首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

With the aid of a flow cell assembly the desorption of cationic liposomes prepared from mixtures of dipalmitoylphoshatidylcholine (DDPC), cholesterol, and either dimethyldioctadecylammonium bromide (DDAB) or 3,β[N-(N1,N-dimethylethylenediamine)-carbamoyl]cholesterol (DC-chol) from immoblized biofilms of Staphylococcus aureus has been studied as a function of shear stress by confocal microscopy. A shear stress theory has been adapted from fluid mechanics of laminar flow between parallel plates and used to determine the critical shear stress for liposome desorption. The critical shear stress for both DDAB and DC-chol liposomes has been determined as a function of cationic lipid content and hence surface charge as reflected in their zeta potentials. The critical shear stress has been used to obtain the potential energy of liposome–biofilm interaction which together with the electrostatic interaction energy has enabled estimates of the London-Hamaker constants to be made. The values of the London-Hamaker constants at small liposome-bacterial cell separation were found to be independent of liposome composition.  相似文献   

2.
Confocal laser scanning microscopy has been used to visualise the adsorption of fluorescently labelled liposomes on immobilised biofilms of the bacterium Staphylococcus aureus. The liposomes were prepared with a wide range of compositions with phosphatidylcholines as the predominant lipids using the extrusion technique. They had weight average diameters of 125 +/- 5 nm and were prepared with encapsulated carboxyfluorescein. Cationic liposomes were prepared by incorporating dimethyldioctadecylammonium bromide (DDAB) or 3, beta [N-(N1,N1 dimethylammonium ethane)-carbamoyl] cholesterol (DC-chol) and anionic liposomes were prepared by incorporation of phosphatidylinositol (PI). Pegylated cationic liposomes were prepared by incorporation of DDAB and 1,2-dipalmitoylphosphatidylethanolamine-N-[polyethylene glycol)-2000]. Confocal laser scanned images showed the preferential adsorption of the fluorescent cationic liposomes at the biofilm-bulk phase interface which on quantitation gave fluorescent peaks at the interface when scanned perpendicular (z-direction) to the biofilm surface (x-y plane). The biofilm fluorescence enhancement (BFE) at the interface was examined as a function of liposomal lipid concentration and liposome composition. Studies of the extent of pegylation of the cationic liposomes incorporating DDAB, on adsorption at the biofilm-bulk phase interface were made. The results demonstrated that pegylation inhibited adsorption to the bacterial biofilms as seen by the decline in the peak of fluorescence as the mole% DPPE-PEG-2000 was increased in a range from 0 to 9 mole%. The results indicate that confocal laser scanning microscopy is a useful technique for the study of liposome adsorption to bacterial biofilms and complements the method based on the use of radiolabelled liposomes.  相似文献   

3.
Despite the progress made by modern medicine, infectious diseases remain one of the most important threats to human health. Vaccination against pathogens is one of the primary methods used to prevent and treat infectious diseases that cause illness and death. Vaccines administered by the mucosal route are potentially a promising strategy to combat infectious diseases since mucosal surfaces are a major route of entry for most pathogens. However, this route of vaccination is not widely used in the clinic due to the lack of a safe and effective mucosal adjuvant. Therefore, the development of safe and effective mucosal adjuvants is key to preventing infectious diseases by enabling the use of mucosal vaccines in the clinic. In this study, we show that intranasal administration of a cationic liposome composed of 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 3β-[N-(N'',N''-dimethylaminoethane)-carbamoyl] (DC-chol) (DOTAP/DC-chol liposome) has a potent mucosal adjuvant effect in mice. Intranasal vaccination with ovalbumin (OVA) in combination with DOTAP/DC-chol liposomes induced the production of OVA-specific IgA in nasal tissues and increased serum IgG1 levels, suggesting that the cationic DOTAP/DC-chol liposome leads to the induction of a Th2 immune response. Additionally, nasal-associated lymphoid tissue and splenocytes from mice treated with OVA plus DOTAP/DC-chol liposome showed high levels of IL–4 expression. DOTAP/DC-chol liposomes also enhanced OVA uptake by CD11c+ dendritic cells in nasal-associated lymphoid tissue. These data demonstrate that DOTAP/DC-chol liposomes elicit immune responses via an antigen-specific Th2 reaction. These results suggest that cationic liposomes merit further development as a mucosal adjuvant for vaccination against infectious diseases.  相似文献   

