首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organophosphorus acid anhydrolases (OPAA; E.C.3.1.8.2) are a class of enzymes that hydrolyze a variety of toxic acetylcholinesterase-inhibiting organophosphorus (OP) compounds, including pesticides and fluorine-containing chemical nerve agents. In this paper, subphase conditions have been optimized to obtain stable OPAA Langmuir films, and the diisopropylfluorophosphate (DFP) hydrolysis reaction catalyzed by OPAA in aqueous solution and at the air-water interface was studied. OPAA-DFP interactions were investigated utilizing different spectroscopic techniques, that is, circular dichroism and fluorescence in aqueous solution and infrared reflection absorption spectroscopies at the air-water interface. The characterization of OPAA and its secondary structure in aqueous solution and as a monolayer at the air-water interface in the absence and in the presence of DFP dissolved in aqueous solution or in the aqueous subphase demonstrated significantly distinctive features. The research described herein demonstrated that OPAA can be used in an enzyme-based biosensor for DFP detection.  相似文献   

2.
Proteins represent versatile building blocks for realization of nanostructured materials to be applied in nanobiotechnology. In the present work, the Langmuir–Blodgett technique was utilized to develop nanobiodevices based on protein molecules. Particularly, lipase thin films were fabricated and characterized, with characterization performed in order to optimize the working parameters. As the first step the protein films were studied at the air–water interface and then transferred onto a solid support for further characterization. The films were characterized by different techniques such as UV–Vis spectroscopy, nanogravimetry, atomic force microscopy, and biochemical assays. Catalytic activity of lipase characterized by the maximal reaction rate found to increase over 10 times as a result of inclusion into LB films, while the substrate binding characterized by the Michaelis constant remain unchanged. Catalytic activity per mole of enzyme was found to increase with the increased number of LB layers up to five, and then decrease at 10, while the surface coverage ranged from 70% to 100% from 1 to 10 layers of lipase. This study exploits the possibility to employ LB based protein structures to use in biocatalysis, exemplified by lipase, which is known as an interfacially-activated enzyme, with olive oil as substrate, when lipase should already be in the maximally active state even without a film. We show, however, that it was possible to form even more active lipase nanostructures by the Langmuir–Blodgett technique at the air–water interface, proving that Langmuir-film provides a better catalytic effect in lipase than a mere oil–water boundary.  相似文献   

3.
气/液界面及固体表面硬脂酸LB膜结构性质研究   总被引:1,自引:1,他引:0  
对气液/和固/液界面上硬脂酸LB膜的结构性质的研究表明,二价离子能够使气/液界面上LB膜表面压力降低,并出现一个固-固转变的过程.对此可以解释为是由二价离子富集在亚相表面,减弱了膜分子之间的库仑作用,使表面电势降低引起的.同时由于二价离子与硬脂酸分子形成复合物,单层膜的结构发生改变,导致固-固转变点的产生.对固体基质上多层LB膜的椭圆偏振研究表明,有序排列的硬脂酸LB膜具有明显的双折射性质.电镜观察发现两个固相垂直提位获得的多层膜在形貌上存在差异,低压固相膜较之高压固相膜存在明显的不均匀性.分析认为这是在膜从气/液界面向固体表面转移过程中发生重结晶引起的.  相似文献   

4.
Urease was immobilized in mixed monolayers of poly(N-vinyl carbazole) (PNVK) and stearic acid (SA) formed at an air-water interface. The monolayers were transferred onto indium-tin-oxide (ITO) coated glass plates using Langmuir-Blodgett (LB) film deposition technique. Urease immobilized on PNVK/SA LB films, characterized using FTIR and UV-visible spectroscopy, was found to exhibit increased stability over a wide pH (6.5-8.5) and temperature (25-50 degrees C) range. Potentiometric measurements on these urease electrodes were carried out using an ammonium ion analyzer. Two values for K(m)(app) were obtained at lower and higher concentrations of substrate urea.  相似文献   

