首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Hu Y  Zhang L  Cao Y  Ge H  Jiang X  Yang C 《Biomacromolecules》2004,5(5):1756-1762
Poly(epsilon-caprolactone)-b-poly(ethylene glycol)-b-poly(epsilon-caprolactone) triblock copolymers were synthesized by the ring-opening polymerization of epsilon-caprolactone in the presence of hydroxyl-terminated poly(ethylene glycol) with different molecular weights, using stannous octoate catalyst. Micelles prepared by the precipitation method with these triblock copolymers exhibit a core-shell structure. The degradation behaviors of these core-shell micelles in aqueous solution were investigated by FT-IR, 1H NMR, GPC, DLS, TEM, and AFM. It was found that the degradation behavior of micelles in aqueous solution was quite different from that of bulk materials. The size of the micelles increased in the initial degradation stages and decreased gradually when the degradation period was extended. The caprolactone/ethylene oxide (CL/EO) ratio in micelles measured by NMR also shows an increase at the initial degradation stage and a decrease at later stages. The morphology of these micelles became more and more irregular during the degradation period. We explain the observed behavior by a two-stage degradation mechanism with interfacial erosion between the cores and the shells followed by core erosion.  相似文献   

2.
Block copolymers were prepared by ring-opening polymerization of epsilon-caprolactone in the presence of monohydroxyl or dihydroxyl poly(ethylene glycol) (PEG), using Zn powder as catalyst. The resulting poly(epsilon-caprolactone) (PCL)-PEG diblock and PCL-PEG-PCL triblock copolymers were characterized by various analytical techniques such as NMR, size-exclusion chromatography, differential scanning calorimetry, and X-ray diffraction. Both copolymers were semicrystalline polymers, the crystalline structure being of the PCL type. Films were prepared by casting dichloromethane solutions of the polymers on a glass plate. Square samples with dimensions of 10 x 10 mm were allowed to degrade in a pH = 7.0 phosphate buffer solution containing Pseudomonas lipase. Data showed that the introduction of PEG blocks did not decrease the degradation rate of poly(epsilon-caprolactone).  相似文献   

3.
Sequential copolymerizations of trimethylene carbonate (TMC) and l-lactide (LLA) were performed with 2,2-dibutyl-2-stanna-1,3-oxepane as a bifunctional cyclic initiator. The block lengths were varied via the monomer/initiator and via the TMC/l-lactide ratio. The cyclic triblock copolymers were transformed in situ into multiblock copolymers by ring-opening polycondensation with sebacoyl chloride. The chemical compositions of the block copolymers were determined from (1)H NMR spectra. The formation of multiblock structures and the absence of transesterification were proven by (13)C NMR spectroscopy. Differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), and dynamic mechanical analysis (DMA) measurements confirmed the existence of a microphase-separated structure in the multiblock copolymers consisting of a crystalline phase of poly(LLA) blocks and an amorphous phase formed by the poly(TMC) blocks. Stress-strain measurements showed the elastomeric character of these biodegradable multiblock copolymers, particularly in copolymers having epsilon-caprolactone as comonomer in the poly(TMC) blocks.  相似文献   

4.
Yu L  Zhang Z  Ding J 《Biomacromolecules》2011,12(4):1290-1297
This paper reports the influence of sequence structures of block copolymers composed of poly(lactic acid-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) on their thermogelling aqueous behaviors. A series of thermogelling PLGA-PEG-PLGA triblock copolymers with similar chemical compositions and block lengths but different sequences of D,L-lactide (LA) and glycolide (GA) in the PLGA block were synthesized. The difference of sequence structures arises from the different reactivities of LA and GA during the copolymerization and the transesterification after polymerization. The sol-gel transition temperature and height of gel window were found to be regulated by the sequence structure. Our study reveals that the macromolecular sequence structure influences the hydrophobic/hydrophilic balance of this kind of amphiphilic copolymers and thus alters mesoscopic micellization and the forthcoming macroscopic physical gelation in water. This finding might be helpful to guide the molecular design of the underlying thermogelling systems as injectable hydrogels.  相似文献   

