首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The differentiation of renin containing cells was studied by immunocytochemistry in normal rat fetuses by the use of highly specific renin, angiotensin I and II antisera.Renin synthesizing cells were detectable as early as the 15th day of gestation outside the nephrogen territories within the walls of mesonephrotic-gonadic and renal arteries. Intrarenal differentiation began at the 17th day and progressed along the intrarenal arterial tree. AII immunostaining appeared concomitantly in the renin containing cells and developed considerably during ontogenesis, suggesting intracellular biosynthesis.It can be suggested that in the fetus newly synthesized AH may contribute to the early systemic and renal blood pressure regulation.  相似文献   

2.
Renin release elicited by i.v. injection of loop-diuretics was used to study the effects of angiotensin II (AII) on intrarenal hemodynamics. The vasoconstrictive action of intrarenally synthesized AII predominates in the efferent glomerular arteriole. Such a vasoconstrictive effect could affect blood flow in the vasa recta which stem from efferent arterioles of juxtamedullary glomeruli. Renin secretion and renal inner medullary blood flow (tissue clearance of 133Xe) were simultaneously measured before and after frusemide-induced renin release. The relationship between renin secretion and renal inner medullary blood flow was inverse. Changes in renal medullary blood flow may be physiological determinants of medullary osmolality and renal concentration ability. The intrarenal role of AII in urinary concentration recovery after frusemide was examined. Inhibition of renin release by propranolol or AII-blockade (by saralasin or Hoe 409) delayed recovery of urinary osmolality. In the conscious rat, propranolol slowed down recovery of the cortico-papillary gradient for sodium. Its vasoconstrictive action on the efferent glomerular arteriole might enable the renin-angiotensin system to participate in the control of renal excretion of salt and water.  相似文献   

3.
Ryan MJ  Liu B  Herbowy MT  Gross KW  Hajduczok G 《Life sciences》2003,72(11):1289-1301
Angiotensin II (AII) regulation of renin production by the juxtaglomerular (JG) cells of the kidney is commonly thought to occur through a direct feedback mechanism. However, recent evidence suggests that other cells in the vicinity may indirectly mediate AII's effect on renin production. Therefore we investigated whether an in vitro model of JG cells (As4.1) could have intercellular communication with endothelial or smooth muscle cells, which are in proximity to JG cells in vivo. 6-carboxyfluorescein was introduced to individual bovine aortic endothelial cells in co-culture with As4.1 cells. Coupling was observed 84% of the time at resting membrane potential and was attenuated by membrane depolarization or octanol (1 mM). Calcein green transfer between human aortic smooth muscle and As4.1 cells occurred 82% of the time and was inhibited by octanol. Expression of connexin 37, 40, 43, and 45 were detected in As4.1 cells using RT-PCR. Stimulation of As4.1 cells by AII failed to alter [Ca(2+)](i) or renin mRNA levels. These findings support the existence of gap junctions between renin producing cells and other cell types of the JG region. Moreover the lack of effect by AII suggest that feedback regulation of renin by AII may be due in part to intercellular communication with cells in proximity to JG cells.  相似文献   

4.
Initial studies were undertaken to investigate the effects of prolonged administration of angiotensin II (AII), 1 micrograms twice daily, via the lateral ventricles to mongrel dogs on arterial blood pressure and to determine if sodium intake was essential for the development of hypertension. Increasing AII levels in the cerebrospinal fluid for a prolonged period of time produced a sustained hypertensive state only in those dogs in which the daily intake of sodium was increased. The hypertension appeared to be due to an increase in total peripheral resistance. Central administration of AII increased both fluid intake and urine output. In order to assess the hemodynamic effects of increasing endogenous brain AII, renin was injected in doses of 0.025, 0.05, 0.1 and 0.3 units (from porcine kidney) into the lateral ventricles of chronically instrumented awake dogs. Hemodynamic variables were recorded prior to and one and 2 h after the central administration of renin. Renin produced a dose-dependent increase in mean arterial pressure with no significant change in heart rate or carotid, coronary and renal blood flow velocities. Chronic intraventricular administration of renin, 0.15 units twice daily to awake instrumented dogs receiving saline as the drinking fluid, markedly increased the daily intake of saline and increased diastolic and systolic blood pressure without increasing heart rate or carotid, coronary or renal blood flow velocities. There appears to be a direct significant relationship between the increase in mean blood pressure due to the intraventricular administration of renin and the volume of saline consumed.  相似文献   

