首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The induction of sister-chromatid exchanges (SCEs) was studied in phytohemagglutinin (PHA)-stimulated human lymphocytes exposed for 1 h to mitomycin C (MMC, 3 X 10(-6) M), ethyl methanesulphonate (EMS, 2 X 10(-2) M), or 4-nitroquinoline-1-oxide (4NQO, 3 X 10(-5) M) at various cell-cycle stages of 72-h cultures. The doses of the chemical were chosen to give about 20 SCEs per cell when treated at Go. The SCE frequency increased almost linearly with MMC or EMS treatments at later times after PHA stimulation, peaking with those at 36 h (at around the first G1/S boundary in the 2 consecutive cell cycles, which was revealed by concomitant experiments), and then decreased with subsequent treatment times. Cell-cycle kinetics and the cell stages at which the cells were treated were measured by autoradiography and sister-chromatid differential staining. The data show that MMC and EMS produce larger numbers of SCEs when treated at stages closer to the beginning of S, and that the most efficient time of treatment is the G1/S boundary in the first cell cycle of the two consecutive cycles before sampling. Pulse treatment with EMS caused about 3 times larger inductions of SCEs when done at late G1/early S(G1/S boundary) in the first cell cycle compared to that at G0/early G1, whereas identical exposure to MMC at the first G1/S boundary produced only 1.5 times larger numbers of SCEs than that at G0/early G1. EMS and MMC both, however, induced 30-40% larger numbers of SCEs when treated at the G1/S boundary in the first cell cycle than when treated at the second cell cycle before sampling. On the contrary, treatment with 4NQO led to the induction of about the same numbers of SCEs even when treated at different cell-cycle stages before the second G1/S boundary. The SCE frequency in 4NQO-treated cells then decreased with subsequent treatment times.  相似文献   

2.
Experiments have been carried out using human whole-blood cultures to determine the effects of sampling times and of the duration of 5-bromodeoxyuridine (BrdUrd) treatment before fixation on sister-chromatid exchange (SCE) frequencies following exposure to mitomycin C (MMC). Cells were pulse treated for 1 h with 3 X 10(-6) M MMC at G1, and then sampled at 4-h intervals up to 88 h after stimulation of cultures with phytohemagglutinin (PHA). Results showed that this MMC treatment induced a 5-6 h proliferation delay per cell cycle, and that SCE frequencies first increased with time of fixation, peaking at 68 h, and then decreased. When cells were similarly treated with MMC, but subsequently exposed to BrdUrd for various times before fixation of cultures at 72 h, the SCE frequencies markedly increased with increasing durations of BrdUrd incubation times. These data indicate that, in mutagen-treated cultures, lymphocytes having relatively longer cell-cycle times show a higher mean frequency of SCEs. In a subsequent experiment, cells were treated for 1 h with increasing doses of MMC or 4-nitroquinoline 1-oxide (4NQO) at 0, 24, or 48 h, and then fixed at 72 h after PHA stimulation. Results showed that the optimal treatment times at which the agents could most efficiently produce SCEs were different for MMC and 4NQO, and that the dose-response curves tended to 'bend down' at very high doses; that is, treatments with very high doses induced smaller than expected numbers of SCEs. However, cells similarly treated with very high doses showed a higher, expected frequency of SCEs when sampled at 84 h, but again had a lower than expected SCE frequency when fixed at 96 h. The results indicate that there is an optimal time for sampling at which one can observe the maximum increase in SCE frequencies following mutagen exposure, and strongly suggest that the higher the dose, the later the optimal sampling time. Because of the apparent deformity of dose-response curves obtained after various treatments and sampling times, it seems necessary that extra fixation-time points be included in test protocols so as to avoid false negatives or confirm possible positives.  相似文献   

