首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of an alteration from regular endurance to speed endurance training on muscle oxidative capacity, capillarization, as well as energy expenditure during submaximal exercise and its relationship to mitochondrial uncoupling protein 3 (UCP3) in humans. Seventeen endurance-trained runners were assigned to either a speed endurance training (SET; n = 9) or a control (Con; n = 8) group. For a 4-wk intervention (IT) period, SET replaced the ordinary training ( approximately 45 km/wk) with frequent high-intensity sessions each consisting of 8-12 30-s sprint runs separated by 3 min of rest (5.7 +/- 0.1 km/wk) with additional 9.9 +/- 0.3 km/wk at low running speed, whereas Con continued the endurance training. After the IT period, oxygen uptake was 6.6, 7.6, 5.7, and 6.4% lower (P < 0.05) at running speeds of 11, 13, 14.5, and 16 km/h, respectively, in SET, whereas remained the same in Con. No changes in blood lactate during submaximal running were observed. After the IT period, the protein expression of skeletal muscle UCP3 tended to be higher in SET (34 +/- 6 vs. 47 +/- 7 arbitrary units; P = 0.06). Activity of muscle citrate synthase and 3-hydroxyacyl-CoA dehydrogenase, as well as maximal oxygen uptake and 10-km performance time, remained unaltered in both groups. In SET, the capillary-to-fiber ratio was the same before and after the IT period. The present study showed that speed endurance training reduces energy expenditure during submaximal exercise, which is not mediated by lowered mitochondrial UCP3 expression. Furthermore, speed endurance training can maintain muscle oxidative capacity, capillarization, and endurance performance in already trained individuals despite significant reduction in the amount of training.  相似文献   

2.
Mechanical load is an important factor in the differentiation of cells and tissues. To investigate the effects of increased mechanical load on development of muscle and bone, zebrafish were subjected to endurance swim training for 6 h/day for 10 wk starting at 14 days after fertilization. During the first 3 wk of training, trained fish showed transiently increased growth compared with untrained (control) fish. Increased expression of proliferating cell nuclear antigen suggests that this growth is realized in part through increased cell proliferation. Red and white axial muscle fiber diameter was not affected. Total cross-sectional area of red fibers, however, was increased. An improvement in aerobic muscle performance was supported by an increase in myoglobin expression. At the end of 10 wk of training, heart and axial muscle showed increased expression of the muscle growth factor myogenin and proliferating cell nuclear antigen, but there were major differences between cardiac and axial muscle. In axial muscle, expression of the "slow" types of myosin and troponin C was increased, together with expression of erythropoietin and myoglobin, which enhance oxygen transport, indicating a shift toward a slow aerobic phenotype. In contrast, the heart muscle shifts to a faster phenotype but does not become more aerobic. This suggests that endurance training differentially affects heart and axial muscle.  相似文献   

3.
Summary Rats, 6 weeks old, were subjected to a program of endurance running for 3, 6 and 12 weeks. 0.5 to 0.8 m thick sections of Epon embedded soleus muscles were studied with morphometric methods.In cross-sections the area occupied by subsarcolemmal mitochondria was independent of the age, but was 53% higher after 12 weeks of training. The mean depth of the zones with subsarcolemmal mitochondria increased only 15% to about 0.9 m. Thus, the subsarcolemmal mitochondria showed a pronounced spreading at the muscle fiber surface in trained muscles. — The number of capillaries per fiber decreased slightly in controls and increased not significantly in trained muscles.It is concluded that the subsarcolemmal mitochondria supply the energy for the active transport of metabolites through the sarcolemma in oxidative muscle fibers, and that they are the limiting factor for endurance performance of the soleus muscle fibers because the changes in the capillarization were only small. It is suggested that the subsarcolemmal and the interfibrillar mitochondria have different functions and may therefore represent different types of mitochondria which can be distinguished by their morphology as well as by their biochemical properties.  相似文献   

