首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the regulation of gene expression during male gametophyte development, we analyzed the promoter activity of two different genes (LAT52 and LAT59) from tomato, isolated on the basis of their anther-specific expression. In transgenic tomato, tobacco and Arabidopsis plants containing the LAT52 promoter region fused to the beta-glucuronidase (GUS) gene, GUS activity was restricted to pollen. Transgenic tomato, tobacco and Arabidopsis plants containing the LAT59 promoter region fused to GUS also showed very high levels of GUS activity in pollen. However, low levels of expression of the LAT59 promoter construct were also detected in seeds and roots. With both constructs, the appearance of GUS activity in developing anthers was correlated with the onset of microspore mitosis and increased progressively until anthesis (pollen shed). Our results demonstrate co-ordinate regulation of the LAT52 and LAT59 promoters in developing microspores and suggest that the mechanisms that regulate pollen-specific gene expression are evolutionarily conserved.  相似文献   

2.
A 1023 bp fragment and truncated derivatives of the maize (Zea mays L.) histone H3C4 gene promoter were fused to the ß-glucuronidase (GUS) gene and introduced via Agrobacterium tumefaciens into the genome of Arabidopsis thaliana. GUS activity was found in various meristems of transgenic plants as for other plant histone promoters, but unexplained activity also occurred at branching points of both stems and roots. Deletion of the upstream 558 bp of the promoter reduced its activity to an almost basal expression. Internal deletion of a downstream fragment containing plant histone-specific sequence motifs reduced the promoter activity in all tissues and abolished the expression in meristems. Thus, both the proximal and distal regions of the promoter appear necessary to achieve the final expression pattern in dicotyledonous plant tissues. In mesophyll protoplasts isolated from the transformed Arabidopsis plants, the full-length promoter showed both S phase-dependent and -independent activity, like other plant histone gene promoters. Neither of the 5-truncated nor the internal-deleted promoters were able to direct S phase-dependent activity, thus revealing necessary cooperation between the proximal and distal parts of the promoter to achieve cell cycle-regulated expression. The involvement of the different regions of the promoter in the different types of expression is discussed.  相似文献   

3.
4.
5.
A 1149 bp genomic fragment corresponding to the 5' non-coding region of the PgD1 (Picea glauca Defensin 1) gene was cloned, characterized, and compared with all Arabidopsis thaliana defensin promoters. The cloned fragment was found to contain several motifs specific to defence or hormonal response, including a motif involved in the methyl jasmonate reponse, a fungal elicitor responsive element, and TC-rich repeat cis-acting element involved in defence and stress responsiveness. A functional analysis of the PgD1 promoter was performed using the uidA (GUS) reporter system in stably transformed Arabidopsis and white spruce plants. The PgD1 promoter was responsive to jasmonic acid (JA), to infection by fungus and to wounding. In transgenic spruce embryos, GUS staining was clearly restricted to the shoot apical meristem. In Arabidopsis, faint GUS coloration was observed in leaves and flowers and a strong blue colour was observed in guard cells and trichomes. Transgenic Arabidopsis plants expressing the PgD1::GUS construct were also infiltrated with the hemibiotrophic pathogen Pseudomonas syringae pv. tomato DC3000. It caused a suppression of defensin expression probably resulting from the antagonistic relationship between the pathogen-stimulated salicylic acid pathway and the jasmonic acid pathway. It is therefore concluded that the PgD1 promoter fragment cloned appears to contain most if not all the elements for proper PgD1 expression and that these elements are also recognized in Arabidopsis despite the phylogenetic and evolutionary differences that separates them.  相似文献   

6.
The tissue-specific pattern of expression directed by the H4A748 Arabidopsis histone promoter was investigated by analysis of beta-glucuronidase (GUS) activity in transgenic Arabidopsis containing H4A748-GUS gene fusions. As determined by fluorimetric and histochemical tests, the H4A748 promoter directs preferential expression in meristems of young seedlings and adult plants. The low activity found in nonproliferating tissues may relate to basal constitutive expression of the histone promoter and/or to endoreduplication occurring in some tissues. The endogenous histone mRNA levels parallel the GUS activity found in different tissues. Analysis of the regulatory properties of 5' deleted promoters showed that multiple positive elements exist between -900 and -219 and that the proximal region of the promoter to -219 is sufficient to establish the full tissue-specific pattern of expression. Further deletion to -93 nearly abolished the promoter activity thus suggesting that the 126 bp fragment located between -219 and -93 contains the elements responsible for the specific expression pattern. The presence of several remarkable sequences within this fragment is discussed.  相似文献   

