首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amphiphysin 1 (amph 1) is an endocytic protein enriched in the nerve terminals that functions in the clathrin-mediated endocytosis. It acts as membrane curvature sensor, a linker of clathrin coat proteins, and an enhancer of dynamin Guanosine Triphosphatase (GTPase) activity. Amph 1 undergoes phosphorylation by cyclin-dependent kinase 5 (Cdk5), at five phosphorylation sites, serine 262, 272, 276, 285, and threonine 310, as determined by mass spectrometry (MS). We show here that Cdk5-dependent phosphorylation of amph 1 is enhanced in the presence of lipid membranes. Analysis by tandem liquid chromatograph MS revealed that the phosphorylation occurs at two phosphorylation sites. The phosphorylation was markedly decreased by mutation either Ser276 or Ser285 of amph 1 to alanine (S276A and S285A). Furthermore, mutation of both sites (S276, 285A) completely eliminated the phosphorylation. Functional studies indicated that binding of amph 1 to lipid membrane was attenuated by Cdk5-dependent phosphorylation of wild type amph 1, but not of the S276, 285A form. Interestingly, endocytosis was increased in rat pheochromocytoma cells expressing amph 1 S276, 285A in comparison with wild type. These results suggest that Ser276 and Ser285 are regulatory Cdk5 phosphorylation sites of amph 1 in the lipid-bound state. Phosphorylation at these sites alters binding of amph 1 to lipid membranes, and may be an important regulatory aspect in the regulation of synaptic vesicle endocytosis.  相似文献   

2.
The GTPase dynamin I is essential for synaptic vesicle endocytosis in nerve terminals. It is a nerve terminal phosphoprotein that is dephosphorylated on nerve terminal stimulation by the calcium-dependent protein phosphatase calcineurin and then rephosphorylated by cyclin-dependent kinase 5 on termination of the stimulus. Because of its unusual phosphorylation profile, the phosphorylation status of dynamin I was assumed to be inexorably linked to synaptic vesicle endocytosis; however, direct proof of this link has been elusive until very recently. This review will describe current knowledge regarding dynamin I phosphorylation in nerve terminals and how this regulates its biological function with respect to synaptic vesicle endocytosis.  相似文献   

3.
Dynamin I and at least five other nerve terminal proteins, amphiphysins I and II, synaptojanin, epsin and eps15 (collectively called dephosphins), are coordinately dephosphorylated by calcineurin during endocytosis of synaptic vesicles. Here we have identified a new dephosphin, the essential endocytic protein AP180. Blocking dephosphorylation of the dephosphins is known to inhibit endocytosis, but the role of phosphorylation has not been determined. We show that the protein kinase C (PKC) antagonists Ro 31-8220 and Go 7874 block the rephosphorylation of dynamin I and synaptojanin that occurs during recovery from an initial depolarizing stimulus (S1). The rephosphorylation of AP180 and amphiphysins 1 and 2, however, were unaffected by Ro 31-8220. Although these dephosphins share a single phosphatase, different protein kinases phosphorylated them after nerve terminal stimulation. The inhibitors were used to selectively examine the role of dynamin I and/or synaptojanin phosphorylation in endocytosis. Ro 31-8220 and Go 7874 did not block the initial S1 cycle of endocytosis, but strongly inhibited endocytosis following a second stimulus (S2). Therefore, phosphorylation of a subset of dephosphins, which includes dynamin I and synaptojanin, is required for the next round of stimulated synaptic vesicle retrieval.  相似文献   

4.
Cdk5 and the mystery of synaptic vesicle endocytosis   总被引:1,自引:0,他引:1  
Regulation of endocytosis by protein phosphorylation and dephosphorylation is critical to synaptic vesicle recycling. Two groups have now identified the neuronal kinase Cdk5 (cyclin-dependent kinase 5) as an important regulator of this process. Robinson and coworkers recently demonstrated that Cdk5 is necessary for synaptic vesicle endocytosis (SVE) (Tan et al., 2003), whereas a new report in this issue claims that Cdk5 negatively regulates SVE (Tomizawa et al., 2003). Careful examination of the data reveals a model that helps resolve the apparently contradictory nature of these reports.  相似文献   

