首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The synthesis of biocompatible, thermo-responsive ABA triblock copolymers in which the outer A blocks comprise poly(N-isopropylacrylamide) and the central B block is poly(2-methacryloyloxyethyl phosphorylcholine) is achieved using atom transfer radical polymerization with a commercially available bifunctional initiator. These novel triblock copolymers are water-soluble in dilute aqueous solution at 20 degrees C and pH 7.4 but form free-standing physical gels at 37 degrees C due to hydrophobic interactions between the poly(N-isopropylacrylamide) blocks. This gelation is reversible, and the gels are believed to contain nanosized micellar domains; this suggests possible applications in drug delivery and tissue engineering.  相似文献   

2.
3.
Glycopolymer-polypeptide triblock copolymers of the structure, poly(l-alanine)-b-poly(2-acryloyloxyethyl-lactoside)-b-poly(l-alanine) (AGA), have been synthesized by sequential atom transfer radical polymerization (ATRP) and ring-opening polymerization (ROP). Controlled free radical polymerization of 2-O-acryloyl-oxyethoxyl-(2,3,4,6-tetra-O-acetyl-beta-d-galactopyranosyl)-(1-4)-2,3,6-tri-O-acetyl-beta-d-glucopyranoside (AEL) by ATRP with a dibromoxylene (DBX)/CuBr/bipy complex system was used to generate a central glycopolymer block. Telechelic glycopolymers with diamino end groups were obtained by end group transformation and subsequently used as macroinitiators for ROP of l-alanine N-carboxyanhydride monomers (Ala-NCA). Gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy analysis demonstrated that copolymer molecular weight and composition were controlled by both the molar ratios of the Ala-NCA monomer to macroinitiator and monomer conversion and exhibited a narrow distribution (Mw/Mn = 1.06-1.26). FT-IR spectroscopy of triblock copolymers revealed that the ratio of alpha-helix/beta-sheet increased with poly(l-alanine) block length. Of note, transmission electron microscopy (TEM) demonstrated that selected amphiphilic glycopolymer-polypeptide triblock copolymers self-assemble in aqueous solution to form nearly spherical aggregates of several hundreds nanometer in diameter. Significantly, the sequential application of ATRP and ROP techniques provides an effective method for producing triblock copolymers with a central glycopolymer block and flanking polypeptide blocks of defined architecture, controlled molecular weight, and low polydispersity.  相似文献   

4.
Guan H  Xie Z  Zhang P  Deng C  Chen X  Jing X 《Biomacromolecules》2005,6(4):1954-1960
A novel biodegradable amphiphilic triblock copolymer bearing pendant carboxyl groups PLGG-PEG-PLGG was successfully prepared by ring-opening copolymerization of l-lactide (LA) with (3s)-benzoxylcarbonylethyl-morpholine-2, 5-dione (BEMD) in the presence of dihydroxyl poly(ethylene glycol) (PEG) as a macroinitiator in bulk at 130 degrees C using SnOct(2) as catalyst and by subsequent catalytic hydrogenation. The copolymer could form micelles in aqueous solution with the cmc dependent on the composition of the copolymer. The micelles exhibited a homogeneous spherical morphology and a unimodal size distribution. Their degradation rate in the presence of proteinase K was faster than that of PLA, and they showed a low degree of cytotoxicity to the articular cartilage cells. This biodegradable amphiphilic block copolymer with pendant carboxyl groups is capable of further modification and is expected to facilitate a variety of potential biomedical applications, such as drug carriers, tissue engineering, etc.  相似文献   

5.
6.
An important class of thermoplastic elastomers involves polystyrene and polyisobutylene blocks (SIBS). Sulfonated SIBS Triblock Copolymers (S-SIBS) are of particular interest because of potential applications for fuel cell and textile applications, where breathable, protective clothing is required. We have used multiscale modeling to gain an understanding of the static and dynamic properties of these polymer systems at detailed atomistic levels. Quantum chemistry tools were used to elucidate the bonding of water molecules and sulfonate groups. In addition, molecular dynamics was applied to calculate the polymer density at various levels of sulfonation. The structures of polymer with hydronium ions and also water were studied and the mechanism of water self-diffusion was proposed. It was found that with increase of water content the hydronium ions move further away from sulfonate groups. The self-diffusion coefficients of water were found to reproduce well experimental trends. Two different distributions of sulfonate groups were studied: one blocky and another perfectly dispersed. In the case of the blocky architecture, the water clusters are connected at a lower sulfonation level, leading to increased water diffusion coefficients as compared to the dispersed architecture.  相似文献   