4.
Recent research suggests that LKB1 is the major AMP-activated protein kinase kinase (AMPKK). Peroxisome-proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha) is a master coordinator of mitochondrial biogenesis. Previously we reported that skeletal muscle LKB1 protein increases with endurance training. The purpose of this study was to determine whether training-induced increases in skeletal muscle LKB1 and PGC-1alpha protein exhibit a time course and intensity-dependent response similar to that of citrate synthase. Male Sprague-Dawley rats completed endurance- and interval-training protocols. For endurance training, rats trained for 4, 11, 25, or 53 days. Interval-training rats trained identically to endurance-trained rats, except that after 25 days interval training was combined with endurance training. Time course data were collected from endurance-trained red quadriceps (RQ) after each time point. Interval training data were collected from soleus, RQ, and white quadriceps (WQ) muscle after 53 days only. Mouse protein 25 (MO25) and PGC-1alpha protein increased significantly after 4 days. Increased citrate synthase activity, increased LKB1 protein, and decreased AMPKK activity were found after 11 days. Maximal increases occurred after 4 days for hexokinase II, 25 days for MO25, and 53 days for citrate synthase, LKB1, and PGC-1alpha. In WQ, but not RQ or soleus, interval training had an additive effect to endurance training and induced significant increases in all proteins measured. These results demonstrate that LKB1 and PGC-1alpha protein abundances increase with endurance and interval training similarly to citrate synthase. The increase in LKB1 and PGC-1alpha with endurance and interval training may function to maintain the training-induced increases in mitochondrial mass.  相似文献   

5.
We investigated physiological and biochemical factors associated with the improved work capacity of trained iron-deficient rats. Female 21-day-old rats were assigned to one of four groups, two dietary groups (50 and 6 ppm dietary iron) subdivided into two levels of activity (sedentary and treadmill trained). Iron deficiency decreased hemoglobin (61%), maximal O2 uptake. (VO2max) (40%), skeletal muscle mitochondrial oxidase activities (59-90%), and running endurance (94%). In contrast, activities of tricarboxylic acid (TCA) cycle enzymes in skeletal muscle were largely unaffected. Four weeks of mild training in iron-deficient rats resulted in improved blood lactate homeostasis during exercise and increased VO2max (15%), TCA cycle enzymes of skeletal muscle (27-58%) and heart (29%), and liver NADH oxidase (34%) but did not affect any of these parameters in the iron-sufficient animals. In iron-deficient rats training affected neither the blood hemoglobin level nor any measured iron-dependent enzyme pathway of skeletal muscle but substantially increased endurance (230%). We conclude that the training-induced increase in endurance in iron-deficient rats may be related to cardiovascular improvements, elevations in liver oxidative capacity, and increases in the activities of oxidative enzymes that do not contain iron in skeletal and cardiac muscle.  相似文献   

6.
Effects of detraining on responses to submaximal exercise   总被引:6,自引:0,他引:6  
Seven endurance-trained subjects were studied 12, 21, 56, and 84 days after cessation of training. Heart rate, ventilation, respiratory exchange ratio, and blood lactate concentration during submaximal exercise of the same absolute intensity increased (P less than 0.05) progressively during the first 56 days of detraining, after which a stabilization occurred. These changes paralleled a 40% decline (P less than 0.001) in mitochondrial enzyme activity levels and a 21% increase in total lactate dehydrogenase (LDH) activity (P less than 0.05) in trained skeletal muscle. After 84 days of detraining, the experimental subjects' muscle mitochondrial enzyme levels were still 50% above, and LDH activity was 22% below, sedentary control levels. The blood lactate threshold of the detrained subjects occurred at higher absolute and relative (i.e., 75 +/- 2% vs. 62 +/- 3% of maximal O2 uptake) exercise intensities in the subjects after 84 days of detraining than in untrained controls (P less than 0.05). Thus it appears that a portion of the adaptation to prolonged and intense endurance training that is responsible for the higher lactate threshold in the trained state persists for a long time (greater than 85 days) after training is stopped.  相似文献   