3.
In experiments to assess the effects of several biological, chemical, and physical variables on sister-chromatid exchange (SCE) induction in cultured lymphocytes exposed to mitomycin C (MMC) before PHA stimulation we observed: (1) high SCE frequencies in female cells, and normal SCE frequencies in Y-bearing metaphases in mixed cultures containing equal numbers of MMC-treated female lymphocytes and untreated male lymphocytes; (2) small, but statistically significant, decreases in SCEs with increasing pH after G0 exposure in the pH range 6.6–7.6; (3) pronounced reductions in MMC-induced SCEs in lymphocytes exposed at 4°C vs. 37°C. In other studies, SCE induction was evaluated in cultures exposed during G0 to MMC concentrations ranging from 0.25 to 2.5 μg/ml for varying time intervals ranging from 5 min to 24 h. For all concentrations tested SCE induction varied as a linear function of G0 exposure time. To compare SCE induction between cultures, we calculated the mean frequencies of SCEs induced per metaphase/unit dose MMC/unit G0 exposure time (SCE/μg/h). A mean frequency of 20.7 ± 4.8 SCE/μg/h was observed for 41 lymphocyte cultures suggesting that a single term adequately describes the rate of SCE induction following G0 exposure to a 10-fold range in concentration of MMC for time intervals of 30 min to 24 h.  相似文献   

4.
B Kaina  O Aurich 《Mutation research》1985,149(3):451-461
Chinese hamster V79 cells were pulse-treated (for 60 min) with various mutagens three, two or one cell cycles before fixation (treatment variants A, B and C, respectively) and the frequencies of induced SCEs were analysed and compared. The degree of increase in frequency of SCEs with dose in the treatment variants depended on the mutagen used. For the methylating agents MNU, MNNG and DMPNU, high yields of SCEs were obtained in the treatment variants A and B, and there was no difference in the efficiency with which these agents induced SCEs in these treatment variants. In the treatment variant C, however, no SCEs were induced with mutagen doses yielding a linear increase in SCE frequency in treatment variants A and B. A slight increase in SCE frequency in treatment variant C was observed only when relatively high doses of MNU or MNNG were applied. Like the above agents, EMS, ENU and MMS induced more SCEs in treatment variants A and B than in C, but for these agents treatment variant B was most effective and SCEs were induced over the entire dose range, also in treatment variant C. As opposed to the methylating and ethylating agents, MMC induced SCEs with high efficiency when treatment occurred one or two generations prior to fixation. There was no difference in SCE frequency between these treatment variants. MMC was completely ineffective for the induction of SCEs when treatment occurred three generations before fixation. The unexpectedly low SCE frequencies induced by the methylating and ethylating agents when treatment occurred one generation before fixation were not due to the exposure of cells to BrdU prior to mutagen treatment. From the results obtained, it is concluded that DNA methylation and ethylation lesions give rise to SCEs only with very low probability during the replication cycle after the lesion's induction, and that subsequent lesions produced during or after replication of the methylated or ethylated template (secondary lesions) are of prime importance for SCE formation after alkylation. For MMC, however, primary lesions seem to be most important for SCE induction.  相似文献   

5.
An established cell line of Chinese hamster ovary (CHO-9) cells and its UV-sensitive mutant 43-3B have been studied for the induction of cell killing, chromosomal aberrations and sister-chromatid exchanges (SCEs) after exposure to different types of DNA-damaging agents such as 4-nitroquinoline-1-oxide (4NQO), mitomycin C (MMC), diepoxybutane (DEB), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS) and ethyl nitrosourea (ENU). In comparison with the wild-type CHO cells, 43-3B cells showed very high sensitivity to the UV-mimetic agent 4NQO and the DNA cross-linking agents MMC and DEB. The 43-3B cells responded with higher sensitivity to the monofunctional alkylating agents (MMS, EMS and ENU). The increased cytotoxic effects of all these chemicals correlated well with the elevated increase in the frequency of chromosomal aberrations. In 43-3B cells exposed to 4NQO, MMC or DEB the increase in the frequency of chromosomal aberrations was much higher than the increase in the frequency of SCEs (4-10-fold) when compared to the wild-type CHO cells. This suggests that SCEs are results of fundamentally different cellular events. The responses of 43-3B cells to UV, 4NQO, MMC and DEB resemble those of 2 human syndromes, i.e., xeroderma pigmentosum and Fanconi's anemia. These data suggest that 43-3B cells are defective in excision repair as well as the other pathways involved in the repair of cross-links (MMC, DEB) and bulky DNA adducts (4NQO).  相似文献   