4.
Abstract

Cationic and anionic liposomes have been prepared by extrusion from dipalmitoylphosphatidylcholine (DPPC) and its mixtures with cholesterol and dimethyldioctadecyltrimethylammonium bromide (DDAB) and with phosphatidylinositol (PI) respectively covering a range of composition from 0 to 19 mole % DDAB and PI. The adsorption of liposomal lipid from the liposome dispersion onto particles of silica and titanium dioxide in suspension has been studied as a function of liposome composition and concentration. The adsorption isotherms have been fitted using a Langmuir equation from which the binding constants and maximum surface coverage were obtained. The Gibbs energies of adsorption for the cationic liposomes were on average -61.0 ± 2.1 kJ mol?1 (on silica) and -50.6 ± 2.9 kJ mol?1 (on titanium dioxide). On average saturation adsorption is equivalent to 3 to 10 lipid monolayers on silica and 3 to 7 on titanium dioxide. Using liposomes encapsulating D-glucose it is demonstrated that there is almost no release of glucose on adsorption of the lipid, indicating that the liposomes are adsorbed intact to form a liposome monolayer on the particle surfaces. Adsorption of intact liposomes to form a close-packed liposome monolayer of solid supported vesicles (SSV) is shown to be equivalent to on average 7.0 ± 0.2 phospholipid monolayers. The SSVs are shown to have increased stability to disruption by surfactants and when carrying the oil-soluble bactericide, Triclosan?, to be capable of inhibiting the growth of oral bacteria from immobilised biofilms.  相似文献   

5.
The delivery of benzyl penicillin [penicillin G (pen-G)] encapsulated in cationic liposomes to a pen-G-sensitive strain of Staphylococcus aureus immobilized in biofilms has been investigated. The cationic liposomes prepared by extrusion (VETs, diameter approximately 140 nm) were composed of dipalmitoylphosphatidylcholine (DPPC), cholesterol, and dimethylammonium ethane carbamoyl cholesterol (DC-chol) at a molar ratio of 1.0:0.49:0.43. This composition containing 22 mole% of the cationic lipid DC-chol has been found previously (Kim et al. Colloids Surfaces A 1999, 149, 561-570) to be optimum for adsorption of the liposomes on S. aureus biofilms. The effectiveness of the liposomes to deliver pen-G to the biofilms immobilized on microtitre plates was assessed from the rate of growth of the cells after exposure to the liposomal drug carrier relative to free pen-G at the same concentration. The time to reach maximum growth rate from biofilms was investigated as a function of overall drug concentration in a range 2.9 x 10- 3 mM to 1.09 mM and as a function of time of exposure to liposomal drug in a range 1.5 s to 2 h. Liposomal drug delivery was most effective relative to free drug at low overall drug concentrations and short times of exposure. The time to reach maximum growth rate from S. aureus biofilms could be extended by a factor of approximately 4 relative to free drug by the use of liposomally encapsulated pen-G. The results were supported by direct measurements of the distribution of pen-G between biofilm and supernatant which showed enhanced values relative to free drug and a transient preferential uptake of drug induced by the liposomes. The study demonstrates that for low drug concentrations and short exposure times liposomal drug delivery greatly enhances the effectiveness of pen-G for inhibiting the growth of bacterial biofilms of the potentially pathogenic bacterium Staphylococcus aureus.  相似文献   

