首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Present whole-cell patch-clamp methodology has only moderate consistency and throughput, rendering impractical functional measurements on large numbers of ion channel ligands or on large numbers of unknown or mutant channel genes. In the population patch clamp (PPC) described herein, a single voltage-clamp amplifier sums the whole-cell currents from multiple cells at once, each sealed to a separate aperture in a planar substrate well. The resulting ensemble currents are more consistent from well to well, and the success rate for each recording attempt is >95%. The PPC was implemented by modifying the PatchPlate substrate and amplifiers in the IonWorks patch-clamp instrument. The increased data consistency and likelihood of a successful recording in each well, combined with 384-well measurements in parallel, allow the direct electrophysiological recording of thousands of ensemble ionic currents per day. Therapeutic groups in drug discovery programs require this order of throughput to screen directed compound libraries against ion channel targets. The potential for studying the function of large numbers of ion channel mutants may be realized with the technique. The procedure incorporates subtraction methods that correct for expected distortions and also reliably produces data that agree with previous patch-clamp studies.  相似文献   

2.
We report on a simple and high‐yield manufacturing process for silicon planar patch‐clamp chips, which allow low capacitance and series resistance from individually identified cultured neurons. Apertures are etched in a high‐quality silicon nitride film on a silicon wafer; wells are opened on the backside of the wafer by wet etching and passivated by a thick deposited silicon dioxide film to reduce the capacitance of the chip and to facilitate the formation of a high‐impedance cell to aperture seal. The chip surface is suitable for culture of neurons over a small orifice in the substrate with minimal leak current. Collectively, these features enable high‐fidelity electrophysiological recording of transmembrane currents resulting from ion channel activity in cultured neurons. Using cultured Lymnaea neurons we demonstrate whole‐cell current recordings obtained from a voltage‐clamp stimulation protocol, and in current‐clamp mode we report action potentials stimulated by membrane depolarization steps. Despite the relatively large size of these neurons, good temporal and spatial control of cell membrane voltage was evident. To our knowledge this is the first report of recording of ion channel activity and action potentials from neurons cultured directly on a planar patch‐clamp chip. This interrogation platform has enormous potential as a novel tool to readily provide high‐information content during pharmaceutical assays to investigate in vitro models of disease, as well as neuronal physiology and synaptic plasticity. Biotechnol. Bioeng. 2010;107:593–600. © 2010 Wiley Periodicals, Inc.  相似文献   

3.
Population patch clamp (PPC) is a novel high throughput planar array electrophysiology technique that allows ionic currents to be recorded from populations of cells under voltage clamp. For the drug discovery pharmacologist, PPC promises greater speed and precision than existing methods for screening compounds at voltage-gated ion channel targets. Moreover, certain constitutively active or slow-ligand gated channels that have hitherto proved challenging to screen with planar array electrophysiology (e.g. SK/IK channels) are now more accessible. In this article we review early findings using PPC and provide a perspective on its likely impact on ion channel drug discovery. To support this, we include some new data on ion channel assay duplexing and on modulator assays, approaches that have thus far not been described.  相似文献   

4.
Planar patch clamp has revolutionized characterization of ion channel behavior in drug discovery primarily via advancement in high throughput. Lab use of planar technology, however, addresses different requirements and suffers from inflexibility to enable wide range of interrogation via a single cell. This work presents integration of planar patch clamp with microfluidics, achieving multiple solution exchanges for tailor-specific measurement and allowing rapid replacement of the cell-contacting aperture. Studies via endogenously expressed ion channels in HEK 293T cells were commenced to characterize the device. Results reveal the microfluidic concentration generator produces distinct solution/drug combination/concentrations on-demand. Volume-regulated chloride channel and voltage-gated potassium channels in HEK 293T cells immersed in generated solutions under various osmolarities or drug concentrations show unique channel signature under specific condition. Excitation and blockage of ion channels in a single cell was demonstrated via serial solution exchange. Robustness of the reversible bonding and ease of glass substrate replacement were proven via repeated usage of the integrated device. The present approach reveals the capability and flexibility of integrated microfluidic planar patch-clamp system for ion channel assays.  相似文献   