5.
Yuan W  Yuan J  Zhang F  Xie X 《Biomacromolecules》2007,8(4):1101-1108
Well-defined ethyl cellulose-graft-poly(epsilon-caprolactone) (EC-g-PCL) graft copolymers were successfully synthesized via ring-opening polymerization (ROP) of epsilon-caprolactone (CL) with an ethyl cellulose (EC) initiator and a tin 2-ethylhexanoate (Sn(Oct)2) catalyst in xylene at 120 degrees C. Then, novel ethyl cellulose-graft-poly(epsilon-caprolactone)-block-poly(L-lactide) (EC-g-PCL-b-PLLA) graft-block copolymers were prepared by ROP of L-lactide (L-LA) with a hydroxyl-terminated EC-g-PCL macroinitiator and Sn(Oct)2 catalyst in bulk at 120 degrees C. Various graft and block lengths of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were obtained by adjusting the molar ratios of CL monomer to EC and the L-LA monomer to CL. The thermal properties and crystalline morphologies of EC-g-PCL and EC-g-PCL-b-PLLA copolymers were different from those of linear PCL. The in vitro degradation rate of EC-g-PCL-b-PLLA was faster than those of linear PCL and EC-g-PCL due to the presence of PLLA blocks.  相似文献   

6.
A series of novel amphiphilic triblock copolymers of poly(ethyl ethylene phosphate) and poly(-caprolactone) (PEEP-PCL-PEEP) with various PEEP and PCL block lengths were synthesized and characterized. These triblock copolymers formed micelles composed of a hydrophobic core of poly(-caprolactone) (PCL) and a hydrophilic shell of poly(ethyl ethylene phosphate) (PEEP) in aqueous solution. The micelle morphology was spherical, determined by transmission electron microscopy. It was found that the size and critical micelle concentration values of the micelles depended on both hydrophobic PCL block length and PEEP hydrophilic block length. The in vitro degradation characteristics of the triblock copolymers were investigated in micellar form, showing that these copolymers were completely biodegradable under enzymatic catalysis of Pseudomonas lipase and phosphodiesterase I. These triblock copolymers were used for paclitaxel (PTX) encapsulation to demonstrate the potential in drug delivery. PTX was successfully loaded into the micelles, and the in vitro release profile was found to be correlative to the polymer composition. These biodegradable triblock copolymer micelles are potential as novel carriers for hydrophobic drug delivery.  相似文献   

7.
Copolymers with different hydrophilic/lipophilic ratios (HLR) were used to optimize the compatibility between polymer as drug carrier and quercetin as lipophilic drug. Synthesis of amphiphilic triblock copolymers (TC) of poly(butylene adipate)–poly(ethylene glycol)–poly(butylene adipate) (PBA–PEG–PBA) with different PBA molecular weights is the first approach for this purpose. Polymerization and structural features of the polymers were analyzed by different characterization techniques (GPC, 1H NMR and FT-IR). Formation of hydrophobic and hydrophilic domains with different ratios in the ABA-triblock copolymers was studied by 1H NMR. The sunflower-like nanoparticles were prepared by self-assembling of the amphiphilic copolymers in the aqueous solution. The hydrophobic PBA segments formed the central solid-like core which stabilized by the hydrophilic PEG rings. The optimum HLR for these copolymers was determined on the basis of drug release time and profile, obtained from freeze-dried nanoparticle powders. The results indicated that optimum HLR for the sustained quercetin release obtained at higher molecular weight of polyesteric domains. Zeta potential measurements showed that the nanoparticle size was close related to the initial concentrations of the nanoparticle dispersions and the compositions of the triblock copolymers. Moreover, TEM pictures showed that the nanocarriers morphologies were changed by changing HLR of triblock copolymers. The PBA–PEG–PBA nanoparticles also showed good drug loading properties, suggesting that they were very suitable as delivery devices for hydrophobic drugs.  相似文献   