5.
The changes occurring in several components of the rat renin-angiotensin system (RAS) were studied for the brief postnatal period, between the fourth and tenth week of life. The parameters were: plasma renin activity (PRA), plasma renin concentration (PRC), plasma renin substrate (PRS) and the plasma angiotensin II concentration (AII). A gradual decrease in PRA with age was noticed. Between the fourth and the eighth weeks of life, this was attributed to a corresponding decline in both PRC and PRS. However, between the eighth and tenth weeks, no changes in PRA could be detected, but PRC and PRS increased, perhaps as a consequence of the changes in renal function and the AII increase observed. In this second period, simultaneously with the RAS changes described, there was reduced sodium chloride excretion as the glomerular filtration rate (GFR) stabilized. The data presented suggest that this postnatal period is critical, in rats, for the maturation of the RAS component control mechanisms; they appear to be closely related to the development of the renal function.  相似文献   

6.
Angiotensin II (AII) has been previously shown to be localized in the gonadotropes of the rat anterior pituitary gland. Renin and angiotensin-converting enzyme, two enzymes that participate in the generation of AII, also have been shown to be present in gonadotropes. To determine whether angiotensinogen, the precursor to AII, is present in the same cells, we have stained rat anterior pituitary sections with an antirat angiotensinogen antiserum. Angiotensinogen staining was observed in cells that had a distinctive distribution at the periphery of the gland; the number of these cells and the intensity of the staining were increased in the pituitaries of rats that had been nephrectomized 24 hr before sacrifice. When double staining was performed, we never observed colocalization of angiotensinogen with any of the known pituitary hormones or with S100 protein. The results show that in the rat anterior pituitary gland, angiotensinogen is present, at least for the most part, in cells that are different from those containing renin, angiotensin-converting enzyme, and AII.  相似文献   

7.
Leydig cells were purified from rat testes by discontinuous metrizamide density gradient and were shown to contain renin (EC 3.4.99.1), angiotensin-converting enzyme (dipeptidyl carboxypeptidase, (EC 3.4.15.1), and the peptide hormone angiotensins I, II and III as determined by the combined HPLC and radioimmunoassay. In germinal cells only angiotensin II (AII) was found at a significant level. These findings provide evidence for intracellular formation of AII in testicular cells and demonstrate that an intracellular renin-angiotensin system exists in normal non-transformed cells.  相似文献   

8.
We have reported the existence of a carboxypeptidase in a human renal extract that converts Angiotensin I (AI) to Angiotensin II (AII) in two steps with des-leu-AI (dl-AI) being formed as an intermediate. Since this carboxypeptidase had properties similar to cathepsin A, the ability of cathepsin A to metabolize AI was studied. Cathepsin A was purified from hog kidney with enzyme activity being monitored using both benzyloxycarbonyl-glutamyl-tyrosine (ZGT) and AI as substrates. The procedure separated the expected large and small molecular weight forms of cathepsin A as well as two additional isoenzymes. All of the isoenzymes had carboxypeptidase activity with ZGT, AI, and dl-AI. No detectable cleavage of AII was observed. Cathepsin A,S (small) activity with ZGT or AI as substrate was inhibited to a similar extent by diisopropylfluorophosphate, mersalyl acid, and a decapeptide renin inhibitor. It is concluded that the renal angiotensin carboxypeptidase activity is catalyzed by cathepsin A. By its ability to convert AI to AII, cathepsin A may be a component of the intrarenal renin-angiotensin system.  相似文献   

9.
Summary The present study examined the presence and cellular distribution of angiotensinogen, the precursor to the angiotensin peptides, in the ovary of the normal cycling rat by immunocytochemistry. Angiotensinogen staining was present in the granulosa cells of maturing follicles and to a lesser extent in those undergoing atresia. Staining was not seen in the granulosa cells of primordial or early primary follicles. In maturing follicles intense staining for angiotensinogen was confined to the antral cell layers, cells of the cumulus oophorus and in the follicular fluid. Strong immunostaining was also seen in the germinal epithelium covering the ovary. Lighter angiotensinogen staining was observed in some parts of the cortical and medullary stroma and occasionally in corpora lutea. No variation in the intensity or pattern of angiotensinogen staining was observed throughout the estrous cycle. Comparison of the distribution of angiotensinogen with the previously described localization of renin, AII, angiotensin converting enzyme and AII receptors, suggests that there are a number of intra-ovarian sites at which AII could be produced.  相似文献   

