首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Chemokine-induced eosinophil chemotaxis is mediated primarily through the C-C chemokine receptor, CCR3. We have now detected CCR3 immunoreactivity on epithelial cells in biopsies of patients with asthma and other respiratory diseases. CCR3 mRNA was detected by Northern blot analysis after TNF-alpha stimulation of the human primary bronchial epithelial cells as well as the epithelial cell line, BEAS-2B; IFN-gamma potentiated the TNF-alpha-induced expression. Western blots and flow cytometry confirmed the expression of CCR3 protein. This receptor is functional based on studies demonstrating eotaxin-induced intracellular Ca(2+) flux and tyrosine phosphorylation of cellular proteins. The specificity of this functional response was confirmed by blocking these signaling events with anti-CCR3 mAb (7B11) or pertussis toxin. Furthermore, (125)I-eotaxin binding assay confirmed that CCR3 expressed on epithelial cells have the expected ligand specificity. These studies indicate that airway epithelial cells express CCR3 and suggest that CCR3 ligands may influence epithelial cell functions.  相似文献   

2.
We describe a small molecule chemokine receptor antagonist, UCB35625 (the trans-isomer J113863 published by Banyu Pharmaceutical Co., patent WO98/04554), which is a potent, selective inhibitor of CCR1 and CCR3. Nanomolar concentrations of UCB35625 were sufficient to inhibit eosinophil shape change responses to MIP-1alpha, MCP-4, and eotaxin, while greater concentrations could inhibit the chemokine-induced internalization of both CCR1 and CCR3. UCB35625 also inhibited the CCR3-mediated entry of the human immunodeficiency virus-1 primary isolate 89.6 into the glial cell line, NP-2 (IC(50) = 57 nm). Chemotaxis of transfected cells expressing either CCR1 or CCR3 was inhibited by nanomolar concentrations of the compound (IC(50) values of CCR1-MIP-1alpha = 9.6 nm, CCR3-eotaxin = 93.7 nm). However, competitive ligand binding assays on the same transfectants revealed that considerably larger concentrations of UCB35625 were needed for effective ligand displacement than were needed for the inhibition of receptor function. Thus, it appears that the compound may interact with a region present in both receptors that inhibits the conformational change necessary to initiate intracellular signaling. By virtue of its potency at the two major eosinophil chemokine receptors, UCB35625 is a prototypic therapy for the treatment of eosinophil-mediated inflammatory disorders, such as asthma and as an inhibitor of CCR3-mediated human immunodeficiency virus-1 entry.  相似文献   

3.
4.
The structure-activity relationships of xanthene carboxamide derivatives on the CCR1 receptor binding affinity and the functional antagonist activity were described. Previously, we reported a quaternarized xanthen-9-carboxamide 1 as a potent human CCR1 receptor antagonist that was derived from a xanthen-9-carboxamide lead 2a. Further derivatization of 2a focusing on installing an additional substituent into the xanthene ring resulted in the identification of 2b-1 with IC(50) values of 1.8nM and 13nM in the binding assay using human CCR1 receptors transfected CHO cells and in the functional assay using U937 cells expressing human CCR1 receptors, respectively.  相似文献   

5.
In vitro and in vivo characterization of a novel CCR3 antagonist, YM-344031   总被引:3,自引:0,他引:3  
Eosinophils play a prominent proinflammatory role in a broad range of diseases, including atopic dermatitis and asthma. Eotaxin-1 and its receptor CCR3 are implicated in the recruitment of eosinophils from blood into inflammatory tissues, therefore inhibition of Eotaxin-1/CCR3 interaction may have therapeutic potential for allergic inflammation with eosinophil infiltration. YM-344031, a novel and selective small molecule CCR3 antagonist, potently inhibited ligand binding (IC(50)=3.0nM), ligand-induced Ca(2+) flux (IC(50)=5.4nM), and the chemotaxis of human CCR3-expressing cells (IC(50)=19.9nM). YM-344031 (1-10mg/kg) orally administered to cynomolgus monkeys significantly inhibited Eotaxin-1-induced eosinophil shape change in whole blood. Additionally, orally administered YM-344031 (100mg/kg) prevented both immediate- and late-phase allergic skin reactions in a mouse allergy model. YM-344031 therefore has potential as a novel and orally available compound for the treatment of allergic inflammation, such as atopic dermatitis and asthma.  相似文献   

