首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study we examined homologies between 1,735 porcine microsatellites and human sequence. For 1,710 microsatellites we directly used the sequence flanking the repeat available in GenBank. For a set of 305 microsatellites, a BAC library was screened and end-sequencing provided 461 additional sequences. Altogether 2,171 porcine sequences were tentatively aligned with the sequence of the human genome using the fasta program. Human homologies were observed for 652 microsatellite loci and porcine chromosome assignments available for 623 microsatellites provide useful links in the human and pig comparative map. Moreover for 92 STS, a significant sequence similarity was detected using at least two sequences and in all cases corresponding human locations were consistent. The present study allowed the integration of anonymous markers and the porcine linkage map into the framework of the comparative data between human and porcine genomes (http://w3.toulouse.inra.fr/lgc/pig/msat/). Moreover all conserved syntenic segments were defined on human chromosomes.  相似文献   

2.
The human genome is a mosaic of isochores, which are long DNA segments (300 kbp) relatively homogeneous in G+C. Human isochores were first identified by density-gradient ultracentrifugation of bulk DNA, and differ in important features, e.g. genes are found predominantly in the GC-richest isochores. Here, we use a reliable segmentation method to partition the longest contigs in the human genome draft sequence into long homogeneous genome regions (LHGRs), thereby revealing the isochore structure of the human genome. The advantages of the isochore maps presented here are: (1) sequence heterogeneities at different scales are shown in the same plot; (2) pair-wise compositional differences between adjacent regions are all statistically significant; (3) isochore boundaries are accurately defined to single base pair resolution; and (4) both gradual and abrupt isochore boundaries are simultaneously revealed. Taking advantage of the wide sample of genome sequence analyzed, we investigate the correspondence between LHGRs and true human isochores revealed through DNA centrifugation. LHGRs show many of the typical isochore features, mainly size distribution, G+C range, and proportions of the isochore classes. The relative density of genes, Alu and long interspersed nuclear element repeats and the different types of single nucleotide polymorphisms on LHGRs also coincide with expectations in true isochores. Potential applications of isochore maps range from the improvement of gene-finding algorithms to the prediction of linkage disequilibrium levels in association studies between marker genes and complex traits. The coordinates for the LHGRs identified in all the contigs longer than 2 Mb in the human genome sequence are available at the online resource on isochore mapping: http://bioinfo2.ugr.es/isochores.  相似文献   

3.
Here we report a large, extensively characterized set of single-nucleotide polymorphisms (SNPs) covering the human genome. We determined the allele frequencies of 55,018 SNPs in African Americans, Asians (Japanese-Chinese), and European Americans as part of The SNP Consortium's Allele Frequency Project. A subset of 8333 SNPs was also characterized in Koreans. Because these SNPs were ascertained in the same way, the data set is particularly useful for modeling. Our results document that much genetic variation is shared among populations. For autosomes, some 44% of these SNPs have a minor allele frequency > or =10% in each population, and the average allele frequency differences between populations with different continental origins are less than 19%. However, the several percentage point allele frequency differences among the closely related Korean, Japanese, and Chinese populations suggest caution in using mixtures of well-established populations for case-control genetic studies of complex traits. We estimate that approximately 7% of these SNPs are private SNPs with minor allele frequencies <1%. A useful set of characterized SNPs with large allele frequency differences between populations (>60%) can be used for admixture studies. High-density maps of high-quality, characterized SNPs produced by this project are freely available.  相似文献   

4.
MOTIVATION: Integrated maps are useful for gene mapping and establishing the relationship between recombination and sequence. In this paper we describe algorithms and their implementation for constructing sequence-based integrated maps of the human chromosomes, which are presented in LDB2000, a web based resource. Gene mapping efforts are now focussing on linkage disequilibrium mapping and extension of the integrated map to represent the extent of linkage disequilibrium in different genomic regions would further increase the utility of these maps. RESULTS: Sequence-based integrated maps have been completed for chromosomes 21 and 22. These maps provide locations for genes and polymorphic markers in sequence and on genetic linkage, radiation hybrid and cytogenetic scales. Single nucleotide polymorphisms associated with genes in the maps are also included and their sequence locations indicated. Related locus information, such as aliases and expression information, can be searched on the WWW site.  相似文献   