6.
The luciferase gene expression of lipoplexes, a liposome containing luciferase plasmid (pCMVLuc), in HeLa cell lines, was investigated. Cationic liposomes were prepared by the chloroform film method with sonication. The lipoplex was formed by loading the liposome with pCMVLuc. The lipoplex with an optimal weight ratio of dimethyl dioctadecyl ammonium bromide (DDAB)/pCMVLuc protected from DNaseI was determined by an agarose gel electrophoresis. The selected lipoplexes were assayed for luciferaase activity by using a luminometer. The effect on cell proliferation was evaluated by WST-1 assay. The highest luciferase activity of 1.5 × 106 RLU was observed in the cholesterol (Chol)/DDAB (2:1 molar ratio) lipoplex at the DDAB/pCMVLuc weight ratio of 10:1 at 48 hours, which was about 10, 100, and 1,000 times higher than the DDAB, L-alpha-dipalmitoyl phosphatidylcholine (DPPC)/Chol/DDAB (1:2:1 molar ratio), and DPPC/Chol/DDAB (2:2:1 molar ratio) lipoplexes, respectively. The liposome with the smallest particle size was obtained from the cationic liposome composed of DPPC/Chol/DDAB (7:1:1 molar ratio) with the ζ potential of 7.17 ± 0.73. The optimal weight ratio of DDAB/pCMVLuc that protected pCMVLuc from DNaseI digestion was 4:1 in the DDAB formulation. The Chol/DDAB (2:1 molar ratio) lipoplex with the DDAB/pCMVLuc of 10:1 showed the highest luciferase activity of 1.5 × 106 RLU and the highest cytotoxicity as well. DPPC/Chol/DDAB (1:1:1 molar ratio)-lipoplex (DDAB/pCMVLuc = 14:1), which had the amount of DPPC and cholesterol not exceeding 33 and 50% mol, respectively, gave the lower gene expression of about 4 times, but lower cytoxicity of about 14 times, than the Chol/DDAB lipoplex (2:1 molar ratio) and was considered to be the most suitable formulation. The results from this study can be applied as a model for the development of a gene-therapeutic dosage form.  相似文献   

7.
Lipoplexes constituted by calf-thymus DNA (CT-DNA) and mixed cationic liposomes consisting of varying proportions of the cationic lipid 3β-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol hydrochloride (DC-Chol) and the zwitterionic lipid, 1,2-dioleoyl-sn-glycero-3-phosphoetanolamine (DOPE) have been analyzed by means of electrophoretic mobility, SAXS, and fluorescence anisotropy experiments, as well as by theoretically calculated phase diagrams. Both experimental and theoretical studies have been run at several liposome and lipoplex compositions, defined in terms of cationic lipid molar fraction, α, and either the mass or charge ratios of the lipoplex, respectively. The experimental electrochemical results indicate that DC-Chol/DOPE liposomes, with a mean hydrodynamic diameter of around (120 ± 10) nm, compact and condense DNA fragments at their cationic surfaces by means of a strong entropically driven electrostatic interaction. Furthermore, the positive charges of cationic liposomes are compensated by the negative charges of DNA phosphate groups at the isoneutrality L/D ratio, (L/D)(?), which decreases with the cationic lipid content of the mixed liposome, for a given DNA concentration. This inversion of sign process has been also studied by means of the phase diagrams calculated with the theoretical model, which confirms all the experimental results. SAXS diffractograms, run at several lipoplex compositions, reveal that, irrespectively of the lipoplex charge ratio, DC-Chol/DOPE-DNA lipoplexes show a lamellar structure, L(α), when the cationic lipid content on the mixed liposomes α ≥ 0.4, while for a lower content (α = 0.2) the lipoplexes show an inverted hexagonal structure, H(II), usually related with improved cell transfection efficiency. A similar conclusion is reached from fluorescence anisotropy results, which indicate that the fluidity on liposome and lipoplexes membrane, also related with better transfection results, increases as long as the cationic lipid content decreases.  相似文献   

8.
Abstract

Cationic liposomes are widely used for the delivery of genes both in vivo and in clinical trials. DC-chol liposome formulation was developed by us for relatively high activity of transfection and low level of toxicity for most cell types. Different strategies are described for achieving regulated transgene expression as well as expression for a prolonged period of time using DC-chol liposomes.  相似文献   

9.
In medium where in vitro transfection is routinely performed, DC-chol liposomes alone were nearly neutral, whereas the DC-chol liposome/DNA complexes were largely negatively charged which changed only slightly at all [liposome]/[DNA] ratios (zeta=-27.1 to -21.8 mV). Three other commercial transfection reagents, Lipofectin(R), LipofectAMINE 2000, and SuperFect, were also largely negatively charged when complexed with DNA. The aggregation of liposomes in medium was prevented by the addition of DNA. Incubation of the complexes in medium did not change their size, charge or lipofection activity for 30 min. These results suggest that, in medium, the liposome/DNA complexes were formed at the time of mixing with negative charges.  相似文献   

