首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Butler MF 《Biomacromolecules》2002,3(6):1208-1216
The influence of shear on the structure of a gelatin/maltodextrin mixture was investigated using small-angle light scattering both during phase separation and after phase separation was allowed to occur quiescently. In all cases, phase separation occurred via spinodal decomposition to form a droplet morphology, and a characteristic length scale was formed in the structure that was prevalent during shear, as well as in quiescent conditions. Below the critical shear rate for droplet breakup, shear accelerated the coarsening rate of the droplets. A transient regime of rapid hydrodynamic coarsening was present when shear was initiated after phase separation and at late times in all cases once the droplets attained a certain size. At the critical shear rate for droplet breakup (1 s(-1)), the rapid repetition of breakup and coarsening was postulated to occur, which enabled a microstructure consisting of elongated droplets with a narrow size distribution to form. When the shear rate enabled droplets to extend to such an extent that a percolated structure could form (10 s(-1)), then the structure was relatively stable and changed very slowly over time. At very high shear rates (100 s(-1)), droplet breakup was suppressed and a highly fibrillar morphology formed that was stable only while the system was under shear. Cessation of shear at high rates led to fiber breakup and the formation of many small droplets. For a given shear rate, the final microstructure appeared to be independent of the time that shear was started when the structure consisted of discrete droplets or fibers. When a percolated structure could form, however, the shear history appeared to be important.  相似文献   

2.
The kinetics of phase separation and gel formation of gelatin/maltodextrin mixtures have been studied using confocal laser scanning microscopy (CLSM), transmission electron microscopy (TEM), stereological image analysis and rheology. The quantified microstructural parameters were the volume-weighted mean volume and the interfacial area. The temperature of phase separation was defined as the temperature where the first signs of phase separation were observed in CLSM. The gelatin concentration varied between 4 (wt.) and 5% and the maltodextrin concentration varied between 2 and 6%. Maltodextrin was labelled covalently with RITC to improve the contrast between the gelatin phase and the maltodextrin phase. The solutions were cooled from 60 to 10 degrees C, and the cooling rates used were 0.4, 1 and 3 degrees C/min. All systems were found to be gelatin continuous under the experimental conditions used. The results showed that the temperature of phase separation (TPS) increased both with the gelatin concentration and the maltodextrin concentration, but particularly with the former. The size of the maltodextrin inclusions increased with TPS, and the interfacial area decreased with increasing TPS. The diameter of the maltodextrin inclusions varied between 1.6 and 8.5 microm at 1 degrees C/min. The size of the maltodextrin inclusions was found to increase with decreasing cooling rate and was largest at 0.4 degrees C/min. The TPS was compared with the gelation temperature (Tgel) at three different concentrations of gelatin and maltodextrin (4/3, 4/5, 5/5%). CLSM micrographs and TEM micrographs showed that these three concentrations of gelatin and maltodextrin had different microstructures. At a TPS above Tgel (5/5%), the phase separation proceeded faster than the gel formation and the microstructure had few, large maltodextrin inclusions and a clean continuous gelatin phase. At a TPS comparable with Tgel (4/5%), phase separation occurred during gel formation, which led to a varying microstructure and competition between the phase separation and the gel formation. At a TPS below Tgel (4/3%), gel formation proceeded faster than the phase separation and the microstructure had many, small inclusions and a diffuse microstructure, and the phase separation was incomplete. It was established that the microstructure was determined by the relative rates of the phase separation and the gel formation. Three different zones of phase separation could be distinguished based on comparisons of TPS and Tgel, and results from CLSM, TEM and image analysis.  相似文献   

3.
Phase separation mechanisms and kinetics were studied using small-angle light scattering in a gelatin/maltodextrin system where phase separation could be studied in both liquid and gelled states. Nucleation and growth or spinodal decomposition occurred, depending on the quench depth. The transition between the two mechanisms occurred relatively sharply. The different mechanisms were distinguishable by the different behavior of the scattering function even though a peak was observed in both cases. Particular differences were the different evolution of the peak intensity and position, the absence of dynamic scaling of the nucleation and growth scattering function, and the final coarsening exponent of 1/3 that was measured when spinodal decomposition occurred but not for nucleation and growth. Gelation severely reduced the coarsening rate and initially placed the phase compositions far from their equilibrium values. Despite the loss of molecular mobility caused by gelation, the gelled systems did continue to evolve, albeit much more slowly than in the liquid case. Multiple coarsening rates were observed for some of the gelled samples, which were ascribed to the gradual movement of these systems toward the equilibrium compositions.  相似文献   