5.
c-Src is phosphorylated at specific serine and threonine residues during mitosis in fibroblastic and epithelial cells. These sites are phosphorylated in vitro by the mitotic kinase Cdk1 (p34(cdc2)). In contrast, c-Src in Y79 human retinoblastoma cells, which are of neuronal origin, is phosphorylated at one of the mitotic sites, Ser75, throughout the cell cycle. The identity of the serine kinase that nonmitotically phosphorylates c-Src on Ser75 remains unknown. We now are able to show for the first time that Cdk5 kinase, which has the same consensus sequence as the Cdk1 and Cdk2 kinases, is required for the phosphorylation in asynchronous Y79 cells. The Ser75 phosphorylation was inhibited in a dose-dependent manner by butyrolactone I, a specific inhibitor of Cdk5-type kinases. Three stable subclones that have almost no kinase activity were selected by transfection of an antisense Cdk5-specific activator p35 construct into Y79 cells. The loss of the kinase activity caused an approximately 85% inhibition of the Ser75 phosphorylation. These results present compelling evidence that Cdk5/p35 kinase is responsible for the novel phosphorylation of c-Src at Ser75 in neuronal cells, raising the intriguing possibility that c-Src acts as an effector of Cdk5/p35 kinase during neuronal development.  相似文献   

6.
Dynamin I is phosphorylated in nerve terminals exclusively in the cytosolic compartment and in vitro by protein kinase C (PKC). Dephosphorylation is required for synaptic vesicle retrieval, suggesting that its phosphorylation affects its subcellular localization. An in vitro phospholipid binding assay was established that prevents lipid vesiculation and dynamin lipid insertion into the lipid. Dynamin I bound the phospholipid in a concentration-dependent and saturable manner, with an apparent affinity of 230 +/- 51 nM. Optimal binding occurred with mixtures of phosphatidylserine and phosphatidylcholine of 1:3 with little binding to phosphatidylcholine or phosphatidylserine alone. Phospholipid binding was abolished after dynamin I phosphorylation by PKC and was restored after dephosphorylation by calcineurin. Matrix-assisted laser desorption/ionization-time of flight mass spectrometry revealed the phosphorylation site in PKCalpha-phosphorylated dynamin I as a single site at Ser-795, located near a binding site for the SH3 domain of p85, the regulatory subunit of phosphatidylinositol 3-kinase. However, phosphorylation had no effect on dynamin binding to a bacterially expressed p85-SH3 domain. Thus, phosphorylation of dynamin I on Ser-795 prevents its association with phospholipid, providing a basis for the cytosolic localization of the minor pool of phospho-dynamin I that mediates synaptic vesicle retrieval in nerve terminals.  相似文献   

7.
It has been thought that clathrin-mediated endocytosis is regulated by phosphorylation and dephosphorylation of many endocytic proteins, including amphiphysin I and dynamin I. Here, we show that Cdk5/p35-dependent cophosphorylation of amphiphysin I and dynamin I plays a critical role in such processes. Cdk5 inhibitors enhanced the electric stimulation-induced endocytosis in hippocampal neurons, and the endocytosis was also enhanced in the neurons of p35-deficient mice. Cdk5 phosphorylated the proline-rich domain of both amphiphysin I and dynamin I in vitro and in vivo. Cdk5-dependent phosphorylation of amphiphysin I inhibited the association with beta-adaptin. Furthermore, the phosphorylation of dynamin I blocked its binding to amphiphysin I. The phosphorylation of each protein reduced the copolymerization into a ring formation in a cell-free system. Moreover, the phosphorylation of both proteins completely disrupted the copolymerization into a ring formation. Finally, phosphorylation of both proteins was undetectable in p35-deficient mice.  相似文献   