6.
3-Aminoharman (3AH, 3-amino-1-methyl-9H-pyrido[3,4-b]indole), which has been reported as a novel substance with an antagonistic effect on induction of sister-chromatid exchange (SCE) by polycyclic mutagens in the presence of the metabolic activation system, was examined with a cultured human lymphoblastoid cell line, NL3, for its effect on SCE induction by direct-acting mutagens such as mitomycin C (MMC), nitrogen mustard N-oxide (NMO), methyl methanesulfonate (MMS), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 4-nitroquinoline 1-oxide (4NQO) and 3-hydroxyamino-1-methyl-5H-pyrido[4,3-b]indole (OH-Trp-P-2), and also by ultraviolet light (UV) irradiation. The results obtained on simultaneous treatment with 3AH and mutagens were as follows: (1) 3AH suppressed more than 50% of SCEs induced by MMC, NMO and OH-Trp-P-2; (2) 4NQO- and MNNG-induced SCEs were also suppressed by 3AH but to a lesser degree; (3) MMS-induced SCEs were not, however, altered by 3AH; and (4) the suppression of SCE by 3AH was dose-dependent. Treatment of cells with 3AH for 2 h immediately before MMC exposure suppressed SCE induction to a significant degree similar to the simultaneous treatment, but post-treatment with 3AH was much less effective. 3AH inhibited SCE induction by NMO when 3AH treatment was carried out either before or after NMO treatment, to an extent similar to the simultaneous treatment. Treatments with 3AH either before or after UV exposure did not change the UV-induced SCEs. Results with these direct-acting mutagens ruled out the relevance of metabolic activation as a necessary step for the antagonizing effect of 3AH.  相似文献   

7.
Sister-chromatid exchanges (SCEs) induced by mitomycin C (MMC), 4-nitroquinoline-1-oxide (4NQO) or UV-light in cultured Chinese hamster ovary cells (CHO K-1 cells) were enhanced by cinoxate (2-ethoxyethyl p-methoxycinnamate) or methyl sinapate (methyl 3,5-dimethoxy 4-hydroxycinnamate). Both substances are cinnamate derivatives and cinoxate is commonly used as a cosmetic UV absorber. Methyl sinapate also increased the frequency of cells with chromosome aberrations in the CHO K-1 cells treated with MMC, 4NQO or UV. These increasing effects of methyl sinapate were critical in the G1 phase of the cell cycle and the decline of the frequencies of UV-induced SCEs and chromosome aberrations during liquid holding was not seen in the presence of methyl sinapate. Both compounds were, however, ineffective in cells treated with X-rays. In cells from a normal human embryo and from a xeroderma pigmentosum (XP) patient, MMC-induced SCEs were also increased by the post-treatment with methyl sinapate. The SCE frequencies in UV-irradiated normal human cells were elevated by methyl sinapate, but no SCE-enhancing effects were observed in UV-irradiated XP cells. Our results suggest that the test substances inhibit DNA excision repair and that the increase in the amount of unrepaired DNA damage might cause the enhancement of induced SCEs and chromosome aberrations.  相似文献   