10.
Sendai virus induced leakage of liposomes containing gangliosides   总被引:2,自引:0,他引:2  
Y S Tsao  L Huang 《Biochemistry》1985,24(5):1092-1098
Sendai virus induced liposome leakage has been studied by using liposomes containing a self-quenching fluorescent dye, calcein. The liposomes used in this study were prepared by a freeze and thaw method and were composed of phosphatidylcholine, phosphatidylserine, and phosphatidylethanolamine (1:2.60:1.48 molar ratio) as well as various amounts of gangliosides and cholesterol. The leakage rate was calculated from the fluorescence increment as the entrapped calcein leaked out of the liposomal compartment and was diluted into the media. It was shown that the target liposome leakage was virus dose dependent. Trypsin-treated Sendai virus in which the F protein had been quantitatively removed did not induce liposome leakage, indicating that the leakage was a direct result of F-protein interaction with the target bilayer membrane. The activation energy of this process was approximately 12 kcal/mol below 17 degrees C and approximately 25 kcal/mol above 17 degrees C. Gangliosides GM1, GD1a, and GT1b could serve as viral receptor under appropriate conditions. Liposome leakage showed a bell-shaped curve dependence on the concentration of ganglioside in the liposomes. No leakage was observed if the ganglioside content was too low or too high. Inclusion of cholesterol in the liposome bilayer suppressed the leakage rate of liposomes containing GD1a. It is speculated that the liposome leakage is a consequence of fusion between Sendai virus and liposomes.  相似文献   

11.
The effects of buffer and ionic strength upon the enthalpy of binding between plasmid DNA and a variety of cationic lipids used to enhance cellular transfection were studied using isothermal titration calorimetry at 25.0 degrees C and pH 7.4. The cationic lipids DOTAP (1,2-dioleoyl-3-trimethyl ammonium propane), DDAB (dimethyl dioctadecyl ammonium bromide), DOTAP:cholesterol (1:1), and DDAB:cholesterol (1:1) bound endothermally to plasmid DNA with a negligible proton exchange with buffer. In contrast, DOTAP: DOPE (L-alpha-dioleoyl phosphatidyl ethanolamine) (1:1) and DDAB:DOPE (1:1) liposomes displayed a negative enthalpy and a significant uptake of protons upon binding to plasmid DNA at neutral pH. These findings are most easily explained by a change in the apparent pKa of the amino group of DOPE upon binding. Complexes formed by reverse addition methods (DNA into lipid) produced different thermograms, sizes, zeta potentials, and aggregation behavior, suggesting that structurally different complexes were formed in each titration direction. Titrations performed in both directions in the presence of increasing ionic strength revealed a progressive decrease in the heat of binding and an increase in the lipid to DNA charge ratio at which aggregation occurred. The unfavorable binding enthalpy for the cationic lipids alone and with cholesterol implies an entropy-driven interaction, while the negative enthalpies observed with DOPE-containing lipid mixtures suggest an additional contribution from changes in protonation of DOPE.  相似文献   

12.
Cationic liposomes are useful to transfer genes into eukaryotic cells in vitro and in vivo. However, liposomes with good transfection efficiency are often cytotoxic, and also require serum-free conditions for optimal activity. In this report, we describe a new formulation of cationic liposome containing DC-6-14, O,O'-ditetradecanoyl-N-(alpha-trimethylammonioacetyl)diethan olamine chloride, dioleoylphosphatidylethanolamine and cholesterol for gene delivery into cultured human cells. This liposome, dispersed in 5% serum-containing growth medium, efficiently delivered a plasmid DNA for GFP (green fluorescent protein) into more than 80% of the cultured human cell hybrids derived from HeLa cells and normal fibroblasts. Flow cytometric analysis revealed that the efficiency of the GFP gene expression was 40-50% in a tumor-suppressed cell hybrid, while it was greatly reduced in the tumorigenic counterpart. The enhanced GFP expression in tumor-suppressed cell hybrids was quantitatively well correlated with a prolonged presence of the plasmid DNA, which had been labeled with another fluorescent probe, ethidium monoazide, within the cells. These results suggest that a newly developed cationic liposome is useful for gene delivery in serum-containing medium into human cells and the stability of the plasmid DNA inside the cell is a crucial step in this liposome-mediated gene expression. The mechanisms by which cationic liposome mediates gene transfer into eukaryotic cells are also discussed.  相似文献   