4.
Aqueous gelatin solutions of different concentrations have been investigated at various quench temperatures by viscosity measurements to determine the gel times and by optical rotation measurements to derive the evolution of the helix content by reference to native collagen. As a result, it appears that the gelation of the different aqueous gelatin solutions tested takes place at a common helix concentration independent of the initial gelatin concentration and quench temperature. Further, for each concentration, the dependence of gel time as a function of quench temperature has revealed the existence of two domains: a higher temperature domain where gel times increase strongly with quench temperature and a lower temperature domain where gel times are short and only slightly dependent on quench temperature.  相似文献   

5.
We have studied the growth dynamics of domains on ternary fluid vesicles composed of saturated (dipalmitoylphosphatidylcholine), unsaturated (dioleoylphosphatidylcholine) phosphatidylcholine lipids, and cholesterol using a fluorescence microscopy. The domain coarsening processes are classified into two types: normal coarsening and trapped coarsening. For the normal coarsening, the domains having flat circular shape grow in a diffusion-and-coalescence manner and phenomenologically the mean size grows as a power law of approximately t(2/3). The observed growth law is not described by a two-dimensional diffusion-and-coalescence growth mechanism following the Saffman and Delbrück theory, which may originate from the two-body hydrodynamic interactions between domains. For trapped coarsening, on the other hand, the domain coarsening is suppressed at a certain domain size because the repulsive interdomain interactions obstruct the coalescence of domains. The two-color imaging of the trapped domains reveals that the repulsive interactions are induced by the budding of domains. The model free energy consisting of the bending energy of domains, the bending energy of matrix, the line energy of domain boundary, and the translation energy of domains can describe the observed trapped coarsening. The trapping of domains is caused by the coupling between the phase separation and the membrane elasticity under the incompressibility constraint.  相似文献   

6.
The time-dependent diffusion and mechanical properties of gelatin in solution, in the gel state, and during the sol/gel transition were determined using fluorescence recovery after photobleaching (FRAP) and rheology. The parameters in the experimental design were 2% w/w and 5% w/w gelatin concentration; 15, 20, and 25 °C end quench temperatures; and Na(2)-fluorescein, 10 kDa FITC-dextran, and 500 kDa FITC-dextran as diffusion probes. The samples were monitored in solution at 60 °C, during quenching, for 75 min at end quench temperatures and after 1, 7, and 14 days of storage at the end quench temperature. The effect of temperature on the probe diffusion was normalized by determining the free diffusion of the probes in pure water for the different temperatures. The results gained by comparing FRAP and rheology showed that FRAP is able to capture structural changes in the gelatin before gelation occurs, which was interpreted as a formation of transient networks. This was clearly seen for 2% w/w gelatin and 20 and 25 °C end quench temperatures. The structural changes during sol/gel transition are detected only by the larger probes, giving information about the typical length scales in the gelatin structure. The normalized diffusion rate increased after 7 and 14 days of storage. This increase was most pronounced for fluorescein but was also seen for the larger probes.  相似文献   

7.
Abstract

The structural characteristics during phase separation of a model colloidal system were investigated using Brownian dynamics simulation. The structures that formed were analysed using the radial distribution function and structure factor in separate time periods after the quench. The data were interpreted in terms of scale-invariancy and density inhomogeneities. The systems, which consisted of a gas-like phase and dense liquid or solid-like regions, developed with a highly interconnected morphology during the simulations. The aggregate morphology was sensitive to the range of the attractive part of the potential and the position in the phase diagram after the quench. The long-range 12:6 potential induced compact structures with thick filaments, whereas the systems generated using the shorter-ranged 24:12 and 36:18 potentials persisted in a more diffuse network and also evolved more slowly with time. The fractal dimensions were quite high, typically close to 3. The 24:12 and 36:18 potential systems developed regions of local crystalline order which formed contemporaneously with the more global morphological changes. In contrast, at low temperatures the particles of the longer-range 12:6 potential became trapped in glass-like states during the course of the morphological changes in the system. The value of the characteristic lengthscale with time exponent, α, was found to be dependent on the temperature, density and interaction potential and therefore cannot be described as ‘universal’.  相似文献   