6.
High-content screening, typically defined as automated fluorescence microscopy combined with image analysis, is now well established as a means to study test compound effects in cellular disease-modeling systems. In this work, the authors establish several high-content screening assays in the 384-well format to measure the activation of the CC-type chemokine receptors 2B and 3 (CCR2B, CCR3). As a cellular model system, the authors use Chinese hamster ovary cells, stably transfected with 1 of the respective receptors. They characterize receptor stimulation by human monocyte chemoattractant protein-1 for CCR2B and by human eotaxin-1 for CCR3: Receptor internalization and receptor-induced phosphorylation of ERK1/2 (pERK) were quantified using fluorescence imaging and image analysis. The 4 assay formats were robust, displayed little day-to-day variability, and delivered good Z' statistics for both CCRs. For each of the 2 receptors, the authors evaluated the potency of inhibitory compounds in the internalization format and the pERK assay and compared the results with those from other assays (ligand displacement binding, Ca(2+) mobilization, guanosine triphosphate exchange, chemotaxis). Both physiological agonists and test compounds differed significantly with respect to potencies and efficacies in the various profiling assays. The diverse assay formats delivered partially overlapping and partially complementary information, enabling the authors to reduce the probability of test compound-related technology artifacts and to specify the mode of action for individual test compounds. Transfer of the high-content screening format to a fully automated medium-throughput screening platform for CCR3 enabled the profiling of large compound numbers with respect to G protein signaling and possible tolerance-inducing liabilities.  相似文献   

7.
Chemokine receptor 2 (CCR2) is a G-protein coupled receptor (GPCR) and a crucial target for various inflammatory and autoimmune diseases. The structure based antagonists design for many GPCRs, including CCR2, is restricted by the lack of an experimental three dimensional structure. Homology modeling is widely used for the study of GPCR-ligand binding. Since there is substantial diversity for the ligand binding pocket and binding modes among GPCRs, the receptor-ligand binding mode predictions should be derived from homology modeling with supported ligand information. Thus, we modeled the binding of our proprietary CCR2 antagonist using ligand supported homology modeling followed by consensus scoring the docking evaluation based on all modeled binding sites. The protein-ligand model was then validated by visual inspection of receptor-ligand interaction for consistency of published site-directed mutagenesis data and virtual screening a decoy compound database. This model was able to successfully identify active compounds within the decoy database. Finally, additional hit compounds were identified through a docking-based virtual screening of a commercial database, followed by a biological assay to validate CCR2 inhibitory activity. Thus, this procedure can be employed to screen a large database of compounds to identify new CCR2 antagonists.  相似文献   

8.
Eosinophils are major effector cells implicated in a number of chronic inflammatory diseases in humans, particularly bronchial asthma and allergic rhinitis. The beta-chemokine receptor C-C chemokine receptor 3 (CCR3) provides a mechanism for the selective recruitment of eosinophils into tissue and thus has recently become an attractive biological target for therapeutic intervention. In order to develop in vivo models of inflammatory diseases, it is essential to identify and characterize the homologues of human eotaxin (C-C chemokine ligand 11) and CCR3 from other species, such as non-human primates. Accordingly, we cloned the macaque eotaxin and CCR3 genes and revealed that they were 91 and 92% identical at the amino acid level to their human homologues, respectively. Macaque CCR3 expressed in the murine pre-B L1-2 cell line bound macaque eotaxin with high affinity (K(d) = 0.1 nm) and exhibited a robust eotaxin-induced Ca(2+) flux and chemotaxis. Characterization of beta-chemokines on native macaque CCR3 on eosinophils was performed by means of eotaxin-induced shape change in whole blood using a novel signaling assay known as gated autofluorescence forward scatter. Additionally, mAbs were raised against macaque CCR3 using two different immunogens: a 30-amino acid synthetic peptide derived from the predicted NH(2) terminus of macaque CCR3 and intact macaque CCR3-transfected cells. These anti-macaque CCR3 monoclonal antibodies exhibited potent antagonist activity in receptor binding and functional assays. The characterization of the macaque eotaxin/CCR3 axis and development of antagonistic anti-macaque CCR3 monoclonal antibodies will facilitate the development of CCR3 small molecule antagonists with the hope of ameliorating chronic inflammatory diseases in humans.  相似文献   

9.
CCR3 antagonist leads with IC(50) values in the microM range were converted into low nM binding compounds that displayed in vitro inhibition of human eosinophil chemotaxis induced by human eotaxin. In particular, 4-benzylpiperidin-1-yl-n-propylureas and erythro-3-(4-benzyl-2-(alpha-hydroxyalkyl)piperidin-1-yl)-n-propylureas (obtained via Beak reaction of N-BOC-4-benzylpiperidine) exhibited single digit nanomolar IC(50) values for CCR3.  相似文献   