7.
Reversibly shielded DNA polyplexes based on bioreducible poly(dimethylaminoethyl methacrylate)-SS-poly(ethylene glycol)-SS-poly(dimethylaminoethyl methacrylate) (PDMAEMA-SS-PEG-SS-PDMAEMA) triblock copolymers were designed, prepared and investigated for in vitro gene transfection. Two PDMAEMA-SS-PEG-SS-PDMAEMA copolymers with controlled compositions, 6.6-6-6.6 and 13-6-13 kDa, were obtained by reversible addition-fragmentation chain transfer (RAFT) polymerization of dimethylaminoethyl methacrylate (DMAEMA) using CPADN-SS-PEG-SS-CPADN (CPADN: 4-cyanopentanoic acid dithionaphthalenoate; PEG: 6 kDa) as a macro-RAFT agent. Like their nonreducible PDMAEMA-PEG-PDMAEMA analogues, PDMAEMA-SS-PEG-SS-PDMAEMA triblock copolymers could effectively condense DNA into small particles with average diameters less than 120 nm and close to neutral zeta potentials (0 ~ +6 mV) at and above an N/P ratio of 3/1. The resulting polyplexes showed excellent colloidal stability against 150 mM NaCl, which contrasts with polyplexes of 20 kDa PDMAEMA homopolymer. In the presence of 10 mM dithiothreitol (DTT), however, polyplexes of PDMAEMA-SS-PEG-SS-PDMAEMA were rapidly deshielded and unpacked, as revealed by significant increase of positive surface charges as well as increase of particle sizes to over 1000 nm. Release of DNA in response to 10 mM DTT was further confirmed by gel retardation assays. These polyplexes, either stably or reversibly shielded, revealed a low cytotoxicity (over 80% cell viability) at and below an N/P ratio of 12/1. Notably, in vitro transfection studies showed that reversibly shielded polyplexes afforded up to 28 times higher transfection efficacy as compared to stably shielded control under otherwise the same conditions. Confocal laser scanning microscope (CLSM) studies revealed that reversibly shielded polyplexes efficiently delivered and released pDNA into the perinuclei region as well as nuclei of COS-7 cells. Hence, reduction-sensitive reversibly shielded DNA polyplexes based on PDMAEMA-SS-PEG-SS-PDMAEMA are highly promising for nonviral gene transfection.  相似文献   

8.
The development of polymers that are both bactericidal and biocompatible would have many applications and are currently of substantial research interest. It is well known that polymers of alkyl-quaternized poly(4-vinylpyridine) are known to be effective against a wide range of microbes: when copolymerized with monomers that form biocompatible materials, they has also been shown to possess biocompatible properties. However, the relationship of the various physical and chemical properties of these polymers and copolymers with the antibacterial and biocompatible properties remains poorly understood: maximizing the selectivity and performance of these materials is absolutely needed before they have the potential for commercial applications. Maximizing the performance will require a complete understanding of the effect of physical and chemical adjustments on these quaternized polymer bactericides. This article seeks to explore and characterize the effect of one specific property, steric hindrance, on the copolymers' antibacterial and biocompatible properties. We have thus synthesized and characterized a new class of copolymers from 2-vinylpyridine and poly(ethylene glycol) methyl ether methacrylate, measured its bactericidal and biocompatible properties, and compared its performance to chemically similar but sterically different polymer bactericides. This work thereby enables both a greater understanding of the properties of the 2-vinylpyridine copolymers and an improved understanding of the material properties that are vital for the development of antibacterial polymers.  相似文献   