7.
Adaptation of skeletal muscle to repeated bouts of endurance exercise increases aerobic capacity and improves mitochondrial function. However, the adaptation of human skeletal muscle mitochondrial proteome to short‐term endurance exercise training has not been investigated. Eight sedentary males cycled for 60 min at 80% of peak oxygen consumption (VO2peak) each day for 14 consecutive days, resulting in an increase in VO2peak of 17.5±3.8% (p<0.01). Mitochondria‐enriched protein fractions from skeletal muscle biopsies taken from m. vastus lateralis at baseline, and on the morning following the 7th and 14th training sessions were subjected to 2‐D DIGE analysis with subsequent MS followed by database interrogation to identify the proteins of interest. Thirty‐one protein spots were differentially expressed after either 7 or 14 days of training (ANOVA, p<0.05). These proteins included subunits of the electron transport chain, enzymes of the tricarboxylic acid cycle, phosphotransfer enzymes, and regulatory factors in mitochondrial protein synthesis, oxygen transport, and antioxidant capacity. Several proteins demonstrated a time course‐dependent induction during training. Our results illustrate the phenomenon of skeletal muscle plasticity with the extensive remodelling of the mitochondrial proteome occurring after just 7 days of exercise training suggestive of enhanced capacity for adenosine triphosphate generation at a cellular level.  相似文献   

8.
We previously reported that endurance training increases amino acid catabolism. In this study, the effects of an acute endurance exercise bout on tissue protein levels and urea excretion have been investigated. Exhaustive exercising of trained rats resulted in an increase in ammonia excretion but there was no significant change in urea excretion. Protein levels of muscle and liver were significantly decreased by an exhaustive bout of exercise. In muscle, both the soluble and myofibrillar protein fractions were decreased in exhausted rats. These results demonstrate that during exercise there is a net loss of protein in muscle and liver.  相似文献   

9.
Peripheral adaptations to 3 months of physical endurance training without food restrictions were studied in skeletal muscles of 14, middle-aged, physically untrained, obese women. In comparison to aged-matched controls of normal weight, the obese group showed significantly lower isometric endurance. In the obese group, physical training resulted in a significant increase of maximal isometric and isokinetic strength. Isokinetic but not isometric endurance also increased after training. The isometric strength of obese women showed a positive correlation with the percentage of FTb fibres. The training (50 min/day, 3 days/w) did not result in any change in body weight, body fat, and the number and weight of fat cells. The 20% increase of VO2 max after training was found to be significantly correlated with the increase in the number of capillaries around muscle fibres. The relative percentage of FTa fibres, the number of capillaries per fibre as well as the activities of citrate synthase, 3-hydroxy-acyl-CoA-dehydrogenase, and hexokinase showed a significant increase after training. The concentrations of glucose during OGTT showed a trend to decrease with a significant decrease at the end glucose curve (120-min value). The concentration of insulin and C peptide and the insulin removal did not change after training. The changes in the concentration of glucose during OGTT was significantly correlated with the increase in muscle capillarization and of dynamic endurance.  相似文献   

10.
An isolated perfused rat hindlimb preparation was used to study the impact of local muscle adaptations induced by endurance exercise training on muscle performance and peak muscle oxygen consumption. Rats were trained for 12-15 wk by a running program (30 m/min up a 15% grade for 1 h/day 5 days/wk) shown previously to increase muscle mitochondrial enzyme activity. Sedentary (n = 11) and trained (n = 11) hindlimbs of similar size were perfused with a similar inflow (12.1 ml/min) at a similar oxygen content (18.1 ml O2/100 ml blood). Tetanic contractions (100 ms at 100 Hz) at 4, 8, 15, 30, 45, and 60/min were elicited in consecutive order. Initial tension was better maintained by muscles of trained animals at all frequencies above 4 tetani/min (P less than 0.05). Oxygen consumption (mumol.min-1.g-1) increased similarly in both groups at the lower contraction frequencies but was greater (P less than 0.05) in the trained [3.52 +/- 0.32 (SE)] than in the sedentary (2.44 +/- 0.31) group at 60 tetani/min. The peak oxygen consumption of the trained group (3.93 +/- 0.27) was 20% greater (P less than 0.05) than that of the sedentary group (3.28 +/- 0.28) when peak values for each animal, irrespective of the contraction condition, are compared. Blood flows to the contracting muscle (approximately 100 ml.min-1.g-1) and, therefore, oxygen deliveries (mumol.min-1.g-1) were not different between sedentary (7.99 +/- 0.56) and trained groups (8.35 +/- 0.61). Thus the 20% higher peak oxygen consumption was achieved by a greater oxygen extraction.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Effect of exercise training on tissue vitamin E and ubiquinone content   总被引:2,自引:0,他引:2  
Endurance exercise training led to an adaptive increase in the ubiquinone content and cytochrome c reductase activity of red quadriceps and soleus muscles and adipose tissues, but not of cardiac or white quadriceps muscle. These findings are consistent with the well-known positive adaptation of skeletal muscle mitochondria to endurance training. However, there was no concomitant increase in the vitamin E content of tissues, which showed an increase in mitochondrial content. Since ubiquinone is located in the mitochondrial inner membrane and the major pool of vitamin E is also associated with mitochondrial membranes, the results suggest that training causes a substantial decrease in vitamin E concentration in the proliferating muscle mitochondrial membranes, thus depleting muscle mitochondria of their major lipid antioxidant. Since vitamin E is the major cellular, lipid-soluble, chain-breaking antioxidant, these findings indicate increased free radical reactions in the tissues of exercising animals.  相似文献   