8.
P K Ghosh  R Ghosh 《Mutation research》1988,208(3-4):143-147
The frequencies of sister-chromatid exchanges (SCE) were studied in patients with cancer of the cervix uteri and normal controls at 37 degrees C and 40 degrees C. At 37 degrees C the mean frequency of SCE was found to be 8.26 +/- 1.91 in untreated patients with cervical cancer and 7.91 +/- 1.68 in cancer patients treated with radiotherapy; these values were significantly higher than the control value of 5.34 +/- 1.28 exchanges. Increase of the growth temperature to 40 degrees C elevated the SCE frequency to 11.95 +/- 2.12 in patients without radiotherapy treatment, 13.37 +/- 2.17 in patients with radiotherapy treatment and 7.82 +/- 1.84 in normal controls. These data indicate that there is a differential induction of SCEs by hyperthermia in the lymphocytes of control women and patients with cancer of the cervix uteri.  相似文献   

9.
K Kishi 《Mutation research》1987,176(1):105-116
It has been shown that certain types of DNA lesions induced by an S-dependent clastogen are converted to chromosome-type aberrations when their repair is inhibited in the G1 phase of the cell cycle. The purpose of the present study was to investigate which kinds of repair inhibitors have the ability to induce chromosome-type aberrations in cells having DNA lesions and which kinds of DNA lesions will be converted to chromosome-type aberrations when their repair is inhibited. For this purpose, human peripheral blood lymphocytes, which were treated with a clastogen in their G0 phase, were post-treated with one of several kinds of repair inhibitors in the G1 phase, and resulting frequencies of both chromosome-type and chromatid-type aberrations as well as of sister-chromatid exchanges (SCEs) were compared with those of the control cultures: chromatid-type aberrations and SCEs were adopted as cytogenetic indicators of lesions remaining in S and G2 phases. Chemicals used for the induction of DNA lesions were 4-nitroquinoline 1-oxide (4NQO), methyl methanesulfonate (MMS) and mitomycin C (MMC); inhibitors used were excess thymidine (dThd), caffeine, hydroxyurea (HU), 5-fluoro-2'-deoxyuridine (FdUrd), 1-beta-D-arabinofuranosylcytosine (ara C), 9-beta-D-arabinofuranosyladenine (ara A), 1-beta-D-arabinofuranosylthymine (ara T) and aphidicolin (APC). Induction of chromosome-type aberrations was observed in cells pretreated with 4NQO or MMS followed by ara C, ara A, ara T or APC, whereas other combinations of a clastogen and an inhibitor did not induce them. Among the inhibitors, ara C alone induced chromosome-type aberrations in cells without pretreatment. Chromatid-type aberrations were increased only in cells pretreated with MMC and their frequency was enhanced further by post-treatment with ara C. All of the clastogens used in the present experiments induced SCEs. Most inhibitors did not modify the SCE frequencies except for ara C which synergistically increased the frequency in MMC-treated cells. The present study offers further evidence that the lesions responsible for chromosome-type aberrations are those which are repaired quickly, and that they are converted to chromosome-type aberrations when repair by polymerase alpha is inhibited. The effects of ara C on MMC-induced lesions are considered residual effects of ara C treatment in the S or G2 phases rather than repair inhibition in the G1 phase.  相似文献   

