首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plasmacytoid dendritic cells (PDC) represent a highly specialized immune cell subset that produces large quantities of the anti-viral cytokines type I interferons (IFN-alpha and IFN-beta) upon viral infection. PDC employ a member of the family of toll-like receptors, TLR9, to detect CpG motifs (unmethylated CG dinucleotides in certain base context) present in viral DNA. A certain group of CpG motif-containing oligodeoxynucleotides (CpG ODN), CpG-A, was the first synthetic stimulus available that induced large amounts of interferon-alpha (IFN-alpha) in PDC. However, the mechanism responsible for this activity remained elusive. CpG-A is characterized by a central palindrome and poly(G) at the 5' and 3' end. Here we demonstrate that CpG-A self-assembles to higher order tertiary structures via G-tetrad formation of their poly(G) motifs. Spontaneous G-tetrad formation of CpG-A required the palindrome sequence allowing structure formation in a physiological environment. Once formed, G-tetrad-linked structures were stable even under denaturing conditions. Atomic force microscopy revealed that the tertiary structures formed by CpG-A represent nucleic acid-based nanoparticles in the size range of viruses. Similarly sized preformed polystyrene nanoparticles loaded with a CpG ODN that is otherwise weak at inducing IFN-alpha (CpG-B) gained the potency of CpG-A to induce IFN-alpha. Higher ODN uptake in PDC was not responsible for the higher IFN-alpha-inducing activity of CpG-A or of CpG-B-coated nanoparticles as compared with CpG-B. Based on these results we propose a model in which the spatial configuration of CpG motifs as particle is responsible for the virus-like potency of CpG-A to induce IFN-alpha in PDC.  相似文献   

2.
Human B cells and plasmacytoid dendritic cells recognize CpG motifs within microbial DNA via Toll-like receptor 9. Two functionally distinct types of CpG motif containing oligonucleotides (CpG ODN) have been described, CpG-A and CpG-B. In contrast to CpG-B, CpG-A induces high amounts of type I IFN (IFN-alpha and IFN-beta) in plasmacytoid dendritic cells. In the present study, we examined the effects of CpG-A on human primary monocytes. In PBMC stimulated with CpG-A and GM-CSF, monocytes showed excellent survival, increased in size and granularity, and within 3 days developed a dendritic cell-like phenotype that was characterized by down-regulation of CD14, partial up-regulation of CCR7, and an increased surface expression of costimulatory and Ag-presenting molecules. This effect could be inhibited by a combination of blocking Abs to type I IFN, and no such CpG-A-induced changes were observed in purified monocytes. Although IL-12 production by this dendritic cell-like phenotype required additional stimulation with CD40 ligand, this cell type spontaneously up-regulated IL-15 expression. Consistent with the known effect of IL-15 on effector and memory CD8 T cells, the frequency of CCR7(-)/CD45RA(-) CD8 T cells was selectively increased in allogeneic T cell assays. Furthermore, this dendritic cell type was more potent to support both the generation and the IFN-gamma production of autologous influenza matrix peptide-specific memory CD8 T cells as compared with dendritic cells generated in the presence of GM-CSF and IL-4. In conclusion, monocytes exposed to the cytokine milieu provided by CpG-A rapidly develop a dendritic cell-like phenotype that is well equipped to support CD8 T cell responses.  相似文献   

3.
Dendritic cell (DC) activation by nucleic acid-containing IgG complexes is implicated in systemic lupus erythematosus (SLE) pathogenesis. However, it has been difficult to definitively examine the receptors and signaling pathways by which this activation is mediated. Because mouse FcgammaRs recognize human IgG, we hypothesized that IgG from lupus patients might stimulate mouse DCs, thereby facilitating this analysis. In this study, we show that sera and purified IgG from lupus patients activate mouse DCs to produce IFN-alpha, IFN-beta, and IL-6 and up-regulate costimulatory molecules in a FcgammaR-dependent manner. This activation is only seen in sera with reactivity against ribonucleoproteins and is completely dependent on TLR7 and the presence of RNA. As anticipated, IFN regulatory factor (IRF)7 is required for IFN-alpha and IFN-beta production. Unexpectedly, however, IRF5 plays a critical role in IFN-alpha and IFN-beta production induced not only by RNA-containing immune complexes but also by conventional TLR7 and TLR9 ligands. Moreover, DC production of IL-6 induced by these stimuli is dependent on a functional type I IFNR, indicating the need for a type I IFN-dependent feedback loop in the production of inflammatory cytokines. This system may also prove useful for the study of receptors and signaling pathways used by immune complexes in other human diseases.  相似文献   

