首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recently, attention has been focused on comparing left ventricular (LV) endocardial (ENDO) with epicardial (EPI) pacing for cardiac resynchronization therapy. However, the effects of ENDO and EPI lead placement at multiple sites have not been studied in failing hearts. We hypothesized that differences in the improvement of ventricular function due to ENDO vs. EPI pacing in dyssynchronous (DYSS) heart failure may depend on the position of the LV lead in relation to the original activation pattern. In six nonfailing and six failing dogs, electrical DYSS was created by atrioventricular sequential pacing of the right ventricular apex. ENDO was compared with EPI biventricular pacing at five LV sites. In failing hearts, increases in the maximum rate of LV pressure change (dP/dt; r = 0.64), ejection fraction (r = 0.49), and minimum dP/dt (r = 0.51), relative to DYSS, were positively correlated (P < 0.01) with activation time at the LV pacing site during ENDO but not EPI pacing. ENDO pacing at sites with longer activation delays led to greater improvements in hemodynamic parameters and was associated with an overall reduction in electrical DYSS compared with EPI pacing (P < 0.05). These findings were qualitatively similar for nonfailing hearts. Improvement in hemodynamic function increased with activation time at the LV pacing site during ENDO but not EPI pacing. At the anterolateral wall, end-systolic transmural function was greater with local ENDO compared with EPI pacing. ENDO pacing and intrinsic activation delay may have important implications for management of DYSS heart failure.  相似文献   

2.
This study explores the use of interventricular asynchrony (interVA) for optimizing cardiac resynchronization therapy (CRT), an idea emerging from a simple pathway model of conduction in the ventricles. Measurements were performed in six dogs with chronic left bundle branch block (LBBB) and in 29 patients of the Pacing Therapies for Congestive Heart Failure (PATH-CHF)-I study. In the dogs, intraventricular asynchrony (intraVA) was determined using left ventricular (LV) endocardial activation maps. In dogs and patients, the maximum rate of rise of LV pressure (LV dP/dt(max)) and the pulse pressure (PP) and interVA [time delay between upslope of LV and right ventricular (RV) pressure curves] were measured during LV, RV, and biventricular (BiV) pacing with various atrioventricular (AV) delays. Measurements in the canine hearts supported the pathway model in that optimal resynchronization occurred at approximately 50% reduction of intraVA and at an interVA value halfway that during LBBB and LV pacing. In patients with significant hemodynamic response during pacing (n = 22), intrinsic interVA and interVA at peak improvement (interVA(p)) varied widely between patients (from -83 to -15 ms and from -42 to +31 ms, respectively). However, the model predicted individual interVA(p) accurately (SD of +/-6 ms and +/-12 ms for LV dP/dt(max) and PP, respectively). At equal interVA, LV and BiV pacing produced equal hemodynamic response, but in 11 of 22 responders, BiV pacing reduced interVA insufficiently to reach the maximum hemodynamic response. LV pacing at short AV delay proved to result in better hemodynamics than predicted by the model, indicating that additional factors determine hemodynamics during LV preexcitation. Guided by a simple pathway model, interVA measurements accurately predict optimal hemodynamic performance in individual CRT patients.  相似文献   

3.

Background

Little is known about the effect of cardiac resynchronization therapy (CRT) on endo- and epicardial ventricular activation. Noninvasive imaging of cardiac electrophysiology (NICE) is a novel imaging tool for visualization of both epi- and endocardial ventricular electrical activation.

Methodology/Principal Findings

NICE was performed in ten patients with congestive heart failure (CHF) undergoing CRT and in ten patients without structural heart disease (control group). NICE is a fusion of data from high-resolution ECG mapping with a model of the patient''s individual cardiothoracic anatomy created from magnetic resonance imaging. Beat-to-beat endocardial and epicardial ventricular activation sequences were computed during native rhythm as well as during ventricular pacing using a bidomain theory-based heart model to solve the related inverse problem. During right ventricular (RV) pacing control patients showed a deterioration of the ventricular activation sequence similar to the intrinsic activation pattern of CHF patients. Left ventricular propagation velocities were significantly decreased in CHF patients as compared to the control group (1.6±0.4 versus 2.1±0.5 m/sec; p<0.05). CHF patients showed right-to-left septal activation with the latest activation epicardially in the lateral wall of the left ventricle. Biventricular pacing resulted in a resynchronization of the ventricular activation sequence and in a marked decrease of total LV activation duration as compared to intrinsic conduction and RV pacing (129±16 versus 157±28 and 173±25 ms; both p<0.05).