10.
Human CC chemokine receptor (CCR) 5 is a G protein-coupled receptor involved in a broad range of human diseases that mediates HIV-1 viral entry into cells. Certain small molecule receptor antagonists to CCR5 have been useful in therapy for these diseases. In this study, CCR5-expressing CHO cells (CHO/CCR5 cells) were used to select CCR5-binding peptides from a phage-displayed 12-mers peptide library. All of the 30 clones selected from the library showed specific binding to CHO/CCR5 cells by enzyme linked immunosorbent assay (ELISA). Seventeen out of the 30 clones shared the amino acid motif AFDWTFVPSLIL. The motif-containing phages and synthetic peptide AFDWTFVPSLIL blocked the binding of mAb 2D7 to CHO/CCR5 cells and competitively inhibited the ability of chemokine regulated on activation normal T cell expressed and secreted (RANTES) binding to CHO/CCR5 cells. Furthermore, the peptide AFDWTFVPSLIL also inhibited RANTES induced increase in the intracellular Ca2+ level in CHO/CCR5 cells. These results suggest that the peptide AFDWTFVPSLIL was specific for CCR5 and that it might become a CCR5 antagonist.  相似文献   

11.
N,N'-Disubstituted homopiperazine derivatives have been discovered as CC-chemokine receptor 2b (CCR2b) inhibitors with submicromolar activity in the CCR2b binding assay. A 4-substituted benzyl group on one homopiperazine nitrogen was an important moiety for binding affinity to the CCR2b receptor. The SAR for CCR2b binding affinity correlated inversely with the sigma factor of the functional group on this benzyl moiety. Introduction of hydroxy groups to appropriate positions in the 3,3-diphenylpropyl group on the other homopiperazine nitrogen increased CCR2b binding activity. The synthesis of an informer library to search for alternative substructures is also described.  相似文献   

12.
Modification of the amino terminus of regulated on activated normal T-cell expressed (RANTES) has been shown to have a significant effect on biological activity and produces proteins with antagonist properties. Two amino-terminally modified RANTES proteins, Met-RANTES and aminooxypentane-RANTES (AOP-RANTES), exhibit differential inhibitory properties on both monocyte and eosinophil chemotaxis. We have investigated their binding properties as well as their ability to activate the RANTES receptors CCR1, CCR3, and CCR5 in cell lines overexpressing these receptors. We show that Met-RANTES has weak activity in eliciting a calcium response in Chinese hamster ovary cells expressing CCR1, CCR3, and CCR5, whereas AOP-RANTES has full agonist activity on CCR5 but is less effective on CCR3 and CCR1. Their ability to induce chemotaxis of the murine pre-B lymphoma cell line, L1.2, transfected with the same receptors, consolidates these results. Monocytes have detectable mRNA for CCR1, CCR2, CCR3, CCR4, and CCR5, and they respond to the ligands for these receptors in chemotaxis but not always in calcium mobilization. AOP-RANTES does not induce calcium mobilization in circulating monocytes but is able to do so as these cells acquire the macrophage phenotype, which coincides with a concomitant up-regulation of CCR5. We have also tested the ability of both modified proteins to induce chemotaxis of freshly isolated monocytes and eosinophils. Cells from most donors do not respond, but occasionally cells from a particular donor do respond, particularly to AOP-RANTES. We therefore hypothesize that the occasional activity of AOP-RANTES to induce leukocyte chemotaxis is due to donor to donor variation of receptor expression.  相似文献   

13.
Monocyte chemoattracant-1 (MCP-1) stimulates leukocyte chemotaxis to inflammatory sites, such as rheumatoid arthritis, atherosclerosis, and asthma, by use of the MCP-1 receptor, CCR2, a member of the G-protein-coupled seven-transmembrane receptor superfamily. These studies identified a family of antagonists, spiropiperidines. One of the more potent compounds blocks MCP-1 binding to CCR2 with a K(d) of 60 nm, but it is unable to block binding to CXCR1, CCR1, or CCR3. These compounds were effective inhibitors of chemotaxis toward MCP-1 but were very poor inhibitors of CCR1-mediated chemotaxis. The compounds are effective blockers of MCP-1-driven inhibition of adenylate cyclase and MCP-1- and MCP-3-driven cytosolic calcium influx; the compounds are not agonists for these pathways. We showed that glutamate 291 (Glu(291)) of CCR2 is a critical residue for high affinity binding and that this residue contributes little to MCP-1 binding to CCR2. The basic nitrogen present in the spiropiperidine compounds may be the interaction partner for Glu(291), because the basicity of this nitrogen was essential for affinity; furthermore, a different class of antagonists, a class that does not have a basic nitrogen (2-carboxypyrroles), were not affected by mutations of Glu(291). In addition to the CCR2 receptor, spiropiperidine compounds have affinity for several biogenic amine receptors. Receptor models indicate that the acidic residue, Glu(291), from transmembrane-7 of CCR2 is in a position similar to the acidic residue contributed from transmembrane-3 of biogenic amine receptors, which may account for the shared affinity of spiropiperidines for these two receptor classes. The models suggest that the acid-base pair, Glu(291) to piperidine nitrogen, anchors the spiropiperidine compound within the transmembrane ovoid bundle. This binding site may overlap with the space required by MCP-1 during binding and signaling; thus the small molecule ligands act as antagonists. An acidic residue in transmembrane region 7 is found in most chemokine receptors and is rare in other serpentine receptors. The model of the binding site may suggest ways to make new small molecule chemokine receptor antagonists, and it may rationalize the design of more potent and selective antagonists.  相似文献   