8.
Apoptosis-associated tyrosine kinase 1 (AATYK1), a novel serine/threonine kinase that is highly expressed in the brain, is involved in neurite extension and apoptosis of cerebellar granule neurons; however, its precise function remains unknown. In this study, we investigated the interaction of AATYK1A with Cyclin-dependent kinase 5 (Cdk5)/p35, a proline-directed protein kinase that is predominantly expressed in neurons. AATYK1A bound to the p35 activation subunit of Cdk5 in cultured cells and in mouse brains and colocalized with p35 on endosomes in COS-7 cells. AATYK1A was phosphorylated at Ser34 by Cdk5/p35 in vitro, in cultured neurons and in mouse brain. In PC12D cells, Ser34 phosphorylation increased after treatment with nerve growth factor and phosphorylated AATYK1A accumulated in growth cones of PC12D cells. Ser34 phosphorylation suppressed the tyrosine phosphorylation of AATYK1A by Src family kinases. These results suggest a possibility that AATYK1A plays a role in early to recycling endosomes and its function is regulated by phosphorylation with Cdk5 or Src-family kinases.  相似文献   

9.
10.
Dynamin I mediates vesicle fission during synaptic vesicle endocytosis (SVE). Its proline-rich domain (PRD) binds the Src-homology 3 (SH3) domain of a subset of proteins that can deform membranes. Syndapin I, amphiphysin I, and endophilin I are its major partners implicated in SVE. Syndapin binding is controlled by phosphorylation at Ser-774 and Ser-778 in the dynamin phospho-box. We now define syndapin and endophilin-binding sites by peptide competition and site-directed mutagenesis. Both bound the same region of the dynamin PRD and both exhibited unusual bidirectional binding modes around core PxxP motifs, unlike amphiphysin which employed a class II binding mode. Endophilin binds to tandem PxxP motifs in the sequence (778)SPTPQRRAPAVPPARPGSR(796) in dynamin, with SPTPQ being an overhang sequence. In contrast, syndapin binding involves two components in the region (772)RRSPTSSPTPQRRAPAVPPARPGSR(796). It required a single PxxP core and a non-PxxP N-terminally anchored extension which bridges the phospho-box and may contribute to binding specificity and affinity. Syndapin binding is exquisitely sensitive to the introduction of negative charges almost anywhere along this region, explaining why it is a highly tuned phospho-sensor. Over-expression of dynamin point mutants that fail to bind syndapin or endophilin inhibit SVE in cultured neurons. Due to overlapping binding sites the interactions between dynamin and syndapin or endophilin were mutually exclusive. Because syndapin acts as a phospho-sensor, this supports its role in depolarization-induced SVE at the synapse, which involves dynamin dephosphorylation. We propose syndapin and endophilin function either at different stages during SVE or in mechanistically distinct types of SVE.  相似文献   

11.
Abstract: Synaptic vesicle recycling is a neuronal specialization of endocytosis that requires the GTPase activity of dynamin I and is triggered by membrane depolarization and Ca2+ entry. To establish the relationship between dynamin I GTPase activity and Ca2+, we used purified dynamin I and analyzed its interaction with Ca2+ in vitro. We report that Ca2+ bound to dynamin I and this was abolished by deletion of dynamin's C-terminal tail. Phosphorylation of dynamin I by protein kinase C promoted formation of a dynamin I tetramer and increased Ca2+ binding to the protein. Moreover, Ca2+ inhibited dynamin I GTPase activity after stimulation by phosphorylation or by phospholipids but not after stimulation with a GST-SH3 fusion protein containing the SH3 domain of phosphoinositide 3-kinase. These results suggest that in resting nerve terminals, phosphorylation of dynamin I by protein kinase C converts it to a tetramer that functions as a Ca2+-sensing protein. By binding to Ca2+, dynamin I GTPase activity is specifically decreased, possibly to regulate synaptic vesicle recycling.  相似文献   