13.
This paper reports results concerning the transfection of gliosarcoma cells 9L using an original cholesterol-based cationic liposome as carrier. This cationic liposome was prepared from triethyl aminopropane carbamoyl cholesterol (TEAPC-Chol) and a helper lipid, dioleoyl phosphatidyl ethanolamine (DOPE). The used concentration of liposome was not cytotoxic as revealed by the MTT test. TEAPC-Chol/DOPE liposomes allowed the plasmids encoding reporter genes to enter the nucleus as observed both by electron microscopy and functionality tests using fluorescence detection of green fluorescent protein (GFP) and luminometric measurements of luciferase activity. By changing the cationic lipid/DNA molar charge ratio, optimal conditions were determined. Further, improvement of the transfection level has been obtained by either precondensing plasmid DNA with poly-l-lysine or by adding polyethylene glycol (PEG) in the transfection medium. The optimal conditions determined are different depending on whether the transfection is made with cells in culture or with tumors induced by subcutaneous (s.c.) injection of cells in Nude mice. For in vivo assays, a simple method to overcome the interference of haemoglobin with the chemiluminescence intensity of luciferase has been used. These results would be useful for gaining knowledge about the potential for the cationic liposome TEAPC-Chol/DOPE to transfect brain tumors efficiently.  相似文献   

14.
This paper reports results concerning the transfection of gliosarcoma cells 9L using an original cholesterol-based cationic liposome as carrier. This cationic liposome was prepared from triethyl aminopropane carbamoyl cholesterol (TEAPC-Chol) and a helper lipid, dioleoyl phosphatidyl ethanolamine (DOPE). The used concentration of liposome was not cytotoxic as revealed by the MTT test. TEAPC-Chol/DOPE liposomes allowed the plasmids encoding reporter genes to enter the nucleus as observed both by electron microscopy and functionality tests using fluorescence detection of green fluorescent protein (GFP) and luminometric measurements of luciferase activity. By changing the cationic lipid/DNA molar charge ratio, optimal conditions were determined. Further, improvement of the transfection level has been obtained by either precondensing plasmid DNA with poly-L-lysine or by adding polyethylene glycol (PEG) in the transfection medium. The optimal conditions determined are different depending on whether the transfection is made with cells in culture or with tumors induced by subcutaneous (s.c.) injection of cells in Nude mice. For in vivo assays, a simple method to overcome the interference of haemoglobin with the chemiluminescence intensity of luciferase has been used. These results would be useful for gaining knowledge about the potential for the cationic liposome TEAPC-Chol/DOPE to transfect brain tumors efficiently.  相似文献   

15.
An efficient DDAB-mediated transfection of Drosophila S2 cells.   总被引:2,自引:0,他引:2       下载免费PDF全文
K Han 《Nucleic acids research》1996,24(21):4362-4363
I have developed an efficient method for transfecting Drosophila S2 cells using DDAB, a cationic liposome reagent. The optimized DDAB method resulted in a 10 times or greater increase in transfection efficiency compared with the conventional calcium phosphate method which has been essentially the only way for transfecting S2 cells.  相似文献   

16.
We evaluated the transfection efficiency of five different cationic liposome/plasmid DNA complexes, during the in vitro gene transfer into human epithelial tracheal cell lines. A dramatic correlation between the transfection efficiency and the charge ratio (positive charge of liposome to negative charge of DNA) has been found. DC-Chol-DOPE was found to be the most effective liposome formulation. Therefore, a morphological and structural analysis of DC-Chol-DOPE liposomes and DC-Chol-DOPE/DNA complexes, has been performed by transmission electron microscopy (TEM) and by confocal laser scanning microscopy (CLSM), respectively. The process of interaction between DC-Chol-DOPE/DNA complexes and human epithelial tracheal cells has been studied by CLSM. These results raise some issues for in vivo gene therapy.  相似文献   