14.
In searching for a novel CCR3 receptor antagonist, we designed a library that included a variety of carboxamide derivatives based on the structure of our potent antagonists for human CCR1 and CCR3 receptors, and screened the new compounds for inhibitory activity against 125I-Eotaxin binding to human CCR3 receptors expressed in CHO cells. Among them, two 2-(benzothiazolethio)acetamide derivatives (1a and 2a) showed binding affinities with IC50 values of 750 and 1000 nM, respectively, for human CCR3 receptors. These compounds (1a and 2a) also possessed weak binding affinities for human CCR1 receptors. We selected la as a lead compound for derivatization to improve in vitro potency and selectivity for CCR3 over CCRI receptors. Derivatization of la by incorporating substituents into each benzene ring of the benzothiazole and piperidine side chain resulted in the discovery of a compound (1b) exhibiting 820-fold selectivity for CCR3 receptors (IC50 = 2.3 nM) over CCR1 receptors (IC50 = 1900 nM). This compound (1b) also showed potent functional antagonist activity for inhibiting Eotaxin (IC50 = 27 nM)- or RANTES (IC50 = 13 nM)-induced Ca2+ increases in eosinophils.  相似文献   

15.
Internalization of ligand bound G protein-coupled receptors, an important cellular function that mediates receptor desensitization, takes place via distinct pathways, which are often unique for each receptor. The C-C chemokine receptor (CCR7) G protein-coupled receptor is expressed on naive T cells, dendritic cells, and NK cells and has two endogenous ligands, CCL19 and CCL21. Following binding of CCL21, 21 +/- 4% of CCR7 is internalized in the HuT 78 human T cell lymphoma line, while 76 +/- 8% of CCR7 is internalized upon binding to CCL19. To determine whether arrestins mediated differential internalization of CCR7/CCL19 vs CCR7/CCL21, we used small interfering RNA (siRNA) to knock down expression of arrestin 2 or arrestin 3 in HuT 78 cells. Independent of arrestin 2 or arrestin 3 expression, CCR7/CCL21 internalized. In contrast, following depletion of arrestin 3, CCR7/CCL19 failed to internalize. To examine the consequence of complete loss of both arrestin 2 and arrestin 3 on CCL19/CCR7 internalization, we examined CCR7 internalization in arrestin 2(-/-)/arrestin 3(-/-) murine embryonic fibroblasts. Only reconstitution with arrestin 3-GFP but not arrestin 2-GFP rescued internalization of CCR7/CCL19. Loss of arrestin 2 or arrestin 3 blocked migration to CCL19 but had no effect on migration to CCL21. Using immunofluorescence microscopy, we found that arrestins do not cluster at the membrane with CCR7 following ligand binding but cap with CCR7 during receptor internalization. These are the first studies that define a role for arrestin 3 in the internalization of a chemokine receptor following binding of one but not both endogenous ligands.  相似文献   

16.
CC chemokine receptor 5 (CCR5) is a high-affinity receptor for macrophage inflammatory protein (MIP)-1beta and functions as the major coreceptor for entry of macrophage-tropic (M-tropic) human immunodeficiency virus type 1 (HIV-1). To evaluate the role of transmembrane domains (TM) in the receptor function of CCR5, the seventh transmembrane domain (TM7) was examined in a series of chimeric receptor constructs including CCR5TM (CCR5 backbone/CCR5 TM7 replaced with CCR1 TM7) and mutants of CCR5TM. The CCR5TM chimera exhibited a dramatic reduction in receptor activation, as well as little or no MIP-1beta binding. Further mutational analysis revealed that Met 287 in TM7 of CCR5 is a critical molecular determinant for both MIP-1beta binding and receptor activation. Interestingly, all of the chimeric/mutated receptors were biologically active in an HIV-1 coreceptor fusion assay, demonstrating that chemokine binding is independent of HIV-1 coreceptor activity.  相似文献   