8.
Hydrogels with nanoscale structure were synthesized using amphiphilic poly(epsilon-caprolactone)-poly(ethylene oxide)-poly(epsilon-caprolactone) (PCL-b-PEO-b-PCL) triblock copolymers. Small-angle X-ray scattering (SAXS) studies show that the block copolymers form 30-40 nm structures in aqueous solution and that these patterns are retained, with some increase in length scale, following electron beam cross-linking. Lamellar nanostructures were observed by SAXS and atomic force microscopy (AFM), with SAXS indicating cylindrical structure as the block lengths become more different in length. It is demonstrated through Fourier transform infrared spectroscopy (FTIR), mass loss, and differential scanning calorimetry (DSC) that the PCL can be completely removed by hydrolysis in NaOH(aq) to form porous PEO hydrogels. These hydrogels retain active functional groups following PCL removal that serve as sites for further chemical modification.  相似文献   

9.
Cross-linkable di- and triblock copolymers of poly(epsilon-caprolactone) (PCL) and monomethoxyl poly(ethylene glycol) (MPEG) were synthesized. These amphiphilic copolymers self-assembled into nanoscale micelles capable of encapsulating hydrophobic paclitaxel in their hydrophobic cores in aqueous solutions. To further enhance their thermodynamic stability, the micelles were cross-linked by radical polymerization of the double bonds introduced into the PCL blocks. Reaction conditions were found to significantly affect both the cross-linking efficiency and the micelle size. The encapsulation of paclitaxel into the micelles was confirmed by the proton nuclear magnetic resonance (1H NMR) spectroscopy. Encouragingly, paclitaxel-loading efficiency of micelles was enhanced significantly upon micelle core-cross-linking. Both the micelle size and the drug loading efficiency increased markedly with increasing the PCL block lengths, no matter if the micelles were core-cross-linked or not. However, paclitaxel-loading did not obviously affect the micelle size or size distribution. The cross-linked micelles exhibited a significantly enhanced thermodynamic stability against dilution with aqueous solvents. The efficient cellular uptake of paclitaxel loaded in the nanomicelles was demonstrated by confocal laser scanning microscopy (CLSM) imaging. This new biodegradable nanoscale carrier system merits further investigations for parenteral drug delivery.  相似文献   

10.
Li Y  Li Q  Li F  Zhang H  Jia L  Yu J  Fang Q  Cao A 《Biomacromolecules》2006,7(1):224-231
This study presents investigations on new approaches to novel biodegradable amphiphilic poly(L-lactide)-b-dendritic poly(L-lysine)s bearing well-defined structures. First, two new Boc-protected poly(L-lysine) dendron initiators G(2)OH 4 (generation = 2) and G(3)OH 6 (generation = 3) with hydroxyl end functional groups were efficiently derived from corresponding precursors 3 and 5 via methyl ester substitution with ethanolamine. Subsequently, two series of new diblock copolymers of poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s (S1-S2, S3-S4) were prepared in chloroform through ring-opening copolymerization of poly(L-lactide)s with a metal-free catalyst of organic 4-(dimethylamino) pyridine (DMAP) in the presence of a corresponding new poly(L-lysine) dendron initiator. Further, molecular structures of the prepared new dendron initiators as well as those of poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s bearing different dendron blocks and PLLA lengths were examined by means of nuclear magnetic resonance spectroscopy (NMR), gel permeation chromatography (GPC), mass spectrometry (ESI-MS, MALDI-FTMS), and thermal gravimetric analysis (TGA). The results demonstrated successful formation of the synthetic precursors, functional dendron initiators, and new diblock copolymers. In addition, the very narrow molecular weight distributions (PDI = 1.10-1.14) of these poly(L-lactide)-b-dendritic Boc-protected poly(L-lysine)s further indicated their well-defined molecular structures. After the efficient Boc-deprotection for the dendron amino groups with TFA/CH(2)Cl(2), new diblock poly(L-lactide)-b-dendritic poly(L-lysine)s bearing lipophilic PLLA and hydrophilic dendritic PLL were finally prepared. It was noteworthy that the MALDI-FTMS result showed that no appreciable intermolecular chain transesterification happened during the ROP of L-lactide catalyzed by the DMAP. Moreover, self-assembly of these new biodegradable amphiphilic copolymers in diverse solvents were also preliminarily studied.  相似文献   