10.
We have examined the ontogeny of somatostatin-, Glucagon-, Vasoactive Intestinal Polypeptide-, Substance P-, Neuropeptide Y, and Calcitonin gene-related peptide-Iike structures in the chicken retina by immunocytochemistry. Neuroblastic cells containing Substance P-Iike immunoreactivity (IR) first appeared at embryonic day 5 in the peripheral portion of the retina. Somatostatin-like immunoreactivity was detected as early as embryonic day 11 in the innermost level of the inner neuroblastic layer. The distribution pattern of amacrine cells containing Vasoactive Intestinal Peptide-Iike immunoreactivity was similar to that for Neuropeptide Y- and Calcitonin gene-related peptide-Iike immunoreactive cells. These three types of IR cell appeared at embryonic day 13. Glucagon-like immunoreactive cells first appeared in the retina at embryonic day 15, in the innermost part of the inner nuclear layer. From the 13th to 15th day of incubation, the number and intensity of Calcitonin gene-related peptide-, Somatostatin-, Neuropeptide Y- and Substance P-Iike immunoreactive cells increased and then decreased progressively before hatching. Glucagon immunoreactive cells increased in number on the last day before hatching. After embryonic day 15, the amacrine cells containing Vasoactive intestinal peptide-Iike immunoreactivity decreased notably in number. Our study showed that development of these immunoreactive structures was different for each neuropeptide. These differences in development may reflect the diverse neurophysiological roles of these neuroactive peptides, which could act as neurotransmitters/neuromodulators at the chick retinal level. Their presence may indicate roles as neuronal differentiation or growth factors.  相似文献   

11.
The effect of angiotensin II (AII) on systemic and regional haemodynamics was studied in 18 control and 18 cirrhotic, non-ascitic conscious rats (CCl4/phenobarbital model). Cirrhotic rats were found to retain sodium and to have normal plasma renin and plasma aldosterone concentrations when compared with control animals. Cirrhotic rats showed an enhanced cardiac output (34.4 +/- 0.5 vs. 27.5 +/- 2.0 ml/min in controls) and decreased peripheral resistances (2.96 +/- 0.25 vs. 3.95 +/- 0.31 mm Hg/min/100 g/ml in controls) under basal conditions. When AII was administered cardiac output decreased by 10.7 +/- 1.2% in cirrhotic rats, whereas it increased in control animals (11.2 +/- 2%, p less than 0.005). The AII-induced increase in arterial pressure was lower in cirrhotic than in control rats. The renal blood supply was particularly impaired by AII in cirrhotics, with a maintained flow to other organs (muscle, testes). It is concluded that the response to AII is disturbed in rats with hepatic cirrhosis even in a stage without ascites and with plasma renin and aldosterone concentrations similar to those of control animals.  相似文献   

12.
We asked whether cyclooxygenase (COX) activity controls the renin-angiotensin system in the postnatal period. During kidney development, renin peaked at postnatal days 0-1 at the mRNA, tissue protein [renal renin concentration (RRC)], and plasma renin concentration (PRC) levels and was widely expressed along preglomerular vessels. PRC and renin mRNA expression was elevated until weaning in the 4th postnatal week compared with adult rats. Renocortical COX-2 was restricted to Tamm-Horsfall protein-positive cells in the thick ascending limb of Henle's loop, and cortical COX-2 mRNA and protein expression were elevated along with PRC in the 2nd and 3rd postnatal weeks. In contrast, cortical COX-1 expression was constant, but medullary COX-1 expression increased eightfold from the 1st to 4th postnatal week. A COX-2-selective blocker, parecoxib, and a nonselective blocker, indomethacin, given in a period with COX-2 induction from postnatal day 6 to day 12, markedly decreased PRC, but not renin mRNA or RRC. Inhibition of angiotensin AT(1) receptors by candesartan from postnatal day 1 to day 5 increased COX-2 mRNA (2.5-fold), protein, and distribution, renin mRNA (7-fold) and PRC (20- to 70-fold), but had no influence on COX-1 mRNA. Thus, due to very low levels of expression, COX-2 is unlikely to be responsible for the birth peak of renin, but COX-2 activity supports renin secretion later in the suckling period. ANG II negatively feeds back on renocortical COX-2 expression in the 1st postnatal days with high activity of the renin system. We suggest that suckling in the rat is correlated to an enhanced, COX-2-mediated, secretory activity of renin-producing juxtaglomerular cells.  相似文献   