Conclusions/Significance

Endocardial and epicardial ventricular activation can be visualized noninvasively by NICE. Identification of individual ventricular activation properties may help identify responders to CRT and to further improve response to CRT by facilitating a patient-specific lead placement and device programming.  相似文献   

4.
Cardiac resynchronization therapy (CRT) is a proven treatment for heart failure but ~30% of patients appear to not benefit from the therapy. Left ventricular (LV) endocardial and multisite epicardial [triventricular (TriV)] pacing have been proposed as alternatives to traditional LV transvenous epicardial pacing, but no study has directly compared the hemodynamic effects of these approaches. Left bundle branch block ablation and repeated microembolizations were performed in dogs to induce electrical dysynchrony and to reduce LV ejection fraction to <35%. LVdP/dt(max) and other hemodynamic indexes were measured with a conductance catheter during LV epicardial, LV endocardial, biventricular (BiV) epicardial, BiV endocardial, and TriV pacing performed at three atrioventricular delays. LV endocardial pacing was obtained with a clinically available pacing system. The optimal site was defined as the site that increased dP/dt(max) by the largest percentage. Implantation of the endocardial lead was feasible in all canines (n = 8) without increased mitral regurgitation seen with transesophageal echocardiography and with full access to the different LV endocardial pacing sites. BiV endocardial pacing increased dP/dt(max) more than BiV epicardial and TriV pacing on average (P < 0.01) and at the optimal site (P < 0.01). There were no significant differences between BiV epicardial and TriV pacing. BiV endocardial pacing was superior to BiV epicardial and to TriV pacing in terms of acute hemodynamic response. Further investigation is needed to confirm the chronic benefit of this approach in humans.  相似文献   

5.
The quantification of mechanical interventricular asynchrony (IVA) was investigated. In 12 dogs left bundle branch block (LBBB) was induced by radio frequency ablation. Left ventricular (LV) and right ventricular (RV) pressures were recorded before and after induction of LBBB and during LBBB + LV apex pacing at different atrioventricular (AV) delays. Four IVA measures were validated using computer simulations on experimentally obtained pressure signals. The most robust measure for IVA was the time delay between the upslope of the LV and RV pressure signals (DeltaT(up)), estimated by cross correlation. The induction of experimental LBBB decreased DeltaT(up) from -6.9 +/- 7.0 ms (RV before LV) to -33.9 +/- 7.6 ms (P < 0.05) in combination with a significant decrease of LV maximal first derivative of pressure development over time (dP/dt(max)). During LV apex pacing, DeltaT(up) increased with decreasing AV delay up to +20.9 +/- 14.6 ms (P < 0.05). Interventricular resynchronization (DeltaT(up) = 0 ms) significantly improved LV dP/dt(max) by 15.1 +/- 5.9%. QRS duration increased significantly after induction of LBBB but did not change during LV apex pacing. In conclusion, DeltaT(up) is a reliable measure of mechanical IVA, which adds valuable information concerning the nature of asynchronous activation of the ventricles.  相似文献   

6.
A change in activation sequence electrically remodels ventricular myocardium, causing persistent changes in repolarizing currents (T-wave memory). However, the underlying mechanism for triggering activation sequence-dependent remodeling is unknown. Optical action potentials were mapped with high resolution from the epicardial surface of the arterially perfused canine wedge preparation (n = 23) during 30 min of baseline endocardial stimulation, followed by 40 min of epicardial stimulation, and, finally, restoration of endocardial stimulation. Immediately after the change from endocardial to epicardial stimulation, phase 1 notch amplitude of epicardial cells was attenuated by 74 +/- 8% (P < 0.001) compared with baseline and continued to diminish during the period of epicardial pacing, suggesting progressive remodeling of the transient outward current (Ito). When endocardial pacing was restored, notch amplitude did not immediately recover but remained attenuated by 23 +/- 10% (P < 0.001), also consistent with a remodeling effect. Peak Ito current measured from isolated epicardial myocytes changed by 12 +/- 4% (P < 0.025), providing direct evidence for Ito remodeling occurring on a surprisingly short time scale. The mechanism for triggering remodeling of Ito was a significant reduction (by 14 +/- 4%, P < 0.001) of upstroke amplitude in epicardial cells during epicardial stimulation. Reduction in upstroke amplitude during epicardial pacing was explained by electrotonic load on epicardial cells by fully repolarized downstream endocardial cells. These data suggest a novel mechanism for triggering electrical remodeling in the ventricle. Electrotonic load imposed by a change in activation sequence reduces upstroke amplitude, which, in turn, attenuates Ito according to its known voltage-dependent properties, triggering downregulation of current.  相似文献   