10.
To determine the mutual relationships between cell survival and induction of sister-chromatid exchanges (SCEs) as well as chromosomal aberrations (CAs), mutagen-induced SCEs and CAs were analyzed in an ionizing radiation-sensitive mutant (M10) and an alkylating agent-sensitive mutant (MS 1) isolated from mouse lymphoma L5178Y cells. The levels of CA induction in both mutants strictly corresponded to the sensitivity to lethal effects of mutagens, except that caffeine-induced CAs in M10 are considerably lower than those in L5178Y. The results clearly indicate that except for caffeine-induced CAs in M10, mutagen-induced lethal lesions are responsible for CA induction. In contrast, SCE induction in mutants was complicated. In M10, hypersensitive to killing by gamma-rays, methyl methanesulfonate (MMS), and 4-nitroquinoline 1-oxide (4NQO), but not sensitive to UV or caffeine, the frequency of SCEs induced by gamma-rays was barely higher than that in L5178Y, and the frequencies of MMS- and UV-induced SCEs were similar to those in L5178Y, but 4NQO- and caffeine-induced SCEs were markedly lower than those in L5178Y. MS 1, which is hypersensitive to MMS and caffeine, but not sensitive to UV or 4NQO, responded to caffeine with an enhanced frequency of SCEs and had a normal frequency of MMS-induced SCEs, but a reduced frequency of UV- and 4NQO-induced SCEs. Thus, susceptibility to SCE induction by mutagens is not necessarily correlated with sensitivity of mutants to cell killing and/or CA induction by mutagens. Furthermore, the spontaneous levels of SCEs are lower in M10 and higher in MS 1 than that in L5178Y (Tsuji et al., 1987). Based on these results, we speculate that M10 may be partially defective in the processes for the formation of SCEs caused by mutagens. On the other hand, MS 1 may modify SCE formation-related lesions induced by UV and 4NQO to some repair intermediates that do not cause SCE formation. In addition, MMS-induced lethal lesions in MS 1 may not be responsible for SCE induction whereas caffeine-induced lethal lesions are closely correlated with SCE induction. Thus, the lesions or mechanisms involved in SCE production are in part different from those responsible for cell lethality or CA production.  相似文献   

11.
The induction of sister chromatid exchanges (SCEs) was evaluated in the cultured mouse m5S cells after exposure to extremely low frequency magnetic field (ELFMF; 5, 50 and 400 mT). Exposure to 5 mT and 50 mT ELFMF led to a very small increase in the frequency of SCEs, but no significant difference was observed between exposed and unexposed control cells. The cells exposed to 400 mT ELFMF exhibited a significant elevation of the SCE frequencies. There was no significant difference between data from treatments with mitomycin-C (MMC) alone and from combined treatments of MMC plus ELFMF (400 mT) at any MMC concentrations from 4 to 40 nM. These results suggest that exposure to highest-density ELFMF of 400 mT may induce DNA damage, resulting in an elevation of the SCE frequencies. We suppose that there may be a threshold for the elevation of the SCE frequencies, that is at least over the magnetic density of 50 mT.  相似文献   

12.
The induction of sister chromatid exchanges (SCEs) was evaluated in the cultured mouse m5S cells after exposure to extremely low frequency magnetic field (ELFMF; 5, 50 and 400 mT). Exposure to 5 mT and 50 mT ELFMF led to a very small increase in the frequency of SCEs, but no significant difference was observed between exposed and unexposed control cells. The cells exposed to 400 mT ELFMF exhibited a significant elevation of the SCE frequencies. There was no significant difference between data from treatments with mitomycin-C (MMC) alone and from combined treatments of MMC plus ELFMF (400 mT) at any MMC concentrations from 4 to 40 nM. These results suggest that exposure to highest-density ELFMF of 400 mT may induce DNA damage, resulting in an elevation of the SCE frequencies. We suppose that there may be a threshold for the elevation of the SCE frequencies, that is at least over the magnetic density of 50 mT.  相似文献   

13.
The mechanisms of sister chromatid exchanges (SCEs) are not known. One hypothesis is that SCE is a manifestation of Rad51-dependent homologous recombination repair. In order to test this hypothesis, we have compared the frequencies of SCEs induced by mitomycin C (MMC) and 254nm ultraviolet radiation (UVC) in wt V79B and the Rad51C-deficient CL-V4B cells. SCEs were analysed in the first (M1) and second (M2) post-treatment mitoses. In M1 MMC induced the same frequencies of SCEs in CL-V4B and V79B cells, while the UVC-induced SCE frequencies were lower in CL-V4B than V79B cells. In CL-V4B cells, MMC-induced SCEs were higher in M2 than in M1, suggesting that interstrand cross-links (ICL) are either not removed completely or are transformed into another form of DNA damage that persists until the next cell cycle. We suggest that SCEs may represent a mechanism to bypass MMC-induced ICL without their removal.  相似文献   