13.
14.
Angiotensin II (AII) has many of the features of the archetypical growth factors and appears to be a growth regulator in the kidney. AII binds to specific cell surface receptors present on a number of different renal cell types including mesangial, vascular smooth muscle, tubular and interstitial cells, and activates many of the intracellular signalling pathways associated with cell growth. In vitro AII can potentiate the mitogenic effect of other growth factors such as EGF. AII induces hypertrophy of vascular smooth muscle cells but the role of AII in the growth of other renal cell types has not been systematically studied.  相似文献   

15.
Plasma concentrations of renin, angiotensinogen, kininogen, total protein, and renal renin concentration were measured in rats before spontaneous birth, immediately after vaginal delivery, during the subsequent 48 h, as well as at the ages of 10, 20 and 80 days. Preterm rats had a plasma renin concentration about 15 times higher than adults, which increased further in 1 h-old vaginally-delivered rats. Thereafter renin fell to very low levels within 2 h, rose again during the first day and remained at 4 times the adults level until day 10. Renal renin content and concentration increased over the whole observation period, except for a slight fall of renin concentration in the first 3 h after birth. In pre- and full-terms rats, angiotensinogen concentration was only 20% that of adults, reaching even lower values immediately after delivery, due to excessive consumption by renin. Thereafter, angiotensinogen increased more than 10 fold within 48 h. Kininogen concentration in plasma was higher than in adults and stable up to the 10th postnatal day. We conclude that vaginal delivery is a strong stimulus for renin release, the resulting high concentration of renin being responsible both for the increased turnover of angiotensinogen and the subsequent inhibition of renin release. The cause and biological significance of the dramatic increase of angiotensinogen during the first 48 h of life remains obscure.  相似文献   

16.
The effects of a 3-day water deprivation were studied in adult female rats in order to know what are the different zones of the adrenal gland and the hormonal factors involved in the growth and the activity of the adrenal gland. Water deprivation significantly increased plasma renin activity (PRA), plasma Angiotensin II (AII), vasopressin (AVP), epinephrine, aldosterone and corticosterone concentrations but did not modify the plasma adrenocorticotropin hormone (ACTH) level. Water deprivation significantly increased the absolute weight of the adrenal capsule containing the zona glomerulosa without modification of the density of cells per area unit suggesting that the growth of the adrenal capsule was due to a cell hyperplasia of the zona glomerulosa. Water deprivation significantly increased the density of AII type 1 (AT1) receptors in the adrenal capsule but did not modify the density of AII type 2 (AT2) receptors in the adrenal capsule and core containing the zona fasciculata, the zona reticularis and the medulla. The treatment of dehydrated female rats with captopril, which inhibits the angiotensin converting enzyme (ACE) in order to block the production of AII, significantly decreased the absolute weight of the adrenal capsule, plasma aldosterone and the density of AT1 receptors in the adrenal capsule. The concentration of corticosterone in the plasma, the density of AT2 receptors and the density of cells per unit area in the zona glomerulosa of the adrenal capsule were not affected by captopril-treatment. In conclusion, these results suggest that AII seems to be the main factor involved in the stimulation of the growth and the secretion of aldosterone by the adrenal capsule containing the zona glomerulosa during water deprivation. The low level of plasma ACTH is not involved in the growth of the adrenal gland but is probably responsible for the secretion of corticosterone by the zona fasciculata.  相似文献   