4.
CpG-containing oligodeoxynucleotides (CpG ODN) have broad-ranging immunostimulatory effects, including the generation of antitumor immune responses. Analysis of different CpG ODN have identified two classes: CpG-A ODN, which stimulate high levels of IFN-alpha production from plasmacytoid dendritic cells and weakly activate B cells, and CpG-B ODN, which strongly activate B cells but stimulate low production of IFN-alpha from plasmacytoid dendritic cells. Previously, we observed that CpG-B ODN (2006) induces TRAIL/Apo-2 ligand (Apo-2L)-mediated killing of tumor cells by CD14(+) PBMC. In this study, we extend our investigation of CpG ODN-induced TRAIL/Apo-2L expression and activity in PBMC to include CpG-A ODN. Of the two classes, IFN-alpha production and TRAIL/Apo-2L-mediated killing of tumor cells was greatest with CpG-A ODN. Surprisingly, CD3(+), CD14(+), CD19(+), and CD56(+) PBMC expressed high levels of TRAIL/Apo-2L following CpG-A ODN stimulation. When isolated, the CD19(+) PBMC (B cells) were able to kill tumor cells in a TRAIL/Apo-2L-dependent manner. As with CD14(+) PBMC, CD19(+) sorted B cells were capable of up-regulating TRAIL/Apo-2L expression when stimulated with IFN-alpha alone. Interestingly, agonist anti-CD40 mAb further enhanced the IFN-alpha-induced TRAIL/Apo-2L expression on CD19(+) B cells. These results are the first to demonstrate human B cell-mediated killing of tumor cells in a TRAIL/Apo-2L-dependent fashion.  相似文献   

5.
Due to its strong immune stimulatory effects through TLR9, CpG-containing oligodeoxynucleotides (CpG ODN) have been tested in multiple clinical trials as vaccine adjuvant for infectious diseases and cancer. However, immune suppression induced by systemic administration of CpGs has been reported recently. In this study, we evaluated the impact of CpGs in an acute rickettsiosis model. We found that systemic treatment with type B CpG (CpG-B), but not type A CpG (CpG-A), at 2 days after sublethal R. australis infection induced mouse death. Although wild-type (WT) B6 and IDO(-/-) mice showed similar survival rates with three different doses of R. australis infection, treatment with CpG-B after sublethal infection consistently induced higher mortality with greater tissue bacterial loads in WT but not IDO(-/-) mice. Also, CpG-B treatment promoted the development of higher serum concentrations of proinflammatory cytokines/chemokines through IDO. Furthermore, while T cell-mediated immune responses enhanced by CpG-B were independent of IDO, treatment with CpG-B promoted T cell activation, PD-1 expression and cell apoptosis partially through IDO. A depletion study using anti-mPDCA-1 mAb indicated that plasmacytoid dendritic cells (pDC) were not required for CpG-B-induced death of R. australis-infected mice. Additionally, the results in iNOS(-/-) mice suggested that nitric oxide (NO) was partially involved in CpG-B-induced death of R. australis-infected mice. Surprisingly, pre-treatment with CpG-B before administration of a lethal dose of R. australis provided effective immunity in WT, IDO(-/-) and iNOS(-/-) mice. Taken together, our study provides evidence that CpGs exert complex immunological effects by both IDO-dependent and -independent mechanisms, and that systemic treatment with CpGs before or after infection has a significant and distinct impact on disease outcomes.  相似文献   

6.
Virus replication induces the expression of antiviral type I (IFN-alphabeta) and type III (IFN-lambda1-3 or IL-28A/B and IL-29) IFN genes via TLR-dependent and -independent pathways. Although type III IFNs differ genetically from type I IFNs, their similar biological antiviral functions suggest that their expression is regulated in a similar fashion. Structural and functional characterization of the IFN-lambda1 and IFN-lambda3 gene promoters revealed them to be similar to IFN-beta and IFN-alpha genes, respectively. Both of these promoters had functional IFN-stimulated response element and NF-kappaB binding sites. The binding of IFN regulatory factors (IRF) to type III IFN promoter IFN-stimulated response element sites was the most important event regulating the expression of these genes. Ectopic expression of the components of TLR7 (MyD88 plus IRF1/IRF7), TLR3 (Toll/IL-1R domain-containing adapter-inducing factor), or retinoic acid-inducible gene I (RIG-I) signal transduction pathways induced the activation of IFN-lambda1 promoter, whereas the IFN-lambda3 promoter was efficiently activated only by overexpression of MyD88 and IRF7. The ectopic expression of Pin1, a recently identified suppressor for IRF3-dependent antiviral response, decreased the IFN promoter activation induced by any of these three signal transduction pathways, including the MyD88-dependent one. To conclude, the data suggest that the IFN-lambda1 gene is regulated by virus-activated IRF3 and IRF7, thus resembling that of the IFN-beta gene, whereas IFN-lambda2/3 gene expression is mainly controlled by IRF7, thus resembling those of IFN-alpha genes.  相似文献   