12.
The ontogeny of cardiac hypoxic responses, and how such responses may be modified by rearing environment, are poorly understood in amphibians. In this study, cardiac performance was investigated in Xenopus laevis from 2 to 25 days post-fertilization (dpf). Larvae were reared under either normoxia or moderate hypoxia (PO2 = 110 mmHg), and each population was assessed in both normoxia and acute hypoxia. Heart rate (f h ) of normoxic-reared larvae exhibited an early increase from 77 ± 1 beats min?1 at 2 dpf to 153 ± 1 beats min?1 at 4 dpf, followed by gradual decreases to 123 ± 3 beats min?1 at 25 dpf. Stroke volume (SV), 6 ± 1 nl, and cardiac output (CO), 0.8 ± 0.1 μl min?1, at 5 dpf both increased by more than 40-fold to 25 dpf with rapid larval growth (~30-fold increase in body mass). When exposed to acute hypoxia, normoxic-reared larvae increased f h and CO between 5 and 25 dpf. Increased SV in acute hypoxia, produced by increased end-diastolic volume (EDV), only occurred before 10 dpf. Hypoxic-reared larvae showed decreased acute hypoxic responses of EDV, SV and CO at 7 and 10 dpf. Over the period of 2–25 dpf, cardiac scaling with mass showed scaling coefficients of ?0.04 (f h ), 1.23 (SV) and 1.19 (CO), contrary to the cardiac scaling relationships described in birds and mammals. In addition, f h scaling in hypoxic-reared larvae was altered to a shallower slope of ?0.01. Collectively, these results indicate that acute cardiac hypoxic responses develop before 5 dpf. Chronic hypoxia at a moderate level can not only modulate this cardiac reflex, but also changes cardiac scaling relationship with mass.  相似文献   

13.
The goal of this study was to test the hypothesis that, in groups of highly trained endurance athletes (first and junior national teams), the final blood lactate concentration at maximum aerobic performance decreased as their training status increased. This study was performed with 20 physically active volunteers and 45 highly trained middle- and long-distance endurance athletes (speed skaters, triathletes, and cross-country skiers). Significant negative correlations (r = ?0.59 to ?0.87) between the final blood lactate concentration after incremental tests until exhaustion and aerobic performance (anaerobic threshold (AT)) were found only for the groups of highly trained endurance athletes, but not for the group of physically active subjects. It was shown for highly trained speed skaters that the final lactate concentration in their blood decreased and the oxygen consumption at AT increased with an increase in the volume of type I muscle fibers in the working muscle (r = ?0.84 and r = 0.7, respectively).  相似文献   

14.
A cross-sectional study was carried out to examine the activities of certain enzymes representing aerobic and anaerobic energy metabolism as well as the biosynthesis of collagen of M. vastus lateralis in 23 male endurance athletes in habitual training, aged 33 to 70 years. 23 sedentary healthy men of corresponding ages were selected for the control group. The mean maximal oxygen uptake of the trained subjects was 53.6 ml-kg--1. min--1 and that of the control subjects 36.3 ml-kg--1. min--1. As compared to the control group the trained subjects had significantly higher values in the muscle malate dehydrogenase, succinate dehydrogenase and prolyl hydroxylase activities, whereas the opposite was true in the activity of lactate dehydrogenase. In hexokinase and creatine phosphokinase no marked differences between the groups were observed. The results showed that endurance training leads to increased activities of oxidative enzymes in the skeletal muscle. The adaptation changes were also observed in old men. The increased activity of prolyl hydroxylase may reflect the general enzymatic adaptation to physical training. A possibility exists that the turnover of muscle collagen in endurance athelets is continuously faster than that in sedentary men of corresponding ages.  相似文献   