17.
Evidence accumulates that intrarenal angiotensin II (AngII) plays important roles in the regulation of renal functions. To determine the mechanism and site of the intrarenal formation of AngII, we employed histochemical and cell biological methods. Immunohistochemical studies have revealed the coexistence of renin and AngII in juxtaglomerular (JG) cells, and electron microscopic studies and subcellular organelle fractionation have demonstrated the colocalization of renin and angiotensin in renin granules. The mechanism of this AngII accumulation has been investigated. Immunoreactive angiotensin I (AngI) appeared slowly in JG cells after prolonged administration of angiotensin-converting enzyme (ACE) inhibitors. Cloned and cultured renin-containing cells derived from rat kidney were also found to contain renin, ACE, and AngI and AngII. The subcellular fractionation of renin granules from rat kidney homogenate demonstrated AngI and AngII in the renin granule fractions. These findings suggest the formation of both angiotensins in JG cells. To study the release of AngII, we determined the presence of the angiotensins in renal lymph. Renin was found in renal lymph at a high concentration. Both AngI and AngII were also present in renal lymph in moderate concentrations. It is possible that AngII in the interstitial fluid may play a role in the regulation of renal functions. From these results it has been concluded that AngII is formed in JG cells in the kidney and is secreted with renin into interstitial fluid and plasma, and that AngII formed in the kidney cells may participate in various renal functions.  相似文献   

18.
Intravenous injections of renin have been reported to produce a prolonged pressor response in nephrectomized rats which is mediated by angiotensin II (AII) and is shortened by anesthesia. Here we report a similar prolonged blood pressure increase for intraventricular AII but not for intravenous injections of AII. The extended pressor effects of central AII injections following nephrectomy are not due to water intake but may be partially accounted for by a prolonged action of antidiuretic hormone. The central effects of AII may explain the prolonged pressor action of intravenous renin injections in unanesthetized, nephrectomized rats, although an interaction with the sympathetic nervous system at two different sites of action is also possible. It is suggested that the anti-hypertensive action of the kidneys is through the release of a humoral agent, possibly prostaglandins.  相似文献   

19.
Renal immune cell infiltration and cells expressing angiotensin II (AII) in tubulointerstitial areas of the kidney are features of experimental models of salt-sensitive hypertension (SSHTN). A high-salt intake tends to suppress circulating AII levels, but intrarenal concentrations of AII have not been investigated in SSHTN. This study explored the relationship between these features to gain insight into the pathophysiology of SSHTN. Plasma angiotensin II (AII) and renal interstitial AII (microdialysis technique) and the infiltration of macrophages, lymphocytes, and AII-positive cells were determined in SSHTN induced by 5 wk of a high-salt diet (HSD) after short-term infusion of AII in rats with (n = 10) and without (n = 11) treatment with mycophenolate mofetil (MMF) and in control rats fed a high- (n = 7) and normal (n = 11) salt diet. As in previous studies, MMF did not affect AII-associated hypertension but reduced the interstitial inflammation and the SSHTN in the post-AII-period. During the HSD period, the AII group untreated with MMF had mean +/- SD) low plasma (2.4 +/- 1.4 pg/ml) and high interstitial AII concentration (1,310 +/- 208 pg/ml); MMF treatment resulted in a significantly lower interstitial AII (454 +/- 128 pg/ml). Renal AII concentration and the number of tubulointerstitial AII-positive cells were correlated. Blood pressure correlated positively with interstitial AII and negatively with plasma AII, thus giving compelling evidence of the paramount role of the AII within the kidney in the AII-induced model of salt-driven hypertension.  相似文献   

20.
Human apoprotein(apo) CI and apo AII cDNA probes have been used to analyze the segregation of the human genes in panels of human-mouse hybrids. The apo CI (APOCI) gene segregates with chromosome 19 and the apo AII (APOA2) gene with chromosome 1. Somatic cell hybrids containing chromosome translocations were used to map the apo AII gene to the 1p21-1qter region. Human APOA2 is polymorphic for the restriction endonuclease Msp I. Comparison of human and mouse chromosome 1 reveals a conserved group including apo AII, renin and peptidase genes and suggests that APOA2 will be found distal to this group on human chromosome 1. The mouse apo AII gene is closely linked with genes that regulate HDL structure. Similar HDL regulatory genes will probably be found near human APOA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号