7.
8.
CpG DNA induces plasmacytoid dendritic cells (pDC) to produce type I IFN and chemokines. However, it has not been fully elucidated how the TLR9 signaling pathway is linked to these gene expressions. We examined the mechanisms involving the TLR9 and type I IFN signaling pathways, in relation to CpG DNA-induced IFN-alpha, IFN regulatory factor (IRF)-7, and chemokines CXCL10 and CCL3 in human pDC. In pDC, NF-kappaB subunits p65 and p50 were constitutively activated. pDC also constitutively expressed IRF-7 and CCL3, and the gene expressions seemed to be regulated by NF-kappaB. CpG DNA enhanced the NF-kappaB p65/p50 activity, which collaborated with p38 MAPK to up-regulate the expressions of IRF-7, CXCL10, and CCL3 in a manner independent of type I IFN signaling. We then examined the pathway through which IFN-alpha is expressed. Type I IFN induced the expression of IRF-7, but not of IFN-alpha, in a NF-kappaB-independent way. CpG DNA enabled the type I IFN-treated pDC to express IFN-alpha in the presence of NF-kappaB/p38 MAPK inhibitor, and chloroquine abrogated this effect. With CpG DNA, IRF-7, both constitutively and newly expressed, moved to the nuclei independently of NF-kappaB/p38 MAPK. These findings suggest that, in CpG DNA-stimulated human pDC, the induction of IRF-7, CXCL10, and CCL3 is mediated by the NF-kappaB/p38 MAPK pathway, and that IRF-7 is activated upstream of the activation of NF-kappaB/p38 MAPK in chloroquine-sensitive regulatory machinery, thereby leading to the expression of IFN-alpha.  相似文献   

9.
10.
Unmethylated CpG motifs in bacterial DNA or synthetic oligodeoxynucleotides (ODN) are known for inducing a Th1 cytokine/chemokine environment, but the mechanisms regulating this have been unclear. Recent studies have defined two classes of CpG ODN, CpG-A ODN that induce plasmacytoid dendritic cells (pDC) to secrete very high levels of IFN-alpha, and CpG-B ODN that induce only low levels of IFN-alpha production, but strongly activate B cells. We now demonstrate that a CpG-A ODN directly activates pDC secretion of IFN-alpha and other soluble factors that secondarily induce purified monocytes to secrete high levels of the Th1-promoting chemokine IFN-gamma-inducible protein-10 (IP-10). Cell contact between the monocytes and pDC is not required for this interaction. IFN-alpha is necessary, but only partially sufficient, for this indirect CpG-induced monocyte IP-10 production. Although CpG ODN induce human PBMC to make only very slight amounts of IFN-gamma, we find that these low concentrations synergize with IFN-alpha for inducing monocyte production of IP-10. These studies provide a better understanding of the mechanisms through which CpG ODN create a Th1-like environment.  相似文献   

11.
Plasmacytoid dendritic cells (pDC) are the major source of type I interferons (IFN‐I) during viral infections, in response to triggering of endosomal Toll‐like receptors (TLRs) 7 or 9 by viral single‐stranded RNA or unmethylated CpG DNA, respectively. Synthetic ligands have been used to disentangle the underlying signaling pathways. The adaptor protein AP3 is necessary to transport molecular complexes of TLRs, synthetic CpG DNA, and MyD88 into endosomal compartments allowing interferon regulatory factor 7 (IRF7) recruitment whose phosphorylation then initiates IFN‐I production. High basal expression of IRF7 by pDC and its further enhancement by positive IFN‐I feedback signaling appear to be necessary for robust cytokine production. In contrast, we show here that in vivo during mouse cytomegalovirus (MCMV) infection pDC produce high amounts of IFN‐I downstream of the TLR9‐to‐MyD88‐to‐IRF7 signaling pathway without requiring IFN‐I positive feedback, high IRF7 expression, or AP3‐driven endosomal routing of TLRs. Hence, the current model of the molecular requirements for professional IFN‐I production by pDC, established by using synthetic TLR ligands, does not strictly apply to a physiological viral infection.  相似文献   