11.
Biocompatible amphiphilic block copolymers comprised of poly(ethylene glycol) (PEG) as the hydrophilic component and a poly(methylcarboxytrimethylene carbonate) (PMTC) as a hydrophobic backbone having either poly(L-lactide) (L-PLA) or poly(D-lactide) (D-PLA) branches were prepared by organocatalytic ring-opening polymerization (ROP). The polycarbonate backbone was prepared by copolymerization of two different MTC-type monomers (MTCs) including a tetrahydropyranyloxy protected hydroxyl group, a masked initiator for a subsequent ROP step. Interestingly, the organic catalyst used in the ROP of MTCs was also effective for acetylation of the hydroxyl end-groups by the addition of acetic anhydride added after polymerization. Acidic deprotection of the tetrahydropyranyloxy (THP) protecting group on the carbonate chain generated hydroxyl functional groups that served as initiators for the ROP of either D- or L-lactide. Comb-shaped block copolymers of predictable molecular weights and narrow polydispersities (approximately 1.3) were prepared with up to 8-PLA branches. Mixtures of the D- and L-lactide based copolymers were studied to understand the effect of noncovalent interactions or stereocomplexation on the properties.  相似文献   

12.
Wang CH  Hsiue GH 《Biomacromolecules》2003,4(6):1487-1490
A new series of cationic, thermo-sensitive, and biodegradable poly(L-lactide)-poly(2-ethyl-2-oxazoline)-poly(L-lactide) (PLLA-PEOz-PLLA) triblock copolymers were synthesized by ring-opening polymerization. With increasing molecular weight and crystallinity of hydrophobic PLLA blocks, the critical micellization concentrations (CMC) occurred at lower concentration. The PLLA-PEOz-PLLA aqueous solution was transparent at room temperature. Heating the solution resulted in precipitations, which were caused by the combination of dehydration of water around PEOz and the aggregations of PLLA segments. Acid/base titration profiles indicated that PLLA-PEOz-PLLA were protonated at neutral and acidic conditions. Considerable buffering capacity was found over the entire pH range. The specific PLLA-PEOz-PLLA triblock copolymers with thermal- and pH-sensitive properties can be tailored by varying the compositions and can be applied as controlled release carries for biomedical applications.  相似文献   

13.
Photo-crosslinkable, fumaric acid monoethyl ester-functionalized triblock oligomers are synthesized and copolymerized with N-vinyl-2-pyrrolidone to form biodegradable photo-crosslinked hydrogels. Poly(ethylene glycol) is used as the middle hydrophilic segment and the hydrophobic segments are based on D,L-lactide, trimethylene carbonate or a mixture of these monomers. Two model proteins, lysozyme and albumin, are incorporated in the hydrogels and their release is studied. The composition of the hydrophobic segments could be used to tune degradation behavior and release rates. Careful optimization of photo-polymerization conditions is needed to limit conjugation of proteins to the hydrogels and protein denaturation.  相似文献   