5.
A threefold helical crystal structure of Bombyx mori silk fibroin has been observed in films prepared from aqueous silk fibroin solutions using the Langmuir Blodgett (LB) technique. The films were studied using a combination of transmission electron microscopy and electron diffraction techniques. Films prepared at a surface pressure of 16.7 mN/m have a uniaxially oriented crystalline texture, with the helical axis oriented perpendicular to the plane of the LB film. Films obtained from the air-water interface without compression have a different orientation, with the helical axes lying roughly in the plane of the film. In both cases the d-spacings observed in electron diffraction are the same and match a threefold helical model crystal structure, silk III, described in previous publications. Differences in the relative intensities of the observed reflections in both types of oriented samples, as compared to unoriented samples, allows estimations of orientation distributions and the calculations of orientation parameters. The orientation of the fibroin chain axis in the plane of the interfacial film for uncompressed samples is consistent with the amphiphilic behavior previously postulated to drive the formation of the threefold helical silk III conformation.  相似文献   

6.
Trastuzumab (Tmab) is a monoclonal antibody administered as targeted therapy for HER2-positive breast cancer whose molecular interactions at the HER2 receptor microenvironment are not completely clarified yet. This paper describes the influence of Tmab in the molecular organization of films of biological-relevant molecules at the air water interface. For that, we spread components of tumorigenic and non-tumorigenic cells directly on the air-water interface. The physicochemical properties of the films were investigated with surface pressure-area isotherms and Brewster angle microscopy, and distinction between the cellular lines with higher or lower amount of HER2 could be detected based on the physicochemical properties of the interfacial films. The systems organized at the air-water interface were transferred to solid supports as Langmuir-Blodgett films and the nano-scale morphology investigated with atomic force microscopy. The overall results related to Tmab interacting with the films lead to the conclusion that Tmab tends to condense rich-HER2 films, causing irregular dimerization of the receptor protein, changing the membrane topography of the films, with formation of phases with different levels of reflectivity and aggregation morphology, and finally revealing that the interaction of the antibody with proteo-lipidic biointerfaces is modulated by the film composition. We believe that novel perspectives concerning the molecular interactions in the plasma membrane microenvironment through Langmuir monolayers can be obtained from this work in order to enhance the Tmab-based cancer therapy.  相似文献   

7.
SpA蛋白与磷脂单分子膜相互作用的研究   总被引:1,自引:0,他引:1  
陆斌  韦钰 《生物物理学报》1993,9(4):541-546
利用石英表面沉积LB膜的紫外吸收特性与CD谱特性研究了磷脂单分子膜与SpA的相互作用,实验结果表明,单分子膜的疏密状态,蛋白质与膜表面的电荷特性及亚相Ca^2+离子浓度均对该蛋白质与磷脂的相互作用有显著的影响,蛋白质在磷膜中的镶嵌与吸附作用为生物膜的重组提供了新的途径。  相似文献   

8.
A novel cellulose derivative, 6-O-dihydrophytylcellulose (DHPC), was first synthesized via a ring-opening polymerization and allowed to self-assemble onto an air-water interface. Langmuir-Blodgett (LB) films were characterized with atomic force microscope (AFM), UV-vis spectroscopy, and Fourier transform infrared spectroscopy. The surface pressure-area (pi-A) isotherms for DHPC and beta-carotene (betaC) mixture indicated strong interaction between these compounds to pack well. Thus, DHPC has the ability to anchor betaC in the monolayer. It was proved that a betaC-DHPC monolayer was transferred successfully onto a substrate, yielding Y-type LB films by UV spectroscopic analysis. The transmission and reflection-absorption IR spectra (RAS) indicated that the dihydrophytyl chains had almost trans-zigzag conformation and were oriented nearly perpendicular to the substrate. AFM section analysis revealed the thickness per layer to be 2.32 nm. Consequently, DHPC was found to be an appropriate matrix to fabricate the mixed LB films containing betaC.  相似文献   

9.
The transition from alpha-helix to random coil of the titrating polyamino acid co-poly-L-(lysine, phenylalanine), (p-(Lys,Phe)), has been investigated as a function of pH and ionic strength in aqueous solution and at the air-water interface by means of circular dichroism (CD) spectroscopy and the Langmuir surface film balance technique. The results strongly suggest that the helix-coil transition for peptides at the air-water interface can be determined by using the two-dimensional Flory exponent, nu, to express the pH dependent peptide surface conformation. The helix-coil titration curve of p-(Lys,Phe) shifts approximately 2.5 pH units towards lower pH at the air-water interface, as compared with the bulk solution. This finding is of relevance for the understanding of conformation and conformational changes of membrane-transporting and membrane penetrating peptides as well as for the use of peptides in molecular devices.  相似文献   