15.
Mitochondrial function is absolutely necessary to supply the energy required for muscles, and germ line mutations in mitochondrial genes have been related with impaired cardiac function and exercise intolerance. In addition, alleles at several polymorphic sites in mtDNA define nine common haplogroups, and some of these haplogroups have been implicated in the risk of developing several diseases. In this study, we analysed the association between mtHaplogroups and the capacity to reach the status of elite endurance athlete. DNA was obtained from blood leukocytes of 95 Spanish elite endurance athletes and 250 healthy male population controls. We analysed eight mitochondrial polymorphisms and the frequencies were statistically compared between elite athletes and controls. Haplogroup T, specifically defined by 13368A, was significantly less frequent among elite endurance athletes (p =0.012, Fisher's exact test). Our study suggests that allele 13368A and mitochondrial haplogroup T might be a marker negatively associated with the status of elite endurance athlete. This mitochondrial variant could be related with a lower capacity to respond to endurance training, through unknown mechanisms involving a less efficient mitochondrial workload.  相似文献   

16.
This is the first study to show maternal and clutch effects on early developmental parameters like blood cell concentration and cardiac performance (heart rate, stroke volume and cardiac output) in developing zebrafish larvae (2-8 days post fertilization, dpf). Ten individuals per parental pair and developmental stage were analyzed. A pronounced interclutch variation of heart rate has been found in younger stages (2-4 dpf), while interclutch variation of heart rate was small in later stages (8 dpf). This effect was more pronounced in offspring from parental fish nourished with living food. The opposite effect was observed in interclutch variation of blood cell concentration. Here only older stages showed significant interclutch variations. Stroke volume and cardiac output had very small interclutch variations throughout all stages. Heart rate was strongly dependent with developmental stage in all groups. Nutritional maternal effects on heart performance and also in blood cell concentration could be detected in the offspring of parent animals either fed with flake food or with living food. Red blood cell count, calculated as a product from red blood cell concentration, was not significantly different in both feeding groups. The number of spawned eggs was not different. In summary, these data indicate that "clutch effects" caused by maternal and/or genetic influences can affect the developmental pattern of cardiac performance and blood cell concentration.  相似文献   

17.
Endurance and strength training are established as distinct exercise modalities, increasing either mitochondrial density or myofibrillar units. Recent research, however, suggests that mitochondrial biogenesis is stimulated by both training modalities. To test the training "specificity" hypothesis, mitochondrial respiration was studied in permeabilized muscle fibers from 25 sedentary adults after endurance (ET) or strength training (ST) in normoxia or hypoxia [fraction of inspired oxygen (Fi(O(2))) = 21% or 13.5%]. Biopsies were taken from the musculus vastus lateralis, and cycle-ergometric incremental maximum oxygen uptake (VO(2max)) exercise tests were performed under normoxia, before and after the 10-wk training program. The main finding was a significant increase (P < 0.05) of fatty acid oxidation capacity per muscle mass, after endurance and strength training under normoxia [2.6- and 2.4-fold for endurance training normoxia group (ET(N)) and strength training normoxia group (ST(N)); n = 8 and 3] and hypoxia [2.0-fold for the endurance training hypoxia group (ET(H)) and strength training hypoxia group (ST(H)); n = 7 and 7], and higher coupling control of oxidative phosphorylation. The enhanced lipid oxidative phosphorylation (OXPHOS) capacity was mainly (87%) due to qualitative mitochondrial changes increasing the relative capacity for fatty acid oxidation (P < 0.01). Mitochondrial tissue-density contributed to a smaller extent (13%), reflected by the gain in muscle mass-specific respiratory capacity with a physiological substrate cocktail (glutamate, malate, succinate, and octanoylcarnitine). No significant increase was observed in mitochondrial DNA (mtDNA) content. Physiological OXPHOS capacity increased significantly in ET(N) (P < 0.01), with the same trend in ET(H) and ST(H) (P < 0.1). The limitation of flux by the phosphorylation system was diminished after training. Importantly, key mitochondrial adaptations were similar after endurance and strength training, regardless of normoxic or hypoxic exercise. The transition from a sedentary to an active lifestyle induced muscular changes of mitochondrial quality representative of mitochondrial health.  相似文献   