9.
To realize safer and effective drug administration, novel well-defined and biocompatible amphiphilic block copolymers containing phospholipid polymer sequences were synthesized. At first, the homopolymer of 2-methacryloyloxyethylphosphorylcholine (MPC) was synthesized in water by reversible addition-fragmentation chain transfer (RAFT) controlled radical polymerization. The "living" polymerization was confirmed by the fact that the number-average molecular weight increased linearly with monomer conversion while the molecular weight distribution remained narrow independent of the conversion. The poly(MPC) thus prepared is end-capped with a dithioester moiety. Using the dithioester-capped poly(MPC) as a macro chain transfer agent, AB diblock copolymers of MPC and n-butyl methacrylate (BMA) were synthesized. Associative properties of the amphiphilic block copolymer (pMPC(m)-BMA(n)) with varying poly(BMA) block lengths were investigated using NMR, fluorescence probe, static light scattering (SLS), and quasi-elastic light scattering (QELS) techniques. Proton NMR data in D2O indicated highly restricted motions of the n-butyl moieties, arising from hydrophobic associations of poly(BMA) blocks. Fluorescence spectra of N-phenyl-1-naphthylamine indicated that the probes were solubilized in the polymer micelles in water. The formation of polymer micelles comprising a core with poly(BMA) blocks and shell with hydrophilic poly(MPC) blocks was suggested by SLS and QELS data. The size and mass of the micelle increased with increasing poly(BMA) block length. With an expectation of a pharmaceutical application of pMPC(m)-BMA(n), solubilization of a poorly water-soluble anticancer agent, paclitaxel (PTX), was investigated. PTX dissolved well in aqueous solutions of pMPC(m)-BMA(n) as compared with pure water, implying that PTX is incorporated into the hydrophobic core of the polymer micelle. Since excellent biocompatible poly(MPC) sequences form an outer shell of the micelle, pMPC(m)-BMA(n) may find application as a promising reagent to make a good formulation with a hydrophobic drug.  相似文献   

10.
Five model conetworks based on cross-linked star ampholytic copolymers were synthesized by group transfer polymerization. The ampholytic copolymers were based on two hydrophilic monomers: the positively ionizable 2-(dimethylamino)ethyl methacrylate (DMAEMA) and the negatively ionizable methacrylic acid (MAA). Ethylene glycol dimethacrylate was used as the cross-linker. These five ampholytic model conetworks were isomers based on equimolar DMAEMA-MAA copolymer stars of different architectures: heteroarm (two), star block (two), and statistical. The two networks based on the homopolymer stars were also synthesized. The MAA units were introduced via the polymerization of tetrahydropyranyl methacrylate and the acid hydrolysis of the latter after network formation. All the precursors to the (co)networks were characterized in terms of their molecular weights using gel permeation chromatography (GPC). The mass of the extractables from the (co)networks was measured and characterized in terms of molecular weight and composition using GPC and proton nuclear magnetic resonance (1H NMR) spectroscopy, respectively. The degrees of swelling (DS) of all the ampholytic conetworks were measured as a function of pH and were found to present a minimum at a pH value which was taken as the isoelectric point, pI. The DS and the pI values did not present a dependence on conetwork architecture. Finally, DNA adsorption studies onto the ampholyte conetworks indicated that DNA binding was governed by electrostatics.  相似文献   

11.
A systematic study on the synthesis, characterization, degradation, and drug release of d-, l-, and dl-poly(lactic acid) (PLA)-terminated poly(sebacic acid) (PSA) and their stereocomplexes is reported. PLA-terminated sebacic acid polymers were synthesized by melt condensation of the acetate anhydride derivatives of PLA oligomers and sebacic anhydride oligomers to yield ABA triblock copolymers of molecular weights between 3000 and 9000 that melt at temperatures between 35 and 80 degrees C. Pairs of the corresponding enantiomeric ABA copolymers composed of l-PLA-PSA-l-PLA and d-PLA-PSA-d-PLA were solvent mixed to form stereocomplexes. The formed stereocomplexes exhibited higher crystalline melting temperature than the enantiomeric polymers, which indicate stereocomplex formulation. The PLA terminals had a significant effect on the polymer degradation and drug release rate. PSA with up to 20% w/w of PLA terminals degraded and released the incorporated drug for more than 3 weeks as compared with 10 days for PSA homopolymer.  相似文献   

12.
Amphiphilic block copolymers were synthesized by transesterification of hydrophilic methoxy poly(ethylene glycol) (mPEG) and hydrophobic poly(propylene fumarate) (PPF) and characterized. Four block copolymers were synthesized with a 2:1 mPEG:PPF molar ratio and mPEGs of molecular weights 570, 800, 1960, and 5190 and PPF of molecular weight 1570 as determined by NMR. The copolymers synthesized with mPEG of molecular weights 570 and 800 had 1.9 and 1.8 mPEG blocks per copolymer, respectively, as measured by NMR, representing an ABA-type block copolymer. The number of mPEG blocks of the copolymer decreased with increasing mPEG block length to as low as 1.5 mPEG blocks for copolymer synthesized with mPEG of molecular weight 5190. At a concentration range of 5-25 wt % in phosphate-buffered saline, copolymers synthesized with mPEG molecular weights of 570 and 800 possessed lower critical solution temperatures (LCST) between 40 and 45 degrees C and between 55 and 60 degrees C, respectively. Aqueous solutions of copolymer synthesized with mPEG 570 and 800 also experienced thermoreversible gelation. The sol-gel transition temperature was dependent on the sodium chloride concentration as well as the mPEG block length. The copolymer synthesized from mPEG 570 had a transition temperature between 40 and 20 degrees C with salt concentrations between 1 and 10 wt %, while the sol-gel transition temperatures of the copolymer synthesized from mPEG molecular weight 800 were higher in the range 75-30 degrees C with salt concentrations between 1 and 15 wt %. These novel thermoreversible copolymers are the first biodegradable copolymers with unsaturated double bonds along their macromolecular chain that can undergo both physical and chemical gelation and hold great promise for drug delivery and tissue engineering applications.  相似文献   