7.
8.
To investigate developmental regulation of wheat histone H3 gene expression, the H3 promoter, which has its upstream sequence to ?1711 (relative to the cap site as +1), was fused to the coding region of the gus A gene (?1711H3/GUS) and introduced into a monocot plant, rice. Detailed histochemical analysis revealed two distinct types of GUS expression in transgenic rice plants; one is cell division-dependent found in the apical meristem of shoots and roots and in young leaves, and another is cell division-independent detected in flower tissues including the anther wall and the pistil. In this study, replication-dependent expression occurring in non-dividing cells which undergo endoreduplication could not be discriminated from strict replication-independent expression. The observed expression pattern in different parts of roots suggested that the level of the H3/GUS gene expression is well correlated with activity of cell division in roots. To identify 5′ sequences of the H3 promoter necessary for an accurate regulation of the GUS expression, two constructs containing truncated promoters, ?908H3/GUS and ?185H3/GUS, were analyzed in transiently expressed protoplasts, stably transformed calli and transgenic plants. The results indicated that the region from ?909 to ?1711 contains the positive cis-acting element(s) and that the proximal promoter region (up to ?185) containing the conserved hexamer, octamer and nonamer motifs is sufficient to direct both cell division-dependent and -independent expression. The use of the meristem of roots regenerated from transformed calli for the analysis of cell division-dependent expression of plant genes is discussed.  相似文献   

9.
10.
The availability of a variety of promoter sequences is necessary for the genetic engineering of plants, in basic research studies and for the development of transgenic crops. In this study, the promoter and 5′ untranslated regions of the evolutionally conserved protein translation factor SUI1 gene and ribosomal protein L36 gene were isolated from pineapple and sequenced. Each promoter was translationally fused to the GUS reporter gene and transformed into the heterologous plant system Arabidopsis thaliana. Both the pineapple SUI1 and L36 promoters drove GUS expression in all tissues of Arabidopsis at levels comparable to the CaMV35S promoter. Transient assays determined that the pineapple SUI1 promoter also drove GUS expression in a variety of climacteric and non-climacteric fruit species. Thus the pineapple SUI1 and L36 promoters demonstrate the potential for using translation factor and ribosomal protein genes as a source of promoter sequences that can drive constitutive transgene expression patterns.  相似文献   

11.
The shortage of strong endosperm-specific expression promoters for driving the expression of recombinant protein genes in cereal endosperm is a major limitation in obtaining the required level and pattern of expression. Six promoters of seed storage glutelin genes (GluA-1, GluA-2, GluA-3, GluB-3, GluB-5, and GluC) were isolated from rice (Oryza sativa L.) genomic DNA by PCR. Their spatial and temporal expression patterns and expression potential in stable transgenic rice plants were examined with beta-glucuronidase (GUS) used as a reporter gene. All the promoters showed the expected spatial expression within the endosperm. The GluA-1, GluA-2, and GluA-3 promoters directed GUS expression mainly in the outer portion (peripheral region) of the endosperm. The GluB-5 and GluC promoters directed GUS expression in the whole endosperm, with the latter expressed almost evenly throughout the whole endosperm, a feature different from that of other rice glutelin gene promoters. The GluB-3 promoter directed GUS expression solely in aleurone and subaleurone layers. Promoter activities examined during seed maturation showed that the GluC promoter had much higher activity than the other promoters. These promoters are ideal candidates for achieving gene expression for multiple purposes in monocot endosperm but avoid promoter homology-based gene silencing. The GluC promoter did not contain the endosperm specificity-determining motifs GCN4, AACA, and the prolamin-box, which suggests the existence of additional regulatory mechanism in determining endosperm specificity.  相似文献   

12.
13.
14.
ABA-regulated promoter activity in stomatal guard cells   总被引:4,自引:0,他引:4  
CDeT6-19 is an ABA-regulated gene which has been isolated from Craterostigma plantagineum . The CDeT6-19 gene promoter has been fused to the β- glucuronidase reporter gene ( GUS ) and used to stably transform Arabidopsis thaliana and Nicotiana tabacum . This construct has been shown to be expressed in stomatal guard cells and often in the adjacent epidermal cells of both species in response to both exogenous ABA and drought stress. These results indicate that the stomatal guard cell is competent to relay an ABA signal to the nucleus. In contrast GUS expression directed by the promoter from a predominantly seed-specific, ABA-regulated gene, Em , or the promoter from the ABA-regulated CDeT27-45 gene is not detectable in the epidermal or guard cells of tobacco or Arabidopsis in response to ABA. The fact that not all ABA-regulated gene promoters are active in stomatal guard cells suggests that effective transduction of the signal is dependent upon particular regions within the gene promoter or that guard cells lack all or part of the specific transduction apparatus required to couple the ABA signal to these promoters. This suggests that there are multiple ABA stimulus response coupling pathways. The identification of a regulatory sequence from an ABA-induced gene which is expressed in stomatal guard cells creates the possibility of examining the role of Ca2+ and other second messengers in ABA-induced gene expression.  相似文献   