14.
DNA crosslinking, sister-chromatid exchange and specific-locus mutations   总被引:2,自引:0,他引:2  
Chinese hamster ovary cells were treated with the DNA-crosslinking chemicals, mitomycin C (MMC) and porfiromycin (POR), and their monofunctional derivative decarbamoyl mitomycin C (DCMMC). After exposure, the cells were studied for the induction of sister-chromatid exchanges (SCEs) and mutations at the hypoxanthine phosphoribosyltransferase and adenine phosphoribosyltransferase loci. The frequency of SCEs varied significantly in successive sampling intervals, requiring the weighting of each interval by the percentage of second-division mitosis in that interval to obtain the mean SCE frequency for each dose. All 3 compounds were potent inducers of SCEs but weakly mutagenic. All 3 chemicals by concentration were approximately equally effective in inducing SCEs or mutations. When the induced SCEs and mutations were compared at equal levels of survival, DCMMC was slightly more effective than MMC or POR in inducing SCEs and somewhat less mutagenic. These results indicate that the DNA interstrand crosslink is not the major lesion responsible for the induction of SCE or mutation by these compounds.  相似文献   

15.
Endoreduplication was induced in V 79 cells using Colcemid. The concentration of Colcemid necessary to induce endoreduplication is about 1000 times higher than that needed to arrest mitoses or to induce ordinary tetraploid cells. Diplochromosomes with sister chromatid differentiation were obtained by adding BrdU for the duration of one cell cycle prior to the induction of endoreduplication. The induction of endoreduplication with Colcemid had no influence on the frequency of sister chromatid exchanges (SCEs). Treating the cultures with mitomycin C (MMC) before adding BrdU increased the percentage of endoreduplieated mitoses and also led to marked SCE induction. In the diplochromosomes, the frequencies of both twin SCEs (first cycle) as well as single SCEs (second cycle) were increased. It was also found that the SCE frequencies in mitoses after endoreduplication were lower than the values found in diploid and ordinary tetraploid metaphases of the same preparation. The possible conclusions concerning the lifetime of SCE-inducing lesions and the influence of repair processes are discussed.  相似文献   

16.
H Tohda  A Oikawa 《Mutation research》1986,163(2):167-174
A high frequency of sister-chromatid exchange (SCE) induced in cells of a human lymphoblastoid cell line, NL3, by 2-h treatment with 1 microM mitomycin C (MMC) was maintained after holding the treated cells in a nonproliferating state for 48 h before cells were transferred into the BrdUrd-containing medium for SCE assay. The same was observed in cells treated with 4-nitroquinoline 1-oxide (4NQO) or ethyl methanesulfonate (EMS). In contrast, when MMC-treated cells were transferred into a growth medium and allowed to proliferate for various periods of time before SCE assay, MMC-induced SCE frequency decreased with time and reached near control level after 48 h. The reduction in SCE was also observed in 4NQO-treated cells, though to a lesser extent, but not in EMS-treated cells. When hydroxyurea or 1-beta-D-arabinofuranosylcytosine was given as a post-MMC treatment during this recovery process, such a reduction of SCE frequency was suppressed and the extent of the suppression appears to be roughly parallel to their ability to inhibit DNA replication. Cycloheximide and 5-azacytidine also exerted a similar inhibitory effect on the reduction of SCE. Benzamide and caffeine had no appreciable effect. Our results indicate that the SCE-forming lesions induced by MMC can be eliminated only in proliferating cells, probably during DNA replication.  相似文献   