5.
6.
The HuGeMap database stores the major genetic and physical maps of the human genome. HuGeMap is accessible on the Web at http://www. infobiogen.fr/services/Hugemap and through a CORBA server. A standard genome map data format for the interconnection of genome map databases was defined in collaboration with the EBI. The HuGeMap CORBA server provides this interconnection using the interface definition language IDL. Two graphical user interfaces were developed for the visualization of the HuGeMap data: ZoomMap (http://www.infobiogen.fr/services/zomit/Zoom Map.html) for navigation by zooming and data transformation via magic lenses, and MappetShow (http://www.infobiogen.fr/services/Mappet) for visualizing and comparing maps.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
DNA sequences from retroviruses, retrotransposons, DNA transposons, and parvoviruses can all become integrated into the human genome. Accumulation of such sequences accounts for at least 40% of our genome today. These integrating elements are also of interest as gene-delivery vectors for human gene therapy. Here we present a comprehensive bioinformatic analysis of integration targeting by HIV, MLV, ASLV, SFV, L1, SB, and AAV. We used a mathematical method which allowed annotation of each base pair in the human genome for its likelihood of hosting an integration event by each type of element, taking advantage of more than 200 types of genomic annotation. This bioinformatic resource documents a wealth of new associations between genomic features and integration targeting. The study also revealed that the length of genomic intervals analyzed strongly affected the conclusions drawn--thus, answering the question "What genomic features affect integration?" requires carefully specifying the length scale of interest.  相似文献   

15.
Integrated maps of the Drosophila genome: progress and prospects   总被引:1,自引:0,他引:1  
A physical map of the Drosophila melanogaster genome is being assembled, consisting of ordered overlapping cosmid clones. The map is constructed in steps, separately for each chromosomal division. Gaps in this map are to be bridged with yeast artificial chromosome clones. Hybridization to previously cloned genes and extensive use of in situ hybridization to polytene chromosomes ensure that the cosmid map is firmly anchored to the wealth of available genetic and cytogenetic information. The intention is to make the physical map widely available as part of an overall, integrated genetic resource for the Drosophila research community.  相似文献   

16.
 A high-density genetic map of the rice blast fungus Magnaporthe grisea (Guy11×2539) was constructed by adding 87 cosmid-derived RFLP markers to previously generated maps. The new map consists of 203 markers representing 132 independently segregating loci and spans approximately 900 cM with an average resolution of 4.5 cM. Mapping of 33 cosmid probes from the genetic map generated by Sweigard et al. has allowed the integration of two M. grisea maps. The integrated map showed that the linear order of markers along all seven chromosomes in both maps is in good agreement. Thirty of eighty seven markers were derived from cosmid clones that contained the retrotransposon MAGGY (M. grisea gypsy element). Mapping of single-copy DNA sequences associated with the MAGGY cosmids indicated that MAGGY elements are scattered throughout the fungal genome. In eight cases, the probes associated with MAGGY elements showed abnormal segregation patterns. This suggests that MAGGY may be involved in genomic rearrangements. Two RFLP probes linked to MAGGY elements, and another flanking other repetitive DNA elements, identified sequences that were duplicated in the Guy11 genome. Most of the MAGGY cosmids also contained other classes of repetitive DNA suggesting that repetitive DNA sequences tend to cluster in the M. grisea genome. Received: 17 February 1997 / Accepted: 21 February 1997  相似文献   

17.
The development of new methods for gene addition to mammalian genomes is necessary to overcome the limitations of conventional genetic engineering strategies. Although a variety of DNA-modifying enzymes have been used to directly catalyze the integration of plasmid DNA into mammalian genomes, there is still an unmet need for enzymes that target a single specific chromosomal site. We recently engineered zinc-finger recombinase (ZFR) fusion proteins that integrate plasmid DNA into a synthetic target site in the human genome with exceptional specificity. In this study, we present a two-step method for utilizing these enzymes in any cell type at randomly-distributed target site locations. The piggyBac transposase was used to insert recombinase target sites throughout the genomes of human and mouse cell lines. The ZFR efficiently and specifically integrated a transfected plasmid into these genomic target sites and into multiple transposons within a single cell. Plasmid integration was dependent on recombinase activity and the presence of recombinase target sites. This work demonstrates the potential for broad applicability of the ZFR technology in genome engineering, synthetic biology and gene therapy.  相似文献   