17.
CCR6 is the only known receptor for the chemokine macrophage-inflammatory protein (MIP)-3alpha/CC chemokine ligand (CCL)20. We have shown previously that CCR6 is expressed on peripheral blood B cells, but CCR6 activity on these cells is low in in vitro assays. We report that MIP-3alpha/CCL20-induced calcium flux and chemotaxis can be enhanced significantly on peripheral blood and tonsillar B cells after activation by cross-linking surface Ag receptors. Of particular interest is the fact that the enhanced activity on B cells was not associated with an increase in CCR6 expression as assessed by levels of receptor mRNA, surface staining, or MIP-3alpha/CCL20 binding sites, or by a change in the affinity of the receptor for ligand. These data convincingly demonstrate that responses to a chemokine can be regulated solely by changes in the downstream pathways for signal transduction resulting from Ag receptor activation, and establish CCR6 as an efficacious receptor on human B cells.  相似文献   

18.
Biological activities of ecalectin: a novel eosinophil-activating factor   总被引:3,自引:0,他引:3  
Ecalectin, produced by Ag-stimulated T lymphocytes, is a potent eosinophil-specific chemoattractant in vitro as well as in vivo and thus is implicated in allergic responses. Ecalectin differs structurally from other known eosinophil chemoattractants (ECAs); ecalectin belongs to the galectin family defined by their affinity for beta-galactosides and by their conserved carbohydrate recognition domains. These characteristic features suggest that ecalectin has unique activities associated with allergic inflammation besides ECA activity. Conversely, ecalectin may mediate ECA activity by binding to a receptor of a known ECA via affinity for the beta-galactosides present on this receptor. In this study, we have tested whether ecalectin mediates ECA activity by binding to a receptor of a known ECA, and we have assessed its effects on eosinophils. Ecalectin did not mediate ECA activity by binding to the IL-5R or to CCR3. Also, the ECA activity of ecalectin was mainly chemokinetic. In addition, ecalectin induced concentration-dependent eosinophil aggregation, a marker for eosinophil activation. Ecalectin induced concentration-dependent superoxide production from eosinophils but did not induce degranulation; usually these two events are coupled in eosinophil activation. Moreover, ecalectin directly prolonged eosinophil survival in vitro and did not trigger eosinophils to secrete cytokines that prolong eosinophil survival. These results demonstrate that ecalectin has several unique effects on eosinophils. Therefore, we conclude that ecalectin is a novel eosinophil-activating factor. Presumably, these effects allow ecalectin to play a distinctive role in allergic inflammation.  相似文献   

19.
The 70% aqueous methanol extract of the Peruvian plant Lippia alva (Verbenaceae) was found to contain three novel compounds, 1, 2, and 3, which were identified as inhibitors of the chemokine receptor CCR5. The structures of 1-3 were established based on extensive NMR studies. Compounds 1-3 inhibited CCR5 receptor signaling as measured by a calcium mobilization assay with IC(50) values of 5.5, 6.0, and 7.2 microg/mL, respectively.  相似文献   

20.
Chemokines are attractants and regulators of cell activation. Several CXC family chemokine members induce angiogenesis and promote tumor growth. In contrast, the only CC chemokine, reported to play a direct role in angiogenesis is monocyte-chemotactic protein-1. Here we report that another CC chemokine, eotaxin (also known as CCL11), also induced chemotaxis of human microvascular endothelial cells. CCL11-induced chemotactic responses were comparable with those induced by monocyte-chemotactic protein-1 (CCL2), but lower than those induced by stroma-derived factor-1alpha (CXCL12) and IL-8 (CXCL8). The chemotactic activity was consistent with the expression of CCR3, the receptor for CCL11, on human microvascular endothelial cells and was inhibited by mAbs to either human CCL11 or human CCR3. CCL11 also induced the formation of blood vessels in vivo as assessed by the chick chorioallantoic membrane and Matrigel plug assays. The angiogenic response induced by CCL11 was about one-half of that induced by basic fibroblast factor, and it was accompanied by an inflammatory infiltrate, which consisted predominantly of eosinophils. Because the rat aortic sprouting assay, which is not infiltrated by eosinophils, yielded a positive response to CCL11, this angiogenic response appears to be direct and is not mediated by eosinophil products. This suggests that CCL11 may contribute to angiogenesis in conditions characterized by increased CCL11 production and eosinophil infiltration such as Hodgkin's lymphoma, nasal polyposis, endometriosis, and allergic diathesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号