13.
Zhou C  Leng B  Yao J  Qian J  Chen X  Zhou P  Knight DP  Shao Z 《Biomacromolecules》2006,7(8):2415-2419
Spider dragline silk with its superlative tensile properties provides an ideal system to study the relationship between morphology and mechanical properties of a structural protein. Accordingly, we synthesized two hybrid multiblock copolymers by condensing poly(alanine) [(Ala)(5)] blocks of the structural proteins (spidroin MaSp1 and MaSp2) of spider dragline silk with different oligomers of isoprene (2200 and 5000 Da) having reactive end groups. The synthetic multiblock polymer displayed similar secondary structure to that of natural spidroin, the peptide segment forming a beta-sheet structure. These multiblock polymers showed a significant solubility in the component solvents. Moreover, the copolymer which contains the short polyisoprene segment would aggregate into a micellar-like structure, as observed by TEM.  相似文献   

14.
Two polyacrylamide-rich, non-toxic, gelable copolymers have been developed to facilitate the formation of user-cast electrophoresis gels. Gel formation is accomplished with dithiothreitol as the chemical cross-linking agent. The higher molecular weight copolymer is suitable for casting gels of copolymer concentration less than or equal to 8%. Gels of 3% concentration are excellent for resolving dsDNA fragments up to approximately 3000 base pairs. Because the cross-linking chemistry is not thwarted by the presence of urea, it is also possible to cast denaturing gels with these copolymers.  相似文献   

15.
Two prototype triblock (ABA) copolymers of poly[(γ-benzyl-l-glutamate) x (butadiene/acrylonitrile)y (γ-benzyl-l-glutamate)x] have been synthesized and characterized. They were prepared by reacting a primary amine capped butadiene/acrylonitrile (ATBN) polymer with the N-carboxy anhydride of γ-benzyl-l-glutamate. The copolymers were ~38 000 (copolymer 1) and 74 000 (copolymer II) molecular weight. X-ray diffraction and Fourier Transform infrared spectroscopy of films cast from dioxane (preferential for PBLG) and chloroform (non-preferential) show the benzyl glutamate segments to be predominantly α-helical and disordered α-helical, respectively. Electron microscopy of osmium tetroxide strained films cast from dioxane revealed lamellar domain formation indicative of phase separation. The midblock butadiene layers were ~150 Å thick while the alternating benzyl glutamate layers were 300 and 500 Å thick for copolymers I and II, respectively. Films cast from chloroform exhibit a nearly homogeneous morphology, indicative of considerable phase mixing. Dynamic mechanical spectroscopy of the copolymers also revealed a dependence on morphology. The side chain transition of the benzyl glutamate appeared as a single peak when the copolymers were cast from dioxane and a double peak when the copolymers were cast from chloroform.  相似文献   

16.
The synthesis of thermosensitive copolymers based on pullulan and polyether amine was performed in water using a water-soluble carbodiimide and N-hydroxysuccinimide as activators. Jeffamine® M2005 was chosen as a polyether to impart thermosensitive character to the copolymer. Pullulan was modified into carboxymethylpullulan, to bring carboxylate groups to the polysaccharide so as to further the grafting reaction. The copolymers were characterized by FT-IR, 1H NMR spectroscopy and molecular weights measurements (by SEC coupled with MALS/DRI/Viscometer lines). The thermosensitive behaviour of CMP-g-M2005 copolymers was studied by fluorescence spectroscopy of pyrene, by rheometry and microDSC measurements. The sol-gel transition temperature was found dependent on the solvent, the grafting degree of M2005 and the concentration of the copolymer. For example it was 35 °C in water, 28 °C in acid buffer (0.1 M, pH 5.4) and 26 °C in saline phosphate buffer (0.15 M, pH 7.4) for a grafting degree of 0.20 at a concentration of 5 wt%.  相似文献   