18.
Pavlícek A  Jabbari K  Paces J  Paces V  Hejnar JV  Bernardi G 《Gene》2001,276(1-2):39-45
Alus and LINEs (LINE1) are widespread classes of repeats that are very unevenly distributed in the human genome. The majority of GC-poor LINEs reside in the GC-poor isochores whereas GC-rich Alus are mostly present in GC-rich isochores. The discovery that LINES and Alus share similar target site duplication and a common AT-rich insertion site specificity raised the question as to why these two families of repeats show such a different distribution in the genome. This problem was investigated here by studying the isochore distributions of subfamilies of LINES and Alus characterized by different degrees of divergence from the consensus sequences, and of Alus, LINEs and pseudogenes located on chromosomes 21 and 22. Young Alus are more frequent in the GC-poor part of the genome than old Alus. This suggests that the gradual accumulation of Alus in GC-rich isochores has occurred because of their higher stability in compositionally matching chromosomal regions. Densities of Alus and LINEs increase and decrease, respectively, with increasing GC levels, except for the telomeric regions of the analyzed chromosomes. In addition to LINEs, processed pseudogenes are also more frequent in GC-poor isochores. Finally, the present results on Alu and LINE stability/exclusion predict significant losses of Alu DNA from the GC-poor isochores during evolution, a phenomenon apparently due to negative selection against sequences that differ from the isochore composition.  相似文献   

19.
Linkage disequilibrium (LD) maps increase power and precision in association mapping, define optimal marker spacing and identify recombination hot-spots and regions influenced by natural selection. Phase II of HapMap provides approximately 2.8-fold more single nucleotide polymorphisms (SNPs) than phase I for constructing higher resolution maps. LDMAP-cluster, is a parallel program for rapid map construction in a Linux environment used here to construct genome-wide LD maps with >8.2 million SNPs from the phase II data. Availability: The LD maps, LDMAP-cluster and documentation are available from: http://www.som.soton.ac.uk/research/geneticsdiv/epidemiology/LDMAP. Supplementary information: Supplementary data are available at Bioinformatics online.  相似文献   

20.
Molecular linkage maps of the Populus genome.   总被引:7,自引:0,他引:7  
We report molecular genetic linkage maps for an interspecific hybrid population of Populus, a model system in forest-tree biology. The hybrids were produced by crosses between P. deltoides (mother) and P. euramericana (father), which is a natural hybrid of P. deltoides (grandmother) and P. nigra (grandfather). Linkage analysis from 93 of the 450 backcross progeny grown in the field for 15 years was performed using random amplified polymorphic DNAs (RAPDs), amplified fragment length polymorphisms (AFLPs), and inter-simple sequence repeats (ISSRs). Of a total of 839 polymorphic markers identified, 560 (67%) were testcross markers heterozygous in one parent but null in the other (segregating 1:1), 206 (25%) were intercross dominant markers heterozygous in both parents (segregating 3:1), and the remaining 73 (9%) were 19 non-parental RAPD markers (segregating 1:1) and 54 codominant AFLP markers (segregating 1:1:1:1). A mixed set of the testcross markers, non-parental RAPD markers, and codominant AFLP markers was used to construct two linkage maps, one based on the P. deltoides (D) genome and the other based on P. euramericana (E). The two maps showed nearly complete coverage of the genome, spanning 3801 and 3452 cM, respectively. The availability of non-parental RAPD and codominant AFLP markers as orthologous genes allowed for a direct comparison of the rate of meiotic recombination between the two different parental species. Generally, the rate of meiotic recombination was greater for males than females in our interspecific poplar hybrids. The confounded effect of sexes and species causes the mean recombination distance of orthologous markers to be 11% longer for the father (P. euramericana; interspecific hybrid) than for the mother (P. deltoides; pure species). The linkage maps constructed and the interspecific poplar hybrid population in which clonal replicates for individual genotypes are available present a comprehensive foundation for future genomic studies and quantitative trait locus (QTL) identification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号