7.
Perturbations in the normal sequence of ventricular activation can create regions of early and late activation, leading to dysynchronous contraction and areas of dyskinesis. Dyskinesis occurs across the left ventricular (LV) wall, and its presence may have important consequences on cardiac structure and function in normal and failing hearts. Acutely, dyskinesis can trigger inflammation and, in the long term (6 wk and above), leads to LV remodeling. The mechanisms that trigger these changes are unknown. To gain further insight, we used a canine model to evaluate transumural changes in myocardial function and inflammation induced by epicardial LV pacing. The results indicate that 4 h of LV suprathreshold pacing resulted in a 30% local loss of endocardial thickening. Assessment of neutrophil infiltration showed a significant approximately fivefold increase in myeloperoxidase activity in the epicardium versus the midwall/endocardium. Matrix metalloproteinase-9 activity increased ~2 fold in the epicardium and ROS generation increased ~2.5-fold compared with the midwall/endocardium. To determine the effects that electrical current alone has on these end points, a group of animals was subjected to subthreshold pacing. Significant increases were observed only in epicardial myeloperoxidase levels. Thus, the results indicate that transmural dyskinesis induced by suprathreshold epicardial LV activation triggers a localized epicardial inflammatory response, whereas subthreshold stimulation appears to solely induce the trapping of leucocytes. Suprathreshold pacing also induces a loss of endocardial function. These results may have important implications as to the nature of the mechanisms that trigger the inflammatory response and possibly long-term remodeling in the setting of dysynchrony.  相似文献   

8.
Left ventricle (LV) pacing can be considered peculiar due to its different lead/tissue interface (epicardial pacing) and the small vein wedging lead locations with less reliable lead stability. The current technologies available for LV capture automatic confirmation adopt the evoked response (ER), as well as “LV pace to right ventricular (RV) sense” algorithms. The occurrence of anodal RV capture is today completely solved by the use of bipolar LV leads, while intriguing data are recently published regarding the unintentional LV anodal capture beside the cathodal one, which may enlarge the front wave of cardiac resynchronization therapy (CRT) delivery. The LV threshold behavior over time leading to ineffective CRT issues (subthreshold stimulation or concealed loss of capture), the extracardiac capture with phrenic nerve stimulation (PNS), the flexible electronic cathode reprogramming and the inadequate CRT delivery related to inadequate AV and VV pace timing (and its management by LV “dromotropic pace-conditioning”) are discussed.Moreover, recently, His bundle pacing (HBP) and left bundle branch pacing (LBBP) have shown growing interest to prevent pacing-induced cardiomyopathy as well as for direct intentional CRT.The purpose of the present review is to explore these new challenges regarding LV pacing starting from old concepts.  相似文献   