12.
Secretion by neutrophils contributes to acute inflammation following injury or infection. Vimentin has been shown to be important for secretion by neutrophils but little is known about its dynamics during secretion, which is regulated by cyclin-dependent kinase 5 (Cdk5). In this study, we sought to examine the vimentin dynamics and its potential regulation by Cdk5 during neutrophil secretion. We show that vimentin is a Cdk5 substrate that is specifically phosphorylated at Ser56. In response to neutrophil stimulation with GTP, vimentin Ser56 was phosphorylated and colocalized with Cdk5 in the cytoplasmic compartment. Vimentin pSer56 and Cdk5 colocalization was consistent with coimmunoprecipitation from stimulated cells. Vimentin Ser56 phosphorylation occurred immediately after stimulation, and a remarkable increase in phosphorylation was noted later in the secretory process. Decreased GTP-induced vimentin Ser56 phosphorylation and secretion resulted from inhibition of Cdk5 activity by roscovitine or olomoucine or by depletion of Cdk5 by siRNA, suggesting that GTP-induced Cdk5-mediated vimentin Ser56 phosphorylation may be related to GTP-induced Cdk5-mediated secretion by neutrophils. Indeed, inhibition of vimentin Ser56 phosphorylation led to a corresponding inhibition of GTP-induced secretion, indicating a link between these two events. While fMLP also induced vimentin Ser56 phosphorylation, such phosphorylation was unaffected by roscovitine, which nonetheless, inhibited secretion, suggesting that Cdk5 regulates fMLP-induced secretion via a mechanism independent of Cdk5-mediated vimentin Ser56 phosphorylation. These findings demonstrate the distinct involvement of Cdk5 in GTP- and fMLP-induced secretion by neutrophils, and support the notion that specific targeting of Cdk5 may serve to inhibit the neutrophil secretory process.  相似文献   

13.
Cyclin-dependent kinase 5 (Cdk5) is emerging as a neuronal protein kinase involved in multiple aspects of neurotransmission in both post- and presynaptic compartments. Within the reward/motor circuitry of the basal ganglia, Cdk5 regulates dopamine neurotransmission via phosphorylation of the postsynaptic signal transduction pathway integrator, DARPP-32 (dopamine- and cyclic AMP-regulated phosphoprotein, M(r) 32,000). Cdk5 has also been implicated in regulating various steps in the presynaptic vesicle cycle. Here we report that Cdk5 phosphorylates tyrosine hydroxylase (TH), the key enzyme for synthesis of dopamine. Using phosphopeptide mapping, site-directed mutagenesis, and phosphorylation state-specific antibodies, the site was identified as Ser31, a previously defined extracellular signal-regulated kinases 1/2 (ERK1/2) site. The phosphorylation of Ser31 by Cdk5 versus ERK1/2 was investigated in intact mouse striatal tissue using a pharmacological approach. The results indicated that Cdk5 phosphorylates TH directly and also regulates ERK1/2-dependent phosphorylation of TH through the phosphorylation of mitogen-activated protein kinase kinase 1 (MEK1). Finally, phospho-Ser31 TH levels were increased in dopaminergic neurons of rats trained to chronically self-administer cocaine. These results demonstrate direct and indirect regulation of the phosphorylation state of a Cdk5/ERK1/2 site on TH and suggest a role for these pathways in the neuroadaptive changes associated with chronic cocaine exposure.  相似文献   

14.
Synapsin I, a prominent phosphoprotein in nerve terminals, is proposed to modulate exocytosis by interaction with the cytoplasmic surface of small synaptic vesicles and cytoskeletal elements in a phosphorylation-dependent manner. Tetanus toxin (TeTx), a potent inhibitor of neurotransmitter release, attenuated the depolarization-stimulated increase in synapsin I phosphorylation in rat cortical particles and in synaptosomes. TeTx also markedly decreased the translocation of synapsin I from the small synaptic vesicles and the cytoskeleton into the cytosol, on depolarization of synaptosomes. The effect of TeTx on synapsin I phosphorylation was both time and TeTx concentration dependent and required active toxin. One- and two-dimensional peptide maps of synapsin I with V8 proteinase and trypsin, respectively, showed no differences in the relative phosphorylation of peptides for the control and TeTx-treated synaptosomes, suggesting that both the calmodulin- and the cyclic AMP-dependent kinases that label this protein are equally affected. Phosphorylation of synapsin IIb and the B-50 protein (GAP43), a known substrate of protein kinase C, was also inhibited by TeTx. TeTx affected only a limited number of phosphoproteins and the calcium-dependent decrease in dephosphin phosphorylation remained unaffected. In vitro phosphorylation of proteins in lysed synaptosomes was not influenced by prior TeTx treatment of the intact synaptosomes or by the addition of TeTx to lysates, suggesting that the effect of TeTx on protein phosphorylation was indirect. Our data demonstrate that TeTx inhibits neurotransmitter release, the phosphorylation of a select group of phosphoproteins in nerve terminals, and the translocation of synapsin I. These findings contribute to our understanding of the basic mechanism of TeTx action.  相似文献   