10.
Amphiphilic molecules equipped with a reactive, carbon-rich "oligoyne" segment consisting of conjugated carbon-carbon triple bonds self-assemble into defined aggregates in aqueous media and at the air-water interface. In the aggregated state, the oligoynes can then be carbonized under mild conditions while preserving the morphology and the embedded chemical functionalization. This novel approach provides direct access to functionalized carbon nanomaterials. In this article, we present a synthetic approach that allows us to prepare hexayne carboxylate amphiphiles as carbon-rich siblings of typical fatty acid esters through a series of repeated bromination and Negishi-type cross-coupling reactions. The obtained compounds are designed to self-assemble into monolayers at the air-water interface, and we show how this can be achieved in a Langmuir trough. Thus, compression of the molecules at the air-water interface triggers the film formation and leads to a densely packed layer of the molecules. The complete carbonization of the films at the air-water interface is then accomplished by cross-linking of the hexayne layer at room temperature, using UV irradiation as a mild external stimulus. The changes in the layer during this process can be monitored with the help of infrared reflection-absorption spectroscopy and Brewster angle microscopy. Moreover, a transfer of the carbonized films onto solid substrates by the Langmuir-Blodgett technique has enabled us to prove that they were carbon nanosheets with lateral dimensions on the order of centimeters.  相似文献   

11.
The structure of an artificial pulmonary surfactant was studied by scanning force- and fluorescence light microscopy (SFM, and FLM, respectively). The surfactant – a mixture of dipalmitoylphosphatidylcholine (DPPC), dipalmitoylphosphatidylglycerol (DPPG) and recombinant surfactant-associated protein C (SP-C) – was prepared at the air-water interface of a Langmuir film balance and imaged by FLM under various states of compression. In order to visualize their topography by SFM, the films were transferred onto a solid mica support by the Langmuir-Blodgett (LB) technique. We found that a region of high film compressibility of the spread monolayer close to its equilibrium surface pressure (π=50 mN/m) was due to the exclusion of layered protrusions with each layer 5.5 to 6.5 nm thick. They remained associated with the monolayer and readily reinserted upon expansion of the film. Comparison with the FLM showed that the protrusions contained the protein in high concentration. The more the film was compressed, the larger was the number of layers on top of each other. The protrusions arose from regions of the monolayer with a distinct microstructure that may have been responsible for their formation. The molecular architecture of the microstructure remains to be elucidated, although some of it can be inferred from spectroscopic data in combination with the SFM topographical images. We illustrate our current understanding of the film structure with a molecular model. Received: 20 September 1996 / Accepted: 22 May 1997  相似文献   

12.
Monolayers of oleanolic acid (OLA) mixed with stearic acid (SA) were studied at the air-water interface. The surface pressure-area (pi-A) isotherms, measured over the whole composition range, and BAM observations were used to investigate the phase behaviour and self-organization of these components in a two-dimensional structure. Pure OLA forms a very compressible monolayer, and BAM observation revealed the coexistence of large and irregular solid domains of different thickness dispersed in a gas matrix, compatible with the two most probable orientations of the OLA molecule at the interface. Mixtures of OLA/SA form condensed monolayers from low surface pressures and the thermodynamic analysis indicates that OLA molecules, in the presence of the long-chain SA, orient with the major axis almost perpendicular to the interface. Langmuir-Blodgett (LB) monolayers of pure SA and mixtures were further characterized by atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). AFM images of LB mixed monolayers evidenced microphase separation, not observable by BAM. The SA rich domains are 4-6A thicker than those rich in OLA. The FTIR spectra of mixed LB films on CaF2 substrates showed that OLA does not perturb the all-trans conformation of the SA long alkyl chains, up to a mole fraction of 0.4. The carbonyl-stretching band of OLA suggests that the carboxylic groups of neighbour OLA molecules are involved in hydrogen bonds, forming dimers, as in pure solid phase OLA. These interactions seem to prevail over the OLA-water hydrogen bonds.  相似文献   