9.
The goal of the present study was to assess the effects of left ventricular (LV) pacing sites (apex vs. free wall) on radial synchrony and global LV performance in a canine model of contraction dyssynchrony. Ultrasound tissue Doppler imaging and hemodynamic (LV pressure-volume) data were collected in seven anesthetized, opened-chest dogs. Right atrial (RA) pacing served as the control, and contraction dyssynchrony was created by simultaneous RA and right ventricular (RV) pacing to induce a left bundle-branch block-like contraction pattern. Cardiac resynchronization therapy (CRT) was implemented by adding simultaneous LV pacing to the RV pacing mode at either the LV apex (CRTa) or free wall (CRTf). A new index of synchrony was developed via pair-wise cross-correlation analysis of tissue Doppler radial strain from six midmyocardial cross-sectional regions, with a value of 15 indicating perfect synchrony. Compared with RA pacing, RV pacing significantly decreased radial synchrony (11.1 +/- 0.8 vs. 4.8 +/- 1.2, P < 0.01) and global LV performance (cardiac output: 2.0 +/- 0.3 vs. 1.4 +/- 0.1 l/min and stroke work: 137 +/- 22 vs. 60 +/- 14 mJ, P < 0.05). Although both CRTa and CRTf significantly improved radial synchrony, only CRTa markedly improved global function (cardiac output: 2.1 +/- 0.2 l/min and stroke work: 113 +/- 13 mJ, P < 0.01 vs. RV pacing). Furthermore, CRTa decreased LV end-systolic volume compared with RV pacing without any change in LV end-systolic pressure, indicating an augmented global LV contractile state. Thus, LV apical pacing appears to be a superior pacing site in the context of CRT. The dissociation between changes in synchrony and global LV performance with CRTf suggests that regional analysis from a single plane may not be sufficient to adequately characterize contraction synchrony.  相似文献   

10.

Background

Use of rate adaptive atrioventricular (AV) delay remains controversial in patients with biventricular (Biv) pacing. We hypothesized that a shortened AV delay would provide optimal diastolic filling by allowing separation of early and late diastolic filling at increased heart rate (HR) in these patients.

Methods

34 patients (75 ± 11 yrs, 24 M, LVEF 34 ± 12%) with Biv and atrial pacing had optimal AV delay determined at baseline HR by Doppler echocardiography. Atrial pacing rate was then increased in 10 bpm increments to a maximum of 90 bpm. At each atrial pacing HR, optimal AV delay was determined by changing AV delay until best E and A wave separation was seen on mitral inflow pulsed wave (PW) Doppler (defined as increased atrial duration from baseline or prior pacemaker setting with minimal atrial truncation). Left ventricular (LV) systolic ejection time and velocity time integral (VTI) at fixed and optimal AV delay was also tested in 13 patients. Rate adaptive AV delay was then programmed according to the optimal AV delay at the highest HR tested and patients were followed for 1 month to assess change in NYHA class and Quality of Life Score as assessed by Minnesota Living with Heart Failure Questionnaire.

Results

81 AV delays were evaluated at different atrial pacing rates. Optimal AV delay decreased as atrial paced HR increased (201 ms at 60 bpm, 187 ms at 70 bpm, 146 ms at 80 bpm and 123 ms at 90 bpm (ANOVA F-statistic = 15, p = 0.0010). Diastolic filling time (P < 0.001 vs. fixed AV delay), mitral inflow VTI (p < 0.05 vs fixed AV delay) and systolic ejection time (p < 0.02 vs. fixed AV delay) improved by 14%, 5% and 4% respectively at optimal versus fixed AV delay at the same HR. NYHA improved from 2.6 ± 0.7 at baseline to 1.7 ± 0.8 (p < 0.01) 1 month post optimization. Physical component of Quality of Life Score improved from 32 ± 17 at baseline to 25 ± 12 (p < 0.05) at follow up.

Conclusions

Increased heart rate by atrial pacing in patients with Biv pacing causes compromise in diastolic filling time which can be improved by AV delay shortening. Aggressive AV delay shortening was required at heart rates in physiologic range to achieve optimal diastolic filling and was associated with an increase in LV ejection time during optimization. Functional class improved at 1 month post optimization using aggressive AV delay shortening algorithm derived from echo-guidance at the time of Biv pacemaker optimization.  相似文献   

11.
Fontan surgery and its modifications have improved survival in various forms of univentricular hearts. A regular atrial rhythm with atrioventricular synchrony is one of the most important prerequisite for the long-term effective functioning of this preload dependent circulation. A significant proportion of these survivors need various forms of pacing for bradyarrhythmias, often due to sinus nodal dysfunction and sometimes due to atrioventricular nodal block. The diversion of the venous flows away from the cardiac chambers following this surgery takes away the simpler endocardial pacing options through the superior vena cava. The added risks of thromboembolism associated with endocardial leads in systemic ventricles have made epicardial pacing as the procedure of choice. However challenges in epicardial pacing include surgical adhesions, increased pacing thresholds leading to early battery depletion and frequent lead fractures. When epicardial pacing fails, endocardial lead placement is equally challenging due to lack of access to the cardiac chambers in Fontan circulation. This review discusses the univentricular heart morphologies that may warrant pacing, issues about epicardial pacing, different techniques for endocardial pacing in patients with disconnected superior vena cava, pacing in different modifications of Fontan surgeries, issues of systemic thromboembolism with endocardial leads, atrioventricular valve regurgitation attributed to pacing leads and device infections. In a vast majority of patients following Glenn shunt and Senning surgery, an epicardial pacing and lead replacement is always feasible though technically very difficult. This article highlights the different options of transatrial and transventricular endocardial pacing.  相似文献   