12.
CpG oligodeoxynucleotides directly induce CXCR3 chemokines in human B cells   总被引:3,自引:0,他引:3  
CpG oligodeoxynucleotides (CpG ODN) are known to elicit Th1 immune responses via TLR9. However, the precise mechanisms through which B cells are involved in this phenomenon are not fully understood. We investigated the effect of CpG ODN on the induction of Th1-chemoattractant CXCR3 chemokines, IP-10, Mig, and I-TAC, in B cells. Cells from the RPMI 8226 human B cell line and human peripheral B cells were stimulated with three distinct classes of CpG ODN. As a result, CXCR3 chemokines were strongly up-regulated by CpG-B and CpG-C, but only weakly by CpG-A. Though CXCR3 chemokines are known to be induced by IFNs, blocking mAbs against IFN receptors did not inhibit their induction by CpG-B. Induction of CXCR3 chemokines was blocked by two NF-kappaB inhibitors and a p38 inhibitor. These results strongly suggest that CXCR3 chemokines are directly induced by CpG ODN via NF-kappaB- and p38-dependent pathways in human B cells.  相似文献   

13.
14.
15.
As a key mediator of type I interferon (IFN) (IFN-alpha/beta) responses, IFN regulatory factor 7 (IRF7) is essential to host immune defenses. Activation of IRF7 generally requires virus-induced C-terminal phosphorylation, which leads to its nuclear accumulation and activation of target genes. Here we use the Epstein-Barr virus (EBV) oncoprotein LMP1, which activates IRF7, to identify factors involved in IRF7 activation. We demonstrate for the first time that RIP activates IRF7 and that RIP and IRF7 interact under physiological conditions in EBV-positive Burkitt's lymphoma cells. We provide evidence that both RIP and IRF7 are ubiquitinated in these cells and that IRF7 preferentially interacts with ubiquitinated RIP. RIP is required for full activation of IRF7 by LMP1, with LMP1 stimulating the ubiquitination of RIP and its interaction with IRF7. Moreover, LMP1 stimulates RIP-dependent K63-linked ubiquitination of IRF7, which regulates protein function rather than proteasomal degradation of proteins. We suggest that RIP may serve as a general activator of IRF7, responding to and transmitting the signals from various stimuli, and that ubiquitination may be a general mechanism for enhancing the activity of IRF7.  相似文献   

16.
17.
Plasmacytoid dendritic cells (PDC) are the natural type I IFN-producing cells that produce large amounts of IFN-alpha in response to viral stimulation. During attempts to isolate PDC from human PBMC, we observed that cross-linking a variety of cell surface receptors, including blood DC Ag (BDCA)-2, BDCA-4, CD4, or CD123 with Abs and immunobeads on PDC leads to inhibition of IFN-alpha production in response to HSV. To understand the mechanisms involved, a number of parameters were investigated. Cross-linking did not inhibit endocytosis of soluble Ag by PDC. Flow cytometry for annexin V and activated caspase-3 indicated that PDC are not undergoing apoptosis after receptor cross-linking. Cross-linking of CD123, but not the other receptors, caused the up-regulation of costimulatory molecules CD80 and CD86, as well as the down-regulation of CD62L, indicating PDC maturation. Thus, anti-CD123 Ab may be acting similar to the natural ligand, IL-3. Anti-phosphotyrosine Ab, as well as Ab to the IFN regulatory factor, IRF-7, was used in intracellular flow cytometry to elucidate the signaling pathways involved. Tyrosine phosphorylation occurred after cross-linking BDCA-2 and BDCA-4, but not CD4. Cross-linking did not affect IRF-7 levels in PDC, however, cross-linking BDCA-2, BDCA-4, and CD4, but not CD123, inhibited the ability of IRF-7 to translocate to the nucleus. Taken together, these results suggest that cross-linking BDCA-2, BDCA-4, and CD4 on PDC regulates IFN-alpha production at the level of IRF-7, while the decrease in IFN-alpha production after CD123 cross-linking is due to stimulation of the IL-3R and induction of PDC maturation.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号