5.
6.
Ion channels are integral membrane proteins that regulate the flux of ions across the cell membrane. They are involved in nearly all physiological processes, and malfunction of ion channels has been linked to many diseases. Until recently, high-throughput screening of ion channels was limited to indirect, e.g. fluorescence-based, readout technologies. In the past years, direct label-free biophysical readout technologies by means of electrophysiology have been developed. Planar patch-clamp electrophysiology provides a direct functional label-free readout of ion channel function in medium to high throughput. Further electrophysiology features, including temperature control and higher-throughput instruments, are continually being developed. Electrophysiological screening in a 384-well format has recently become possible. Advances in chip and microfluidic design, as well as in cell preparation and handling, have allowed challenging cell types to be studied by automated patch clamp. Assays measuring action potentials in stem cell-derived cardiomyocytes, relevant for cardiac safety screening, and neuronal cells, as well as a large number of different ion channels, including fast ligand-gated ion channels, have successfully been established by automated patch clamp. Impedance and multi-electrode array measurements are particularly suitable for studying cardiomyocytes and neuronal cells within their physiological network, and to address more complex physiological questions. This article discusses recent advances in electrophysiological technologies available for screening ion channel function and regulation.  相似文献   

7.
Bayesian restoration of single-channel patch clamp recordings.   总被引:3,自引:0,他引:3  
D R Fredkin  J A Rice 《Biometrics》1992,48(2):427-448
The technique of patch clamp recording makes possible the measurement of current flowing through a single ion channel in a cell membrane. Examination of such recordings suggests that the current is quantal in nature, alternating in a seemingly random manner between "on" and "off," but the recordings are corrupted by noise from a variety of sources. In this paper we propose and illustrate methods for restoring the underlying quantal signal from such noisy measurements. The methods use a Markov chain prior distribution for the underlying quantal process and base the restoration on the resulting posterior distribution.  相似文献   

8.
The biophysical properties and cellular distribution of ion channels largely determine the input/output relationships of electrically excitable cells. A variety of patch pipette voltage clamp techniques are available to characterize ionic currents. However, when used by themselves, such techniques are not well suited to the task of mapping low-density channel distributions. We describe here a new voltage clamp method (the whole cell loose patch (WCLP) method) that combines whole-cell recording through a tight-seal pipette with focal extracellular stimulation through a loose-seal pipette. By moving the stimulation pipette across the cell surface and using a stationary whole-cell pipette to record the evoked patch currents, this method should be suitable for mapping channel distributions, even on large cells possessing low channel densities. When we applied this method to the study of currents in cultured chick myotubes, we found that the cell cable properties and the series resistance of the recording pipette caused significant filtering of the membrane currents, and that the filter characteristics depended in part upon the distance between the stimulating and recording pipettes. We describe here how we determined the filter impulse response for each loose-seal pipette placement and subsequently recovered accurate estimates of patch membrane current through deconvolution.  相似文献   

9.
The electrical properties of gap junctions in cell pairs are usually studied by means of the dual voltage clamp method. The voltage across the junctional channels, however, cannot be controlled adequately due to an artificial resistance and a natural resistance, both connected in series with the gap junction. The access resistances to the cell interior of the recording pipettes make up the artificial resistance. The natural resistance consists of the cytoplasmic access resistances to the tightly packed gap junction channels in both cells. A mathematical model was constructed to calculate the actual voltage across each gap junction channel. The stochastic open-close kinetics of the individual channels were incorporated into this model. It is concluded that even in the ideal case of complete compensation of pipette series resistance, the number of channels comprised in the gap junction may be largely underestimated. Furthermore, normalized steady-state junctional conductance may be largely overestimated, so that transjunctional voltage dependence is easily masked. The model is used to discuss conclusions drawn from dual voltage clamp experiments and offers alternative explanations for various experimental observations.  相似文献   