8.
We used a combination of imaging and fluctuation techniques to investigate the temporal evolution of gel phase domains at the onset of phase separation, as well as the correlation between domain topology and local lipid ordering in GUVs composed of a binary mixture of DPPC/DLPC 1:1. The data acquired at temperatures immediately above the transition temperature of the two lipids suggest fluctuations in the lipid organization with a lifetime <0.1 s and a characteristic length of 1.2 μm. As the temperature is decreased below the transition temperature of one of the lipids, coupling between the two leaflets of the bilayer is observed to begin within the first five minutes after the onset of phase separation. However, domains confined to only one leaflet can be found during the first 45-50 min after the onset of phase separation. Our analysis using a two-state model (liquid and gel) indicates that for the first 45-50 min from the onset of phase separation the two lipid phases do not strongly influence the phase behavior of each other on the micron-length scale. At longer times, behavior that deviates from the two-state model is observed and appears to be correlated to domain morphology.  相似文献   

9.
We present a study on the morphology and kinetics of depletion-induced phase separation in aqueous xanthan-colloid mixtures with light microscopy and small angle light scattering (SALS), using fluorinated colloids with a refractive index close to that of water to prevent complications of multiple scattering. Microscopy with the direction of observation perpendicular to gravity enabled us to observe the development of the microstructure during the entire phase separation process including the formation of a macroscopic interface. Bicontinuous structures typical of a spinodal decomposition mechanism were observed at early times. These structures coarsened in time until hydrodynamic flow resulted in lane formation. Close to the binodal, a nucleation-and-growth mechanism was observed with formation of droplets. The coarsening kinetics were studied in more detail with SALS and turbidity measurements. Above polysaccharide concentrations at which entanglements become dominant, a slower coarsening and macroscopic phase separation were found because of the high continuous phase viscosity.  相似文献   

10.
Properties of film from splendid squid (Loligo formosana) skin gelatin extracted at different temperatures (50-80°C) were investigated. Tensile strength (TS) and elongation at break (EAB) of films decreased, but water vapour permeability (WVP) increased (P<0.05) as the extraction temperature increased. Increase in transparency value with coincidental decrease in lightness was observed with increasing extraction temperatures. Electrophoretic study revealed that degradation of gelatin became more pronounced with increasing extraction temperatures. As a consequence, their corresponding films had the lower mechanical properties. FTIR spectra of obtained gelatin films revealed the significant loss of molecular order of the triple helix. Thermogravimetric analysis indicated that F80 exhibited the higher heat susceptibility and weight loss. Loosen structure was observed in film prepared from gelatin with increasing extraction temperatures. Thus, the temperature used for gelatin extraction from splendid squid skin directly affected the properties of corresponding films.  相似文献   

11.
This paper describes experiments showing the importance of the fatty acid chain length on the barrier properties of liposomal bilayers, prepared from saturated lecithins, under conditions of lateral phase separation. 1. Above the gel to liquid crystalline phase transition temperature, liposomes prepared from saturated lecithins with 14 or more carbon atoms per acyl chain exist as stable bilayers, which are practically impermeable to ions. 2. At temperatures well above the transition temperature dilauroyl phosphatidylcholine liposomes exhibited osmotic shrinkage, which was dependent on the ionic size of the solute used to bring about the osmotic gradient, indicating that the permeation through these less stable bilayers takes place mainly via individual diffusion of the permeating ions. 3. An enhanced release of trapped potassium from liposomes was demonstrated in the vicinity of the transition temperature. The extent of the increase, however, depended strongly on the length of the paraffin chain. 4. From measurements of the shrinkage behaviour of liposomes in the vicinity of the transition temperature it is concluded that the increased permeability decreases with increasing diameter of the permeating ion. This finding implies that the increased permeability at the transition temperature cannot be ascribed to "macroscopic" rupture of the liposomal membrane. The maximum permeability in the vicinity of the Tc is discussed in terms of probability and size distribution of statistical pore formation at the boundaries of liquid and solid domains.  相似文献   