17.
Two synthetic routes to folic acid (FA)-functionalized diblock copolymers based on 2-(methacryloyloxy)ethyl phosphorylcholine [MPC] and either 2-(dimethylamino)ethyl methacrylate [DMA] or 2-(diisopropylamino)ethyl methacrylate [DPA] were explored. The most successful route involved atom transfer radical polymerization (ATRP) of MPC followed by the tertiary amine methacrylate using a 9-fluorenylmethyl chloroformate (Fmoc)-protected ATRP initiator. Deprotection of the Fmoc groups produced terminal primary amine groups, which were conjugated with FA to produce two series of novel FA-functionalized biocompatible block copolymers. Nonfunctionalized MPC-DMA diblock copolymers have been previously shown to be effective synthetic vectors for DNA condensation; thus, these FA-functionalized MPC-DMA diblock copolymers appear to be well suited to gene therapy applications based on cell targeting strategies. In contrast, the FA-MPC-DPA copolymers are currently being evaluated as pH-responsive micellar vehicles for the delivery of highly hydrophobic anticancer drugs.  相似文献   

18.
A series of novel amphiphilic triblock copolymers of poly(ethyl ethylene phosphate) and poly(-caprolactone) (PEEP-PCL-PEEP) with various PEEP and PCL block lengths were synthesized and characterized. These triblock copolymers formed micelles composed of a hydrophobic core of poly(-caprolactone) (PCL) and a hydrophilic shell of poly(ethyl ethylene phosphate) (PEEP) in aqueous solution. The micelle morphology was spherical, determined by transmission electron microscopy. It was found that the size and critical micelle concentration values of the micelles depended on both hydrophobic PCL block length and PEEP hydrophilic block length. The in vitro degradation characteristics of the triblock copolymers were investigated in micellar form, showing that these copolymers were completely biodegradable under enzymatic catalysis of Pseudomonas lipase and phosphodiesterase I. These triblock copolymers were used for paclitaxel (PTX) encapsulation to demonstrate the potential in drug delivery. PTX was successfully loaded into the micelles, and the in vitro release profile was found to be correlative to the polymer composition. These biodegradable triblock copolymer micelles are potential as novel carriers for hydrophobic drug delivery.  相似文献   

19.
Sun J  Deng C  Chen X  Yu H  Tian H  Sun J  Jing X 《Biomacromolecules》2007,8(3):1013-1017
Self-assembling of novel biodegradable ABC-type triblock copolymer poly(ethylene glycol)-poly(L-lactide)-poly(L-glutamic acid) (PEG-PLLA-PLGA) is studied. In aqueous media, it self-assembles into a spherical micelle with the hydrophobic PLLA segment in the core and the two hydrophilic segments PEG and PLGA in the shell. With the lengths of PEG and PLLA blocks fixed, the diameter of the micelles depends on the length of the PLGA block and on the volume ratio of H(2)O/dimethylformamide (DMF) in the media. When the PLGA block is long enough, morphology of the self-assembly is pH-dependent. It assembles into the spherical micelle in aqueous media at pH 4.5 and into the connected rod at or below pH 3.2. The critical micelle concentration (cmc) of the copolymer changes accordingly with decreasing solution pH. Both aggregation states can convert to each other at the proper pH value. This reversibility is ascribed to the dissociation and neutralization of the COOH groups in the LGA residues. When the PLGA block is short compared to the PEG or PLLA block, it assembles only into the spherical micelle at various pH values.  相似文献   

20.
A bifunctional copolymer series of (4-vinylbenzyl)phosphonic acid diethylester and N-acryloxysuccinimide was developed as an interlayer with the aim of immobilizing proteins on titanium surfaces. Copolymers with varying compositions were synthesized, and an alternating copolymerization of the two monomers was found. The copolymers form ultrathin films of about 2-8 nm on titanium surfaces in a simple dipping process, as estimated from the attenuation of the titanium X-ray photoelectron spectroscopy (Ti-XPS) signal. The films were characterized by infrared spectroscopy, XPS, and time-of-flight secondary ion mass spectrometry. The results indicate that the immobilization is due to phosphonate groups, and thus the phosphonate content of the copolymers is decisive for the final film thickness. These polymer films were examined for their potential protein binding capacity by using trifluoroethylamine derivatization and subsequent XPS analysis as a reactivity assay.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号