14.
The new combinations of monomers presented in this work were evaluated in order to create an elastic material for potential application in soft tissue engineering. Thermoplastic elastomers (TPE) of trimethylene carbonate (TMC) with L-lactide (LLA) and 1,5-dioxepan-2-one (DXO) have been synthesized using a cyclic five-membered tin alkoxide initiator. The block copolymers were designed in such a way that poly(trimethylene carbonate-co-1,5-dioxepan-2-one) formed an amorphous middle block and the poly(L-lactide) (PLLA) formed semicrystalline terminal blocks. The amorphous middle block consisted of relatively randomly distributed TMC and DXO monomer units, and the defined block structure of the PLLA terminal segments was confirmed by 13C NMR. The properties of the TMC-DXO-LLA copolymers were compared with those of triblock copolymers based either on LLA-TMC or on LLA-DXO. Differential scanning calorimetry and dynamic mechanical analysis data confirmed the micro-phase separation in the copolymers. The mechanical properties of the copolymers were evaluated using tensile testing and cycling loading. All of the copolymers synthesized showed a highly elastic behavior. The properties of copolymers could be tailored by altering the proportions of the different monomers.  相似文献   

15.
L-lactide was polymerized as concentrated solution in chlorobenzene with Bi(OAc)3 as initiator. When tetra(ethylene glycol) was added as co-initiator (CoI), telechelic polylactides having two CH-OH end groups were obtained. With 1,1,1-tri(hydroxy methyl)propane (THMP) as co-initiator, three-armed stars having three CH-OH end groups were formed. Analogously, tetrafunctional star-shaped poly(L-lactide)s were obtained with pentaerythritol as co-initiator. The chain lengths were varied via the monomer/CoI ratio. Time-conversion curves proved that Bi(OAc)3 is slightly less reactive as initiator than tin(II) 2-ethylhexanoate. However, bismuth acetate (or other carboxylates) have a particularly low toxicity as documented in the literature and by numerous Bi3+-containing pharmaceutical products.  相似文献   

16.
Two types of 32 arm star polymers incorporating amphiphilic block copolymer arms have been synthesized and characterized. The first type, stPCL-PEG 32, is composed of a polyamidoamine (PAMAM) dendrimer as the core with radiating arms having poly(epsilon-caprolactone) (PCL) as an inner lipophilic block in the arm and poly(ethylene glycol) (PEG) as an outer hydrophilic block. The second type, stPLA-PEG 32, is similar but with poly(L-lactide) (PLA) as the inner lipophilic block. Characterization with SEC, (1)H NMR, FTIR, and DSC confirmed the structure of the polymers. Micelle formation by both star copolymers was studied by fluorescence spectroscopy. The stPCL-PEG 32 polymer exhibited unimolecular micelle behavior. It was capable of solubilizing hydrophobic molecules, such as pyrene, in aqueous solution, while not displaying a critical micelle concentration. In contrast, the association behavior of stPLA-PEG 32 in aqueous solution was characterized by an apparent critical micelle concentration of ca. 0.01 mg/mL. The hydrophobic anticancer drug etoposide can be encapsulated in the micelles formed from both polymers. Overall, the stPCL-PEG 32 polymer exhibited a higher etoposide loading capacity (up to 7.8 w/w % versus 4.3 w/w % for stPLA-PEG 32) as well as facile release kinetics and is more suitable as a potential drug delivery carrier.  相似文献   

17.
New resorbable and elastomeric ABA tri- and multiblock copolymers have been successfully synthesized by combining ring-opening polymerization with ring-opening polycondensation. Five different poly(L-lactide-b-1,5-dioxepan-2-one-b-L-lactide) triblock copolymers and one new poly(L-lactide-b-1,5-dioxepan-2-one) multiblock copolymer have been synthesized. The triblock copolymers were obtained by ring-opening polymerization of 1,5-dioxepan-2-one (DXO) and L-lactide (LLA) with a cyclic tin initiator. The new multiblock copolymer was prepared by ring-opening polycondensation of a low molecular weight triblock copolymer with succinyl chloride. The molecular weight and the composition of the final copolymers were easily controlled by adjusting the monomer feed ratio, and all of the polymers obtained had a narrow molecular weight distribution. It was possible to tailor the hydrophilicity of the materials by changing the DXO content. Copolymers with a high DXO content had a more hydrophilic surface than those with a low DXO content. The receding contact angle varied from 27 to 44 degrees. The tensile properties of the copolymers were controlled by altering the PDXO block length. The tensile testing showed that all the polymers were very elastic and had very high elongations-at-break (epsilon(b)). The copolymers retained very good mechanical properties (epsilon(b) approximately 600-800% and sigma(b) approximately 8-20 MPa) throughout the in vitro degradation study (59 days).  相似文献   