12.
Maize amylose, separated from granular starch by means of an aqueous leaching process, was used to investigate spherulite formation from concentrated mixtures of starch in water. Amylose (10-20%, w/w) was found to form a spherulitic semicrystalline morphology over a wide range of cooling rates (1-250 degrees C/min), provided it was first heated to >170 degrees C. This is explained through the effect of temperature on chain conformation. A maximum quench temperature of approximately 70 degrees C was required to produce spherulitic morphology. Quench temperatures between 70 and 110 degrees C produced a gel-like morphology. This is explained on the basis of the relative kinetics of liquid-liquid phase separation vis-à-vis crystallization. The possibility of the presence of a liquid crystalline phase affecting the process of spherulite formation is discussed.  相似文献   

13.
Current literature acknowledges the effect of food structure on bacterial dynamics. Most studies introduce this “structure” factor using a single gelling agent, resulting in a homogeneous environment, whereas in practice most food products are heterogeneous. Therefore, this study focuses on heterogeneous protein-polysaccharide mixtures, based on gelatin and dextran. These mixtures show phase separation, leading to a range of heterogeneous microstructures by adjusting relative concentrations of both gelling agents. Based on confocal microscope observations, the growth of Escherichia coli in gelatin-dextran systems was observed to occur in the dextran phase. To find a relation between microscopic and population behavior, growth experiments were performed in binary and singular gelatin-dextran systems and culture broth at 23.5°C, with or without adding 2.9% (wt/vol) NaCl. The Baranyi and Roberts growth model was fitted to the experimental data and parameter estimates were statistically compared. For salted binary mixtures, a decrease in the population maximum cell density was observed with increasing gelatin concentration. In this series, for one type of microstructure, i.e., a gelatin matrix phase with a disperse dextran phase, the maximum cell density decreased with decreasing percentage of dextran phase. However, this relation no longer held when other types of microstructure were observed. Compared to singular systems, adding a second gelling agent in the presence of NaCl had an effect on population lag phases and maximum cell densities. For unsalted media, the growth parameters of singular and binary mixtures were comparable. Introducing this information into mathematical models leads to more reliable growth predictions and enhanced food safety.  相似文献   

14.
The incompatibility of acid gelatin/iota-carrageenan mixtures has been studied. Both these biopolymers undergo a conformational coil-helix transition under suitable conditions of temperature and salt. The aim of this work was to study the concentration at which mixtures are incompatible and the influence of pH, salt and temperature on the phase diagram. Incompatibility occurred over a wide range of concentrations for mixtures prepared in deionized water. Compatibility was increased by increasing the pH or the salt concentration. Temperature did not greatly influence the size of the incompatible region. This is in agreement with the hypothesis that attractive electrostatic interactions lead to associative phase separation (traditionally called complex coacervation).  相似文献   

15.
The phase diagram of DOPE/water dispersions was investigated by NMR and X-ray diffraction in the water concentration range from 2 to 20 water molecules per lipid and in the temperature range from -5 to +50 degrees C. At temperatures above 22 degrees C, the dispersions form an inverse (HII) phase at all water concentrations. Below 25 degrees C, an HII phase occurs at high water concentrations, an L alpha phase is formed at intermediate water concentrations, and finally the system switches back to an HII phase at low water concentrations. The enthalpy of the L alpha-HII-phase transition is +0.3 kcal/mol as measured by differential scanning calorimetry. Using 31P and 2H NMR and X-ray diffraction, we measured the trapped water volumes in HII and L alpha phases as a function of osmotic pressure. The change of the HII-phase free energy as a function of hydration was calculated by integrating the osmotic pressure vs trapped water volume curve. The phase diagram calculated on the basis of the known enthalpy of transition and the osmotic pressure vs water volume curves is in good agreement with the measured one. The HII-L alpha-HII double-phase transition at temperatures below 22 degrees C can be shown to be a consequence of (i) the greater degree of hydration of the HII phase in excess water and (ii) the relative sensitivities with which the lamellar and hexagonal phases dehydrate with increasing osmotic pressure. These results demonstrate the usefulness of osmotic stress measurements to understand lipid-phase diagrams.  相似文献   

