首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
We have developed a simple quantitative computational approach for objective analysis of cis-regulatory sequences in promoters of coregulated genes. The program, designated MotifFinder, identifies oligo sequences that are overrepresented in promoters of coregulated genes. We used this approach to analyze promoter sequences of Viviparous1 (VP1)/abscisic acid (ABA)-regulated genes and cold-regulated genes, respectively, of Arabidopsis (Arabidopsis thaliana). We detected significantly enriched sequences in up-regulated genes but not in down-regulated genes. This result suggests that gene activation but not repression is mediated by specific and common sequence elements in promoters. The enriched motifs include several known cis-regulatory sequences as well as previously unidentified motifs. With respect to known cis-elements, we dissected the flanking nucleotides of the core sequences of Sph element, ABA response elements (ABREs), and the C repeat/dehydration-responsive element. This analysis identified the motif variants that may correlate with qualitative and quantitative differences in gene expression. While both VP1 and cold responses are mediated in part by ABA signaling via ABREs, these responses correlate with unique ABRE variants distinguished by nucleotides flanking the ACGT core. ABRE and Sph motifs are tightly associated uniquely in the coregulated set of genes showing a strict dependence on VP1 and ABA signaling. Finally, analysis of distribution of the enriched sequences revealed a striking concentration of enriched motifs in a proximal 200-base region of VP1/ABA and cold-regulated promoters. Overall, each class of coregulated genes possesses a discrete set of the enriched motifs with unique distributions in their promoters that may account for the specificity of gene regulation.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
Choi D  Fang Y  Mathers WD 《Genomics》2006,87(4):500-508
Deciphering genetic regulatory codes remains a challenge. Here, we present an effective approach to identifying in vivo condition-specific coregulation with cis-regulatory motifs and modules in the mouse genome. A resampling-based algorithm was adopted to cluster our microarray data of a stress response, which generated 35 tight clusters with unique expression patterns containing 811 genes of 5652 genes significantly altered. Database searches identified many known motifs within the 3-kb regulatory regions of 40 genes from 3 clusters and modules with six to nine motifs that were commonly shared by 60-100% of these genes. The upstream regulatory region contained the highest frequency of these common motifs. CisModule program predictions were comparable with the results from database searches and found four potentially novel motifs. This result indicates that these motifs and modules could be responsible for gene coregulation of the stress response in the lacrimal gland.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号