13.
Hydrophobins are amphiphilic proteins produced by filamentous fungi. They function in a variety of roles that involve interfacial interactions, as in growth through the air-water interface, adhesion to surfaces, and formation of coatings on various fungal structures. In this work, we have studied the formation of films of the class II hydrophobin HFBI from Trichoderma reesei at the air-water interface. Analysis of hydrophobin aqueous solution drops showed that a protein film is formed at the air-water interface. This elastic film was clearly visible, and it appeared to cause the drops to take unusual shapes. Because adhesion and formation of coatings are important biological functions for hydrophobins, a closer structural analysis of the film was made. The method involved picking up the surface film onto a solid substrate and imaging the surface by atomic force microscopy. High-resolution images were obtained showing both the hydrophilic and hydrophobic sides of the film at nanometer resolution. It was found that the hydrophobin film had a highly ordered structure. To study the orientation of molecules and to obtain further insight in film formation, we made variants of HFBI that could be site specifically conjugated. We then used the avidin-biotin interaction as a probe. On the basis of this work, we suggest that the unusual interfacial properties of this type of hydrophobins are due to specific molecular interactions which lead to an ordered network of proteins in the surface films that have a thickness of only one molecule. The interactions between the proteins in the network are likely to be responsible for the unusual surface elasticity of the hydrophobin film.  相似文献   

14.
The effect of monoglycerides (monopalmitin and monoolein) on the structural and topographical characteristics of beta-casein adsorbed film at the air-water interface has been analyzed by means of surface pressure (pi)-area (A) isotherms and Brewster angle microscopy (BAM). At surface pressures lower than that for the beta-casein collapse (pi(c)(beta-casein)), attractive interactions between beta-casein and monoglycerides were observed. At higher surface pressures, the collapsed beta-casein is partially displaced from the interface by monoglycerides. However, beta-casein displacement by monoglycerides is not quantitative at the monoglyceride concentrations studied in this work. From the results derived from these experiments, we have concluded that interactions, miscibility, and displacement of proteins by monoglycerides in adsorbed mixed monolayers at the air-water interface depend on the particular protein-monoglyceride system, the interactions between film-forming components being higher for adsorbed than for spread films. The adsorbed films are more segregated than spread films, and both collapsed protein domains and monoglyceride domains in adsorbed films are smaller than for spread films.  相似文献   

15.
The fiber-optic biosensor consisting of an acetylcholinesterase (AChE)-immobilized Langmuir–Blodegtt (LB) film was developed to detect organophosphorus compounds in contaminated water. The sensing scheme was based on the decrease of yellow product, o-nitrophenol, from a colorless substrate, o-nitrophenyl acetate, due to the inhibition by organophosphorus compounds on AChE. Absorbance change of the product as the output of enzyme reaction was detected and the light was guided through the optical fibers. The enzyme portion of the sensor system was fabricated by the LB technique for formation of the enzyme film. AChE-immobilized LB film was formed by adsorbing the enzyme molecules onto a viologen monolayer using the electrostatic force. The proposed kinetics for irreversible inhibition of organophosphorus compounds on AChE agreed well with the experimental data. The surface topography of AChE-immobilized LB film was investigated by atomic force microscope (AFM). The immobilized AChE had the maximum activity at pH 7. The proposed biosensor could successfully detect the organophosphorus compounds upto 2 ppm and the response time to steady signal of the sensor was about 10 min.  相似文献   

16.
In this research, we reported a novel method of forming hemoglobin (Hb)-linoleic acid (LA) Langmuir-Blodgett (LB) monolayer by spreading Hb solution directly onto the subphase covered with a layer of LA. This method is suitable for preparing electrochemical devices with protein-lipid LB film because almost no protein adsorbed on electrode surface before protein-lipid film transferred from air-water interface to electrode, which ensured better electrode activity. The compressibility of Hb-LA monolayer was used to character the phase transition during compression process. Optimal experimental conditions were obtained by analyzing pressure-time, pressure-area and pressure-compressibility curves. The direct electrochemistry of Hb, which was immobilized on Au electrode surface incorporated with LA layer by LB method, was investigated using cyclic voltammetry for the first time. The electrode modified with Hb-LA LB film holds high electrochemical activity and shows a fast direct electron transfer of Hb. Redox peak currents increased linearly with the increase of scan rate, indicating a surface-controlled electrode process. The electron transfer rate constant was 2.68+/-0.45 s-1. As a target of this research, this work provides a new way to prepare biomimetic film and biosensor.  相似文献   