10.
Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.  相似文献   

11.
Short generation times and facile genetic techniques make the fruit fly Drosophila melanogaster an excellent genetic model in fundamental neuroscience research. Ion channels are the basis of all behavior since they mediate neuronal excitability. The first voltage gated ion channel cloned was the Drosophila voltage gated potassium channel Shaker1,2. Toward understanding the role of ion channels and membrane excitability for nervous system function it is useful to combine powerful genetic tools available in Drosophila with in situ patch clamp recordings. For many years such recordings have been hampered by the small size of the Drosophila CNS. Furthermore, a robust sheath made of glia and collagen constituted obstacles for patch pipette access to central neurons. Removal of this sheath is a necessary precondition for patch clamp recordings from any neuron in the adult Drosophila CNS. In recent years scientists have been able to conduct in situ patch clamp recordings from neurons in the adult brain3,4 and ventral nerve cord of embryonic5,6, larval7,8,9,10, and adult Drosophila11,12,13,14. A stable giga-seal is the main precondition for a good patch and depends on clean contact of the patch pipette with the cell membrane to avoid leak currents. Therefore, for whole cell in situ patch clamp recordings from adult Drosophila neurons must be cleaned thoroughly. In the first step, the ganglionic sheath has to be treated enzymatically and mechanically removed to make the target cells accessible. In the second step, the cell membrane has to be polished so that no layer of glia, collagen or other material may disturb giga-seal formation. This article describes how to prepare an identified central neuron in the Drosophila ventral nerve cord, the flight motoneuron 5 (MN515), for somatic whole cell patch clamp recordings. Identification and visibility of the neuron is achieved by targeted expression of GFP in MN5. We do not aim to explain the patch clamp technique itself.  相似文献   

12.
Whole cell patch clamp recording performed on a planar glass chip   总被引:6,自引:0,他引:6       下载免费PDF全文
The state of the art technology for the study of ion channels is the patch clamp technique. Ion channels mediate electrical current flow, have crucial roles in cellular physiology, and are important drug targets. The most popular (whole cell) variant of the technique detects the ensemble current over the entire cell membrane. Patch clamping is still a laborious process, requiring a skilled experimenter to micromanipulate a glass pipette under a microscope to record from one cell at a time. Here we report on a planar, microstructured quartz chip for whole cell patch clamp measurements without micromanipulation or visual control. A quartz substrate of 200 microm thickness is perforated by wet etching techniques resulting in apertures with diameters of approximately 1 microm. The apertures replace the tip of glass pipettes commonly used for patch clamp recording. Cells are positioned onto the apertures from suspension by application of suction. Whole cell recordings from different cell types (CHO, N1E-115 neuroblastoma) are performed with microstructured chips studying K(+) channels and voltage gated Ca(2+) channels.  相似文献   

13.
Microfabricated platform for studying stem cell fates   总被引:1,自引:0,他引:1  
Platforms that allow parallel, quantitative analysis of single cells will be integral to realizing the potential of postgenomic biology. In stem cell biology, the study of clonal stem cells in multiwell formats is currently both inefficient and time-consuming. Thus, to investigate low-frequency events of interest, large sample sizes must be interrogated. We report a simple, versatile, and efficient micropatterned arraying system conducive to the culture and dynamic monitoring of stem cell proliferation. This platform enables: 1) parallel, automated, long-term ( approximately days to weeks), live-cell microscopy of single cells in culture; 2) tracking of individual cell fates over time (proliferation, apoptosis); and 3) correlation of differentiated progeny with founder clones. To achieve these goals, we used microfabrication techniques to create an array of approximately 10,000 microwells on a glass coverslip. The dimensions of the wells are tunable, ranging from 20 to >500 microm in diameter and 10-500 microm in height. The microarray can be coated with adhesive proteins and is integrated into a culture chamber that permits rapid (approximately min), addressable monitoring of each well using a standard programmable microscope stage. All cells share the same media (including paracrine survival signals), as opposed to cells in multiwell formats. The incorporation of a coverslip as a substrate also renders the platform compatible with conventional, high-magnification light and fluorescent microscopy. We validated this approach by analyzing the proliferation dynamics of a heterogeneous adult rat neural stem cell population. Using this platform, one can further interrogate the response of distinct stem cell subpopulations to microenvironmental cues (mitogens, cell-cell interactions, and cell-extracellular matrix interactions) that govern their behavior. In the future, the platform may also be adapted for the study of other cell types by tailoring the surface coatings, microwell dimensions, and culture environment, thereby enabling parallel investigation of many distinct cellular responses.  相似文献   