16.
Many studies have shown that membrane lipids of chilling-sensitive plants begin lateral phase separation (i.e. a minor component begins freezing) at chilling temperatures and that chilling-sensitive plants are often of tropical origin. We tested the hypothesis that membranes of tropical plants begin lateral phase separation at chilling temperatures, and that plants lower the temperature of lateral phase separation as they invade cooler habitats. To do so we studied plant species in one family confined to the tropics (Piperaceae) and in three families with both tropical and temperate representatives (Fabaceae [Leguminosae], Malvaceae, and Solanaceae). We determined lateral phase separation temperatures by measuring the temperature dependence of fluorescence from trans-parinaric acid inserted into liposomes prepared from isolated membrane phospholipids. In all families we detected lateral phase separations at significantly higher temperatures, on average, in species of tropical origin. To test for associated physiological effects we measured the temperature dependence of delayed light emission (DLE) by discs cut from the same leaves used for lipid analysis. We found that the temperature of maximum DLE upon chilling was strongly correlated with lateral phase separation temperatures, but was on average approximately 4°C lower. We also tested the hypothesis that photosystem II (PSII) (the most thermolabile component of photosynthesis) of tropical plants tolerates higher temperatures than PSII of temperate plants, using DLE and Fo chlorophyll fluorescence upon heating to measure the temperature at which PSII thermally denatured. We found little difference between the two groups in PSII denaturation temperature. We also found that the temperature of maximum DLA upon heating was not significantly different from the critical temperature for Fo fluorescence. Our results indicate that plants lowered their membrane freezing temperatures as they radiated from their tropical origins. One interpretation is that the tendency for membranes to begin freezing at chilling temperatures is the primitive condition, which plants corrected as they invaded colder habitats. An alternative is that membranes which freeze at temperatures only slightly lower than the minimum growth temperature confer an advantage.  相似文献   

17.
The physiological response to temperature, in terms of oxygen consumption, nitrogen excretion and feed intake was examined in Jasus edwardsii larvae at mid-stages I-III. From stage I to stage III, the mass-specific oxygen consumption increased in a sigmoid pattern over the temperature range of 10-22 degrees C. The Q(10) value declined significantly from 14-18 to 18-22 degrees C range, indicating a reduced temperature dependence of larval metabolism at higher temperatures. At all stages, feed intake increased with increasing temperature but reached a plateau at the higher temperatures for stages I and II larvae. In contrast, nitrogen excretion increased linearly over this temperature range for all larval stages. Therefore, higher temperatures ( approximately 22 degrees C) may cause an energetic imbalance and reduce growth potential in early stage larvae. While the convection requirement index (quotient of feed intake and oxygen consumption) indicated an equivalent metabolic feeding efficiency from 14 to 22 degrees C, a consistent decline of the O/N ratio above 16-18 degrees C from stage I to stage III suggested that exposure to elevated temperatures may result in an increase in the amount of protein being diverted from growth to catabolic processes. Based on these results, a temperature of 18 degrees C is recommended for the culture of early stage J. edwardsii larvae.  相似文献   

18.
The formation of ordered structure, such as crystallites, in starch was studied by means of differential scanning calorimetry (DSC). The influence of time/temperature treatment and additives such as polyethylene glycol (PEG), bovine serum albumin (BSA) and a carbonate buffer on the formation was investigated. The experiments were planned with a CCC (Central Composite Circumscribed) design. For all three investigated systems it could be concluded that the incubation time at 6 °C was the decisive factor for the amount of ordered structure obtained during the incubation, while the incubation time at 37 °C was the decisive factor for the thermal stability of the crystallites as expressed by Ton, Tm and Tc. The additives seemed to mainly affect the nucleation phase of crystallization process. The additives decreased the time required in order to obtain a certain level of ordering in the incubated starch samples. The carbonate buffer decreased the amount of ordered structure in starch as judged by DSC enthalpy values, while increasing the melting temperature of these structures. The additives PEG and BSA lowered the melting temperatures of the starch in the systems but increased the enthalpy values. By optimization procedure a specific amount of ordered structure with desired thermal characteristics could be predicted.  相似文献   