15.
The spatial and temporal distribution of expression of two cytosolic members of the AtHsp90 gene family was assessed during early development. In stressed transgenic plants bearing the AtHsp90-3 promoter, beta-glucuronidase (GUS) activity was strong in meristematic tissues. Expression was also detected in vascular tissues, leaf veins, siliques, and in pollen sacs. The promoter induced gene expression after heat shock in a time-course dependent manner. AtHsp90-1 promoter activity was low throughout the early stages of embryo development but high just before embryo maturation, with expression most prominent in cotyledons. AtHsp90-3 promoter activity was almost constant and restricted to the root and the cotyledon tips of the embryo. This highly specific spatial distribution of GUS activity changed when the tissues were heat-stressed. Both promoters were also active in unstressed mature pollen grains and during pollen germination. The results shown here indicate that different regulatory and developmental mechanisms control and differentiate the expression of the two cytosolic members of the Arabidopsis AtHsp90 gene family under normal conditions. The developmental and restricted pattern of expression of the AtHsp90-1 and -3 gene promoters in unstressed transgenic plants suggest prominent and distinctive roles of these two genes during different developmental processes.  相似文献   

16.
To obtain strong inducible promoters to drive abiotic stress-inducible transgene expression with minimal negative effects, we constructed three artificial synthetic promoters (EKCM, EKCRM, and ECCRM) comprising multiple cis-acting stress-response elements. Each promoter was fused independently to the β-glucuronidase (GUS) reporter gene, and GUS expression was analyzed in stable expression systems in Arabidopsis thaliana. T2 transgenic progenies showed integration of the promoter-GUS construct in their genome. RT-PCR assays and histochemical staining analysis showed that GUS expression driven by each promoter increased under desiccation, cold, and high salt conditions. The activity of synthetic promoters, assessed by fluorometric quantitative analysis of GUS enzyme activity, was significantly higher than that of the rd29A promoter under various stress treatments. The most powerful promoter, EKCM, allowed about 1.29-fold in GUS activity relative to the rd29A promoter, on average, under dehydration conditions. All three synthetic promoters could drive stress-inducible GUS expression in different organs of transgenic Arabidopsis. These synthetic promoters represent valuable tools for improving the stress tolerance of crops.  相似文献   

17.
The rice (Oryza sativa L.) catalase (EC 1.11.1.6) gene CatB is expressed in roots and cultured cells. We examined the promoter activity of its 5'-flanking region in a monocot and in two dicots. Transient expression assays in rice Oc and tobacco BY-2 suspension cell protoplasts showed that CatB's 5'-flanking DNA fragments (nucleotides -1066 to +298) had about 20 and 3-4 times as much promoter activity, respectively, as the CaMV 35S promoter. Serial deletion analyses of the CatB promoter region revealed that the shortest fragment (-56 to +298) still had about 10 times as much promoter activity as the CaMV 35S promoter in rice protoplasts. In tobacco protoplasts, the activity of the fragment (-56 to +298) was about half of the CaMV 35S promoter. Transgenic rice and Arabidopsis plants carrying GUS genes driven by the 5'-truncated CatB promoters were generated and their GUS activity was examined. The region ranging from -329 to +298 showed preferential expression in the roots of rice and Arabidopsis, and in the shoot apical meristems of Arabidopsis. In situ hybridization revealed that CatB was highly expressed in branch root primordia and root apices of rice. Fusion of the GUS gene to the region (-329 to +298) conferred strong expression in these same areas, indicating that the presence of this region was sufficient to express CatB specifically in the roots. There may be new regulatory element(s) in this region, because it contained no previously known cis-regulatory elements specific for gene expression in roots.  相似文献   

18.
19.
A 1,474-bp stress-inducible CdDREBa promoter was identified from Chrysanthemum dichrum, revealing several candidate stress-related cis-acting elements (MYC-box, MYB site, GT-1, and W-box) within it. In Arabidopsis leaf tissues transformed with a CdDREBa promoter-β-glucuronidase (GUS) gene fusion, serially 5'-deleted CdDREBa promoters were differentially activated by cold and salinity. Histochemical and quantitative assays of GUS expression allowed us to localize a critical part of the promoter located between upstream 430 and 351 nt. This 80-bp fragment enhanced GUS expression under salinity stress when fused to -90/+8 CaMV 35S minimal promoter. Further promoter internal-deletion assays indicated that a low temperature-responsive element was located between positions -430 and -390, and a salinity inducible one between -385 and -351. Our results showed that there was a novel stress-related critical region except for the known cis-acting element (MYC-box, GT-1) in CdDREBa promoter.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号