15.
Increasing evidence implicates cyclin-dependent kinase 5 (Cdk5) in neuronal synaptic function. We searched for Cdk5 substrates in synaptosomal fractions prepared from mouse brains. Mass spectrometric analysis after two-dimensional SDS-PAGE identified several synaptic proteins phosphorylated by Cdk5-p35; one protein identified was Sept5 (CDCrel-1). Although septins were isolated originally as cell division-related proteins in yeast, Sept5 is expressed predominantly in neurons and is implicated in exocytosis. We confirmed that Sept5 is phosphorylated by Cdk5-p35 in vitro and identified Ser17 of adult type Sept5 (Sept5_v1) as a major phosphorylation site. We found that Ser17 of Sept5_v1 is phosphorylated in mouse brains. Coimmunoprecipitation from synaptosomal fractions and glutathione S-transferase-syntaxin-1A pulldown assays of Sept5_v1 expressed in COS-7 cells showed that phosphorylation of Sept5_v1 by Cdk5-p35 decreases the binding to syntaxin-1. These results indicate that the interaction of Sept5 with syntaxin-1 is regulated by the phosphorylation of Sept5_v1 at Ser17 by Cdk5-p35.  相似文献   

16.
Inhibitor-1, the first identified endogenous inhibitor of protein phosphatase 1 (PP-1), was previously reported to be a substrate for cyclin-dependent kinase 5 (Cdk5) at Ser67. Further investigation has revealed the presence of an additional Cdk5 site identified by mass spectrometry and confirmed by site-directed mutagenesis as Ser6. Basal levels of phospho-Ser6 inhibitor-1, as detected by a phosphorylation state-specific antibody against the site, existed in specific regions of the brain and varied with age. In the striatum, basal in vivo phosphorylation and dephosphorylation of Ser6 were mediated by Cdk5, PP-2A, and PP-1, respectively. Additionally, calcineurin contributed to dephosphorylation under conditions of high Ca2+. In biochemical assays the function of Cdk5-dependent phosphorylation of inhibitor-1 at Ser6 and Ser67 was demonstrated to be an intramolecular impairment of the ability of inhibitor-1 to be dephosphorylated at Thr35; this effect was recapitulated in two systems in vivo. Dephosphorylation of inhibitor-1 at Thr35 is equivalent to inactivation of the protein, as inhibitor-1 only serves as an inhibitor of PP-1 when phosphorylated by cAMP-dependent kinase (PKA) at Thr35. Thus, inhibitor-1 serves as a critical junction between kinase- and phosphatase-signaling pathways, linking PP-1 to not only PKA and calcineurin but also Cdk5.  相似文献   

17.
Despite the fact that inositol hexakisphosphate (InsP(6)) is the most abundant inositol metabolite in cells, its cellular function has remained an enigma. In the present study, we present the first evidence of a protein kinase identified in rat cerebral cortex/hippocampus that is activated by InsP(6). The substrate for the InsP(6)-regulated protein kinase was found to be the synaptic vesicle-associated protein, pacsin/syndapin I. This brain-specific protein, which is highly enriched at nerve terminals, is proposed to act as a molecular link coupling components of the synaptic vesicle endocytic machinery to the cytoskeleton. We show here that the association between pacsin/syndapin I and dynamin I can be increased by InsP(6)-dependent phosphorylation of pacsin/syndapin I. These data provide a model by which InsP(6)-dependent phosphorylation regulates synaptic vesicle recycling by increasing the interaction between endocytic proteins at the synapse.  相似文献   