17.
狄少杰  刘凌云 《遗传学报》1992,19(3):212-220
应用IdU-毛玉米油体内SCE技术,以不同剂量的典型诱变剂MMC和CP对70尾黄鳝的脾、肾、血淋巴细胞进行了体内诱发SCE敏感性测试。结果:三种细胞的染色体SCE自发频率均较低,不同剂量MMC和CP诱发黄鳝三种细胞SCE频率均较对照组显著增加。诱变剂剂量与诱发SCE频率呈线性关系。三种细胞染色体SCE对MMC和CP的敏感性次序为肾>脾>血淋巴细胞。与几种鱼和其它动物比较,黄鳝三种细胞的SCE自发频率均较低,对MMC和CP诱发SCE的敏感性均较高,因此认为黄鳝可作为较理想的体内SCE检测系统。  相似文献   

18.
A comparative study on the biological responses to different mutagens (UV, 4NQO, MMC, MMS and EMS) was made on CHO wild-type cells (CHO-9), its UV-hypersensitive mutant 43-3B, and 2 types of its transferants, i.e., one containing a few copies of the human repair gene ERCC-1 and the other having more than 100 copies of ERCC-1 (due to gene amplification). Cell survival, chromosomal aberrations and SCEs were used as biological end-points. The spontaneous frequency of chromosomal aberrations in the transferants was less than found in 43-3B mutant cells, but still 2-3 times higher than in wild-type CHO cells. The spontaneous frequency of SCEs in the transferants was less than in 43-3B and similar to that of wild-type cells. The induction of SCEs by all tested agents in transferants was similar to that found in CHO-9 cells, while the mutant is known to respond with higher frequencies. ERCC-1 also bestowed resistance to MMS and EMS on the mutant to induction of chromosomal aberrations and cell killing to levels comparable with those of the wild-type strain. On the other hand ERCC-1 could not completely regain the repair proficiency against cell killing and induction of chromosomal aberrations by UV or MMC to the wild-type level. These results suggest that the ERCC-1 corrects the repair defect in CHO mutant cells, but it is unable to rectify fully the defect; probable reasons for this are discussed. However, amplified transferants (having more than 100 copies of the ERCC-1 gene) restored the impaired repair function in 43-3B to UV-, MMC- or 4NQO-induced DNA damage better than non-amplified transferants with a few copies of the ERCC-1. This difference may be due to the high amount of gene product involved in the excision repair process in the amplified cells.  相似文献   

19.
G. Speit 《Human genetics》1980,55(3):333-336
Summary The influence of temperature on sister chromatid exchanges was investigated, and the results are discussed in connection with factors possibly involved in temperature-induced SCE-formation.Whereas the SCE frequency increased with increasing growth temperature in a cell line of Xenopus laevis (EAX), which permits the examination of great temperature differences, a Chinese hamster cell line (V-79) revealed a U-shaped temperature-response curve. In addition, it was found that cold treatment at 4°C caused an induction of SCEs in the V-79 cell line.Different BrdU concentrations had no effect on the temperature-induced SCE frequencies and mitomycin C led to an induction of SCEs parallel to the base-line values at different temperatures.  相似文献   

20.
The chromosomal sensitivity to mitomycin-C (MMC) and cell-cycle kinetics in cells from patients with Klinefelter syndrome, a sex chromosomal disorder giving a high risk of malignant tumor, were studied by techniques of sister-chromatid exchanges (SCEs). The frequencies of MMC-induced SCEs increased in proportion to the increase in MMC concentration in both patient and normal control cells. At low levels of MMC there were no significant differences in SCE frequencies between the patient and normal control cells, but at MMC concentrations of 3 X 10(-8) M (p less than 0.05) and 1 X 10(-7) M (p less than 0.01), significant increases in the frequency of MMC-induced SCEs were observed in cells from patients compared to cells from normal controls. Although the analysis of cell-cycle kinetics both after various culture times and after treatment with MMC revealed that there were no significant differences between the patient and normal control cells, patients with Klinefelter syndrome showed a tendency to cell-cycle delays after treatment with MMC in comparison with normal controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号