylation in dedifferentiated cell cultures. We used the differential transposon behavior induced by dedifferentiation in the cell-line derived population for direct applications in functional genomics and validated the approach by recovering Ac insertions in a number of genes. Our results demonstrate that obtaining multiple Ac insertions is useful for functional annotation of the rice genome.These authors contributed equally to the work  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号