19.
Stability of dry liposomes in sugar glasses.   总被引:13,自引:0,他引:13       下载免费PDF全文
Sugars, particularly trehalose and sucrose, are used to stabilize liposomes during hydration (freeze-drying and air-drying). As a result, dry liposomes are trapped in a sugar glass, a supersaturated and thermodynamically unstable solid solution. We investigated the effects of the glassy state on liposome fusion and solute retention in the dry state. Solute leakage from dry liposomes was extremely slow at temperatures below the glass transition temperature (Tg); however, it increased exponentially as temperature increased to near or above the Tg, indicating that the glassy state had to be maintained for dry liposomes to retain trapped solutes. The leakage of solutes from dry liposomes followed the law of first-order kinetics and was correlated linearly with liposome fusion. The kinetics of solute leakage showed an excellent fit with the Arrhenius equation at temperatures both above and below the Tg, with a transitional break near the Tg. The activation energy of solute leakage was 1320 kJ/mol at temperatures above the Tg, but increased to 1991 kJ/mol at temperatures below the Tg. The stabilization effect of sugar glass on dry liposomes may be associated with the elevated energy barrier for liposome fusion and the physical separation of dry liposomes in the glassy state. The half-life of solute retention in dry liposomes may be prolonged by storing dry liposomes at temperatures below the Tg and by increasing the Tg of the dry liposome preparation.  相似文献   

20.
The structural properties of isolated purified rat brain synaptosomal membranes, both in the presence and absence of purified active toxin of the Mojave snake Crotalus scutulatus scutulatus, were studied by spin-label electron spin resonance techniques. The spectra from eight different positional isomers of nitroxide-labelled stearic acids, a rigid steroid androstanol, and a spin-labelled phosphatidylcholine intercalated into the synaptosomal membranes, were obtained as a function of temperature from 4-40 degrees C. The flexibility gradient (from spin-label order parameters) and polarity profile (from isotropic splitting factors) across the synaptosomal membranes, was characteristic for lipid bilayers. The nitroxide spin-labelled steroid, androstanol, intercalated into the synaptosomal membrane, revealed the abrupt onset of rapid cooperative rotation about the long axis of the molecule at 12 degrees C showing that the lipid molecules are rotating rapidly around their long axes at physiological temperatures. The presence of the Mojave toxin affected the synaptosomal membrane in a complex manner, depending upon the temperature and the position of the nitroxide label on the alkyl chain of the stearic acid probe. Mojave toxin exerted little effect on the flexibility gradient of the synaptosomal membrane at 20 degrees C, a temperature at which the acyl chain labels detected a structural change in the membranes. At temperatures lower than 20 degrees C, the Mojave toxin produced a change in the flexibility gradient of the synaptosomal membrane which indicated an increased disordering in the upper region of the membrane and a concomitant increased ordering of the acyl chains in the deeper regions of the membrane. At temperatures higher than 20 degrees C, the order profile of the synaptosomal membrane was shifted by the presence of the Mojave toxin in a manner which indicated that the outer parts of the membrane were more rigid and the inner regions more fluid, than in controls. A cross-over point for the perturbation occurred at C8-9, which is about 12-14 A into the membrane. This is the approximate depth of the hydrophobic pocket shown in pancreatic phospholipase A2 [Drenth et al. (1976) Nature (Lond.) 264, 373-377], a protein likely to be homologous to the basic subunit of the toxin. At all temperatures, rotational lipid motion was inhibited by the toxin as indicated by the steroid probe. The electron spin-resonance spin-label results are interpreted in terms of the partial penetration of the basic subunit of the intact toxin into the membrane, disordering the ordered chains at low temperature and ordering the disordered chains at physiological temperatures. The purified individual toxin subunits did not perturb the membrane lipids at physiological temperatures implying that both subunits must be associated for activity of the toxin which is confirmed by toxicity studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号