14.
S Eriksen  S Olsnes  K Sandvig    O Sand 《The EMBO journal》1994,13(19):4433-4439
Receptor-dependent translocation of diphtheria toxin across the surface membrane of Vero cells was studied using patch clamp techniques. Translocation was induced by exposing cells with surface-bound toxin to low pH. Whole cell current and voltage clamp recordings showed that toxin translocation was associated with membrane depolarization and increased membrane conductance. The conductance increase was voltage independent, with a reversal potential of approximately 15 mV. This value was unaffected by changing the Cl- gradient across the membrane and microfluorometric measurements showed that the cytosolic Ca2+ concentration was only marginally elevated by the translocation. The conductance increase is thus mainly due to monovalent cations. Exposing outside-out and cell-attached patches with bound toxin to low pH induced a new type of ion channel in the membrane. The channel current was inward at negative membrane potentials and the single channel conductance was approximately 30 pS. This value is about three times larger than for receptor-independent channels induced by diphtheria toxin or toxin fragments in artificial lipid membranes.  相似文献   

15.
Obtaining high-throughput electrophysiological recordings is an ongoing challenge in ion channel biophysics and drug discovery. One particular area of development is the replacement of glass pipettes with planar devices in order to increase throughput. However, successful patch-clamp recordings depend on a surface coating which ideally should promote and stabilize giga-seal formation. Here, we present data supporting the use of a structured SiO(2) coating to improve the ability of cells to form a "seal" with a planar patch-clamp substrate. The method is based on a correlation study taking into account structure and size of the pores, surface roughness and chip capacitance. The influence of these parameters on the quality of the seal was assessed. Plasma-enhanced chemical vapour deposition (PECVD) of SiO(2) led to an hourglass structure of the pore and a tighter seal than that offered by a flat, thermal SiO(2) surface. The performance of PECVD chips was validated by recording recombinant potassium channels, BK(Ca), expressed in stable HEK-293 cell lines and in inducible CHO cell lines and low conductance IRK1, and endogenous cationic currents from CHO cells. This multiparametric investigation led to the production of improved chips for planar patch-clamp applications which allow electrophysiological recordings from a wide range of cell lines.  相似文献   

16.
Due to its exquisite sensitivity and the ability to monitor and control individual cells at the level of ion channels, patch-clamping is the gold standard of electrophysiology applied to disease models and pharmaceutical screens alike 1. The method traditionally involves gently contacting a cell with a glass pipette filled by a physiological solution in order to isolate a patch of the membrane under its apex 2. An electrode inserted in the pipette captures ion-channel activity within the membrane patch or, when ruptured, for the whole cell. In the last decade, patch-clamp chips have been proposed as an alternative 3, 4: a suspended film separates the physiological medium from the culture medium, and an aperture microfabricated in the film replaces the apex of the pipette. Patch-clamp chips have been integrated in automated systems and commercialized for high-throughput screening 5. To increase throughput, they include the fluidic delivery of cells from suspension, their positioning on the aperture by suction, and automated routines to detect cell-to-probe seals and enter into whole cell mode. We have reported on the fabrication of a silicon patch-clamp chip with optimized impedance and orifice shape that permits the high-quality recording of action potentials in cultured snail neurons 6; recently, we have also reported progress towards interrogating mammalian neurons 7. Our patch-clamp chips are fabricated at the Canadian Photonics Fabrication Centre 8, a commercial foundry, and are available in large series. We are eager to engage in collaborations with electrophysiologists to validate the use of the NRCC technology in different models. The chips are used according to the general scheme represented in Figure 1: the silicon chip is at the bottom of a Plexiglas culture vial and the back of the aperture is connected to a subterranean channel fitted with tubes at either end of the package. Cells are cultured in the vial and the cell on top of the probe is monitored by a measuring electrode inserted in the channel.The two outside fluidic ports facilitate solution exchange with minimal disturbance to the cell; this is an advantage compared to glass pipettes for intracellular perfusion. 相似文献   