17.
The binary mixtures involving tristearin (TS), stearyl stearate (SS) and stearic acid (SA) were studied by surface pressure-area (pi-A) measurements and by Brewster angle microscopy (BAM), at the air-water interface, and the Langmuir-Blodgett (LB) monolayers, transferred onto mica substrates, were analysed by AFM. The thermodynamic analysis indicated miscibility in the whole composition range for the system SA/TS, and partial miscibility for systems SA/SS and TS/SS. This behaviour was further confirmed by BAM observation and AFM analysis of LB films. The AFM imaging of collapsed monolayers revealed domains with a multilayered structure varying with system and composition. The layers thickness determined by cross section analysis are consistent with estimated molecular lengths and conformations proposed for the molecules, assuming nearly perpendicular or tilted orientations of the hydrocarbon chains to the interface.  相似文献   

18.
Lipopolysaccharide (LPS) is an essential biomacromolecule making up approximately 50% of the outer membrane of gram-negative bacteria. LPS chemistry facilitates cellular barrier and permeability functions and mediates interactions between the cell and its environment. To better understand the local interactions within LPS membranes, the monolayer film behavior of LPS extracted from Pseudomonas aeruginosa, an opportunistic pathogen of medical importance, was investigated by Langmuir film balance. LPS formed stable monolayers at the air-water interface and the measured lateral stresses and modulus (rigidity) of the LPS film in the compressed monolayer region were found to be appreciable. Scaling theories for two-dimensional (2D) polymer chain conformations were used to describe the pi-A profile, in particular, the high lateral stress region suggested that the polysaccharide segments reside at the 2D air-water interface. Although the addition of monovalent and divalent salts caused LPS molecules to adopt a compact conformation at the air-water interface, they did not appear to have any influence on the modulus (rigidity) of the LPS monolayer film under biologically relevant stressed conditions. With increasing divalent salt (CaCl2) content in the subphase, however, there is a progressive reduction of the LPS monolayer's collapse pressure, signifying that, at high concentrations, divalent salts weaken the ability of the membrane to withstand elevated stress. Finally, based on the measured viscoelastic response of the LPS films, we hypothesize that this property of LPS-rich outer membranes of bacteria permits the deformation of the membrane and may consequently protect bacteria from catastrophic structural failure when under mechanical-stress.  相似文献   

19.
The Langmuir-Blodgett (LB) film technique has been successfully applied to the construction of stable and photo-active films of chromatophore membranes and isolated reaction centers from two species of photosynthetic bacteria, Rhodobacter sphaeroides and Rhodopseudomonas viridis. LB films of these preparations were characterized at the air/water interface through compression isotherms and film stabilities. Films deposited on glass slides were analyzed by spectrophotometric and redox potentiometric techniques. The results obtained indicate that the in vivo properties of the photosynthetic apparatus in the deposited films are essentially unchanged. Furthermore, the pigments and redox cofactors in the films are highly oriented and offer a unique opportunity for structural and functional studies of the kind described in the accompanying paper (Biochim. Biophys. Acta 1057 (1991) 258-272).  相似文献   

20.
Interfacial films of whole myelin membrane adsorb at the air-water interface from myelin vesicles. The films show a liquid state and their equilibrium spreading pressure is equal to the collapse pressure (about 47 mN/m). The films appear microheterogeneous as seen by epifluorescence microscopy, consisting in two liquid phases over all the adsorption isotherm, starting with rounded liquid expanded domains (low surface pressure) immersed in a cholesterol enriched phase and reaching a fractal pattern at high surface pressure similar to those previously observed by compressing the film. Vesicles adsorb to the interfacial film mainly at the lateral interfaces. The high surface pressure at equilibrium (almost equal to the collapse pressure) indicates the formation of surface multilayers, also shown by fluorescence microscopy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号