18.
High voltage electron microscopy at 1500 kV, was used to examine the effects of endurance training on mitochondrial morphology in rat skeletal muscle. The soleus, deep portions of the vastus lateralis, and superficial portions of the vastus lateralis muscles were examined to represent slow-twitch-oxidative, fast-twitch-oxidative-glycolytic, and fast-twitch-glycolytic skeletal muscle fiber types, respectively. Muscle samples were removed from endurance trained and untrained control female Wistar rats (n = 6, each group). Tissues were fixed using standard electron microscopic techniques and sectioned transversely with respect to muscle fiber orientation to approximately, 0.5 micron thickness. The sections were stained on grids with uranyl acetate and Reynolds' lead citrate. Results confirmed the presence of a mitochondrial reticulum in all three skeletal muscle fiber types of both groups. Stereologic analyses indicated volume densities of intermyofibrillar mitochondria increased significantly (P less than 0.05) with endurance training in the three skeletal muscle fiber types. Surface-to-volume ratio of mitochondria was significantly decreased (P less than 0.05) after training only in the deep portion of the vastus lateralis muscle. It was concluded that the mitochondria in mammalian limb skeletal muscle are a reticulum which adapts to endurance training by proliferating.  相似文献   

19.
While it is well established that an adequate blood supply is critical to successful bone regeneration, it remains poorly understood how progenitor cell fate is affected by the altered conditions present in fractures with disrupted vasculature. In this study, computational models were used to explore how angiogenic impairment impacts oxygen availability within a fracture callus and hence regulates mesenchymal stem cell (MSC) differentiation and bone regeneration. Tissue differentiation was predicted using a previously developed algorithm which assumed that MSC fate is governed by oxygen tension and substrate stiffness. This model was updated based on the hypothesis that cell death, chondrocyte hypertrophy and endochondral ossification are regulated by oxygen availability. To test this, the updated model was used to simulate the time course of normal fracture healing, where it successfully predicted the observed quantity and spatial distribution of bone and cartilage at 10 and 20 days post-fracture (dpf). It also predicted the ratio of cartilage which had become hypertrophic at 10 dpf. Following this, three models of fracture healing with increasing levels of angiogenic impairment were developed. Under mild impairment, the model predicted experimentally observed reductions in hypertrophic cartilage at 10 dpf as well as the persistence of cartilage at 20 dpf. Models of more severe impairment predicted apoptosis and the development of fibrous tissue. These results provide insight into how factors specific to an ischemic callus regulate tissue regeneration and provide support for the hypothesis that chondrocyte hypertrophy and endochondral ossification during tissue regeneration are inhibited by low oxygen.  相似文献   

20.
In the present study, the effect of endurance training alone and endurance training combined with recombinant human growth hormone (rhGH) administration on subcutaneous abdominal adipose tissue lipolysis was investigated. Sixteen healthy women [age 75 +/- 2 yr (mean +/- SE)] underwent a 12-wk endurance training program on a cycle ergometer. rhGH was administered in a randomized, double-blinded, placebo-controlled design in addition to the training program. Subcutaneous abdominal adipose tissue lipolysis was estimated by means of microdialysis combined with measurements of subcutaneous abdominal adipose tissue blood flow (ATBF; (133)Xe washout). Whole body fat oxidation was estimated simultaneously by indirect calorimetry. Before and after completion of the training program, measurements were performed both at rest and during 60 min of continuous cycling at a workload corresponding to 60% of pretraining peak oxygen uptake. Endurance training alone did not affect subcutaneous abdominal adipose tissue lipolysis either at rest or during exercise, as reflected by identical levels of interstitial adipose tissue glycerol, subcutaneous abdominal ATBF, and plasma nonesterified fatty acids before and after completion of the training program. Similarly, no effect on subcutaneous abdominal adipose tissue lipolysis was observed when combining endurance training with rhGH administration. However, in both the placebo and the GH groups, fat oxidation was significantly increased during exercise performed at the same absolute workload after completion of the training program. We conclude that the changed lipid metabolism during exercise observed after endurance training alone or after endurance training combined with rhGH administration is not due to alterations in subcutaneous abdominal adipose tissue metabolism in elderly women.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号