18.
Porous scaffolds of 1,5-dioxepan-2-one (DXO), L-lactide (LLA), and epsilon-caprolactone (CL) were prepared by a solvent casting, salt particulate leaching technique in which the composites were detached from their mold using a novel methanol swelling procedure. By incorporating DXO segments into polymers containing LLA or CL, an increase in hydrophilicity is achieved, and incorporating soft amorphous domains in the crystalline sections enables tailoring of the mechanical properties. The porosities of the scaffolds ranged from 89.2% to 94.6%, and the pores were shown to be interconnected. The materials were synthesized by bulk copolymerization of 1,5-dioxepan-2-one (DXO), L-lactide (LLA), and epsilon-caprolactone (CL) using stannous 2-ethylhexanoate as catalyst. The copolymers formed varied in structure; poly(DXO-co-CL) is random in its arrangement, whereas poly(DXO-co-LLA) and poly(LLA-co-CL) are more blocky in their structures.  相似文献   

19.
Na YH  He Y  Shuai X  Kikkawa Y  Doi Y  Inoue Y 《Biomacromolecules》2002,3(6):1179-1186
The miscibility and phase behavior of two stereoisomer forms of poly(lactide) (PLA: poly (L-lactide) (PLLA) and poly(DL-lactide) (PDLLA)) blends with poly(epsilon-caprolactone)-b-poly(ethylene glycol) (PCL-b-PEG) and PCL-b-monomethoxy-PEG (PCL-b-MPEG) block copolymers have been investigated by differential scanning calorimetry (DSC). The DSC thermal behavior of both the blend systems revealed that PLA is miscible with the PEG segment phase of PCL-b-(M)PEG but is still immiscible with its PCL segment phase although PCL was block-copolymerized with PEG. On the basis of these results, PCL-b-PEG was added as a compatibilizer to PLA/PCL binary blends. The improvement in mechanical properties of PLA/PCL blends was achieved as anticipated upon the addition of PCL-b-PEG. In addition, atomic force microscopy (AFM) measurements have been performed in order to study the compositional synergism to be observed in mechanical tests. AFM observations of the morphological dependency on blend composition indicate that PLA/PCL blends are immiscible but compatible to some extent and that synergism of compatibilizing may be maximized in the compositional blend ratio before apparent phase separation and coarsening.  相似文献   

20.
Poly(ethylene glycol)-grafted poly(3-hydroxyundecenoate) (PEG-g-PHU) networks were prepared by irradiating homogeneous solutions of poly(3-hydroxyundecenoate) (PHU) and the monoacrylate of poly(ethylene glycol) (PEG) with UV light. The resulting polymer networks were characterized by measuring the water contact angle, water uptake, and mechanical properties and by performing attenuated total reflectance infrared spectroscopy and scanning electron microscopy. These measurements showed that the PEG chains were present in polymer networks. Adsorption of blood proteins and platelets on cross-linked PHU (CLPHU) and PEG-g-PHU were examined using poly(L-lactide) (PLLA) surfaces as control. Blood proteins and platelets had significantly lower tendency of adhesion to surfaces composed of CLPHU and PEG-g-PHU networks than to PLLA. Blood compatibility of polymer networks increased as the fraction of grafted PEG increased. The results of this study suggest that PEG-g-PHU networks might be useful for blood-compatible biomedical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号