17.
We have investigated interaction of alkyphospholipid (APL) liposomes consisting of 1,1-dimethylpiperidin-1-ium-4-yl) octadecyl phosphate (OPP) and different concentrations of cholesterol (CH) with human MT-3 breast-cancer cells using electron paramagnetic resonance method (EPR) with advanced characterization of EPR spectra of spin labeled liposome membranes. After incubation of OPP liposomes with MT-3 cells, a reduction of liposome entrapped, water soluble spin-probe tempocholine (ASL) was observed, indicating that ASL is released from liposomes and is reduced by oxy-redoxy systems inside the cells. This process is fast if cholesterol content in the bilayer was 29 or 45 mol%, whereas at 56 mol% cholesterol the process is almost stopped. The rate of spin-probe reduction in first 10 min after incubation with cells is even faster as for the free ASL, indicating that liposomes with low amount of cholesterol accelerate penetration of ASL into the cells. A faster release of hydrophilic material from liposomes with low cholesterol content coincides with the presence of domains with highly disordered alkyl chain motion that disappears at 50 mol% of cholesterol. We propose that these highly fluid domains are responsible for interaction of OPP liposomes with cells and fast release of the entrapped material into the cells. These results suggest that micelles are not the only reason for cytotoxic effect of OPP liposome formulations, as it was suggested before. OPP in liposomes, containing 45 mol% cholesterol or less, also contributes to the cytotoxic effect, due to their fast interaction with breast-cancer cells.  相似文献   

18.
The cationic large unilamellar mixed liposomes from 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) and didodecyldimethylammonium bromide (DDAB) or dioctadecyldimethylammonium bromide (DODAB) were prepared. The influence of the addition of Triton X-100 (TX-100) or octaethylene glycol mono-n-dodecylether (C12E8) on the membrane integrity was investigated turbidimetrically. The stability of the liposomal systems was estimated by monitoring fluorimetrically at 25 °C the rate of spontaneous and surfactant-induced release of entrapped 5(6)-carboxyfluorescein (CF). In order to evaluate the interaction of the cationic DODAB guest with the host POPC membrane, the main phase transition temperatures (Tm) were determined by electron paramagnetic resonance spectroscopy (EPR). All the results obtained show that the presence of DODAB and DDAB stabilizes the POPC liposomes. The extent of stabilization depends on the concentration and nature of the cationic guest.  相似文献   

19.
Kinetics of the interaction of hemin liposomes with heme binding proteins   总被引:1,自引:0,他引:1  
As a model for the transport of hemin across biological membranes, sonicated phosphatidylcholine liposomes with incorporated hemin were characterized. The interaction of the hemin liposomes with the heme binding proteins albumin, apomyoglobin, and hemopexin was examined as a function of liposome charge and cholesterol content. In all cases, there was an almost complete transfer of hemin from liposome to protein; a rapid phase and a slow phase were observed for the transfer. For negatively charged liposomes (with 11% dicetyl phosphate), the rapid and slow phases showed observed rates of transfer of ca. 2 and 0.01 s-1, respectively, for all three proteins. The presence of cholesterol in the liposomes decreased the observed rates by a factor of 2, and positively charged liposomes (with 11% stearylamine) showed about one-fifth the observed rates of negatively charged liposomes. The observed rates were independent of protein concentration, indicating that the rate-determining step is hemin efflux from the lipid bilayer. The hemin interaction with the phospholipid bilayer is suggested to be primarily hydrophobic with some electrostatic character. The two phases are suggested to arise from two different populations of hemin within the liposomes and are interpreted as arising from two different orientations of hemin within the bilayer.  相似文献   

20.
In this work, we analyzed protein interaction, cell toxicity, and biodistribution of liposome formulation for further possible applications as DNA vehicles in gene-therapy protocols. In relation to protein interaction, cationic liposomes showed the lowest protein interaction, but this parameter was incremented with DNA association. On the other hand, noncharged liposomes presented high protein interaction, but DNA association decreased this parameter. Protein interaction of polymeric liposomes did not change with DNA association. Cell toxicity of these three liposome formulations was low, cell death became present at concentrations higher than 0.5?mg/mL, and these concentrations were higher than those usually used in transfection assays. In the case of noncharged and polymeric liposomes, toxicity increased upon interaction with serum proteins. DNA/liposome-mediated tissue distribution was analyzed in Balb-c female mice. Results indicated that noncharged liposomes were able to deliver DNA to liver after intraperitoneal (i.p.) inoculation, while polymeric liposomes were able to deliver DNA to kidney by using the same inoculation route. Cationic liposomes were able to deliver DNA to a wide range of tissues by the i.p. route (e.g., liver, intestine, kidney, and blood). After subcutaneous inoculation, only cationic liposomes were able to deliver DNA to blood, but not the other two formulations within the detection limits of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号