17.
The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ’s cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.  相似文献   

18.
We demonstrate the basic techniques for presynaptic patch clamp recording at the calyx of Held, a mammalian central nervous system nerve terminal. Electrical recordings from the presynaptic terminal allow the measurement of action potentials, calcium channel currents, vesicle fusion (exocytosis) and subsequent membrane uptake (endocytosis). The fusion of vesicles containing neurotransmitter causes the vesicle membrane to be added to the cell membrane of the calyx. This increase in the amount of cell membrane is measured as an increase in capacitance. The subsequent reduction in capacitance indicates endocytosis, the process of membrane uptake or removal from the calyx membrane. Endocytosis, is necessary to maintain the structure of the calyx and it is also necessary to form vesicles that will be filled with neurotransmitter for future exocytosis events. Capacitance recordings at the calyx of Held have made it possible to directly and rapidly measure vesicular release and subsequent endocytosis in a mammalian CNS nerve terminal. In addition, the corresponding postsynaptic activity can be simultaneously measured by using paired recordings. Thus a complete picture of the presynaptic and postsynaptic electrical activity at a central nervous system synapse is achievable using this preparation. Here, the methods for slice preparation, morphological features for identification of calyces of Held, basic patch clamping techniques, and examples of capacitance recordings to measure exocytosis and endocytosis are presented.  相似文献   

19.
Stem cells in vivo are housed within a functional microenvironment termed the “stem cell niche.” As the niche components can modulate stem cell behaviors like proliferation, migration and differentiation, evaluating these components would be important to determine the most optimal platform for their maintenance or differentiation. In this review, we have discussed methods and technologies that have aided in the development of high throughput screening assays for stem cell research, including enabling technologies such as the well-established multiwell/microwell plates and robotic spotting, and emerging technologies like microfluidics, micro-contact printing and lithography. We also discuss the studies that utilized high throughput screening platform to investigate stem cell response to extracellular matrix, topography, biomaterials and stiffness gradients in the stem cell niche. The combination of the aforementioned techniques could lay the foundation for new perspectives in further development of high throughput technology and stem cell research.  相似文献   

20.
Larval zebrafish represent the first vertebrate model system to allow simultaneous patch clamp recording from a spinal motor-neuron and target muscle. This is a direct consequence of the accessibility to both cell types and ability to visually distinguish the single segmental CaP motor-neuron on the basis of morphology and location. This video demonstrates the microscopic methods used to identify a CaP motor-neuron and target muscle cells as well as the methodologies for recording from each cell type. Identification of the CaP motor-neuron type is confirmed by either dye filling or by the biophysical features such as action potential waveform and cell input resistance. Motor-neuron recordings routinely last for one hour permitting long-term recordings from multiple different target muscle cells. Control over the motor-neuron firing pattern enables measurements of the frequency-dependence of synaptic transmission at the neuromuscular junction. Owing to a large quantal size and the low noise provided by whole cell voltage clamp, all of the unitary events can be resolved in muscle. This feature permits study of basic synaptic properties such as release properties, vesicle recycling, as well as synaptic depression and facilitation. The advantages offered by this in vivo preparation eclipse previous neuromuscular model systems studied wherein the motor-neurons are usually stimulated by extracellular electrodes and the muscles are too large for whole cell patch clamp. The zebrafish preparation is amenable to combining electrophysiological analysis with a wide range of approaches including transgenic lines, morpholino knockdown, pharmacological intervention and in vivo imaging. These approaches, coupled with the growing number of neuromuscular disease models provided by mutant lines of zebrafish, open the door for new understanding of human neuromuscular disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号