18.
Glycosylation Sites Flank Phosphorylation Sites on Synapsin I   总被引:8,自引:0,他引:8  
Synapsin I is concentrated in nerve terminals, where it appears to anchor synaptic vesicles to the cytoskeleton and thereby ensures a steady supply of fusion-competent synaptic vesicles. Although phosphorylation-dependent binding of synapsin I to cytoskeletal elements and synaptic vesicles is well characterized, little is known about synapsin I's O-linked N-acetylglucosamine (O-GlcNAc) modifications. Here, we identified seven in vivo O-GlcNAcylation sites on synapsin I by analysis of HPLC-purified digests of rat brain synapsin I. The seven O-GlcNAcylation sites (Ser55, Thr56, Thr87, Ser516, Thr524, Thr562, and Ser576) in synapsin I are clustered around its five phosphorylation sites in domains B and D. The proximity of phosphorylation sites to O-GlcNAcylation sites in the regulatory domains of synapsin I suggests that O-GlcNAcylation may modulate phosphorylation and indirectly affect synapsin I interactions. With use of synthetic peptides, however, the presence of an O-GlcNAc at sites Thr562 and Ser576 resulted in only a 66% increase in the Km of calcium/calmodulin-dependent protein kinase II phosphorylation of site Ser566 with no effect on its Vmax. We conclude that O-GlcNAcylation likely plays a more direct role in synapsin I interactions than simply modulating the protein's phosphorylation.  相似文献   

19.
The aim of the present study was to analyse the alterations of cyclin dependent kinase 5 (Cdk5) expression and phosphorylation in PC12 cells overexpressing amyloid precursor protein (APP). Our results demonstrated enhanced cell death and increased levels of mRNA for the Cdk5 gene in APP-transfected cells. Significantly decreased phosphorylation of Cdk5 at Tyr15 was observed in APPsw cells, which is responsible for a reduction in Cdk5 activity. Cdk5-dependent phosphorylation of glycogen synthase kinase-3β (Gsk-3β) at Ser9 was also decreased, which can lead to the increase of Gsk-3β activity and hyperphosphorylation of MAP tau. Our results demonstrate for the first time, a deregulation of Cdk5 phosphorylation in APP-transfected cells.  相似文献   

20.
Tubulin polymerization-promoting protein (TPPP), an unfolded brain-specific protein interacts with the tubulin/microtubule system in vitro and in vivo, and is enriched in human pathological brain inclusions. Here we show that TPPP induces tubulin self-assembly into intact frequently bundled microtubules, and that the phosphorylation of specific sites distinctly affects the function of TPPP. In vitro phosphorylation of wild type and the truncated form (Delta3-43TPPP) of human recombinant TPPP was performed by kinases involved in brain-specific processes. A stoichiometry of 2.9 +/- 0.3, 2.2 +/- 0.3, and 0.9 +/- 0.1 mol P/mol protein with ERK2, cyclin-dependent kinase 5 (Cdk5), and cAMP-dependent protein kinase (PKA), respectively, was revealed for the full-length protein, and 0.4-0.5 mol P/mol protein was detected with all three kinases when the N-terminal tail was deleted. The phosphorylation sites Thr(14), Ser(18), Ser(160) for Cdk5; Ser(18), Ser(160) for ERK2, and Ser(32) for PKA were identified by mass spectrometry. These sites were consistent with the bioinformatic predictions. The three N-terminal sites were also found to be phosphorylated in vivo in TPPP isolated from bovine brain. Affinity binding experiments provided evidence for the direct interaction between TPPP and ERK2. The phosphorylation of TPPP by ERK2 or Cdk5, but not by PKA, perturbed the structural alterations induced by the interaction between TPPP and tubulin without affecting the binding affinity (K(d) = 2.5-2.7 microM) or the stoichiometry (1 mol TPPP/mol tubulin) of the complex. The phosphorylation by ERK2 or Cdk5 resulted in the loss of microtubule-assembling activity of TPPP. The combination of our in vitro and in vivo data suggests that ERK2 can regulate TPPP activity via the phosphorylation of Thr(14) and/or Ser(18) in its unfolded N-terminal tail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号