12.

Introduction

Non response to cardiac resynchronisation therapy (CRT) may be related to the position of the coronary sinus lead.

Methods

We studied the acute haemodynamic response (AHR) from alternative left ventricular (LV) endocardial pacing sites in clinical non-responders to CRT. AHR and the interval from QRS onset to LV sensing (Q-LV interval) from four different endocardial pacing sites were evaluated in 24 clinical non-responders. A rise in LVdP/dtmax ≥ 15 % from baseline was considered a positive AHR. We also compared the AHR from endocardial with the corresponding epicardial lead position.

Results

The implanted system showed an AHR ≥ 15 % in 5 patients. In 9 of the 19 remaining patients, AHR could be elevated to ≥ 15 % by endocardial LV pacing. The optimal endocardial pacing site was posterolateral. There was no significant difference in AHR between the epicardial and the corresponding endocardial position. The longest Q-LV interval corresponded with the best AHR in 12 out of the 14 patients with a positive AHR, with an average Q-LV/QRS width ratio of 90 %.

Conclusions

Acute haemodynamic testing may indicate an alternative endocardial pacing site with a positive AHR in clinical non-responders. The Q-LV interval is a strongly correlated with the optimal endocardial pacing site. Endocardial pacing opposite epicardial sites does not result in a better AHR.  相似文献   

13.
Cardiac resynchronization therapy is not commonly used in the early postoperative period in patients undergoing cardiac surgery who have left ventricular (LV) dysfunction and a history of heart failure. We performed a prospective randomized clinical trial to compare atrial synchronous right ventricular (DDD RV) and biventricular (DDD BIV) pacing within 72 hours after cardiac surgery in patients with an EF ≤35 %, a QRS interval longer than 120 msec and who had LV dyssynchrony detected by real-time three-dimensional echocardiography (RT3DE). Epicardial pacing was provided by a modified Medtronic INSYNC III pacemaker. An LV epicardial pacing lead was implanted on the latest activated segment of the LV based on RT3DE. The study included 18 patients with ischemic heart disease, with or without valvular heart disease (14 men, 4 women, average age 71 years). Patients undergoing DDD BIV pacing had a statistically significant greater CO and CI (CO 6.7±1.8 l/min, CI 3.4±0.7 l/min/m(2)) than patients undergoing DDD RV pacing (CO 5.5±1.4 l/min, CI 2.8±0.7 l/min/m(2)), p<0.001. DDD BIV pacing in the early postoperative period after cardiac surgery corrects LV dyssynchrony and has better hemodynamic results than DDD RV pacing.  相似文献   

14.
Coronary occlusion and reperfusion produce tachyarrhythmias. We tested the hypothesis that variations in transmural activation after global ischemia and reperfusion were responsible for arrhythmias. We arterially perfused 36 isolated transmural wedges from canine left ventricular free walls. After > or =100 min of stabilization, the artery was occluded for 25 min, followed by reperfusion at various flow rates. We recorded 256 channels of fluorescent action potentials on transmural surfaces from preocclusion to >15 min after reperfusion. During endocardial pacing at 300 ms, ischemia of > or =570 +/- 165 s (n = 34) produced 1:1 endocardial conduction and then 2:1 and 4:1 block as the wave fronts conducted toward epicardium. Transmural reentry appeared after 535 +/- 146 s of ischemia (n = 31). Further ischemia caused epicardial inactivation and eliminated reentry (n = 24). During reperfusion, tissues progressed through sequences of epicardial inactivation and reappearance of activation with 1:1, 2:1, and 4:1 conduction; both sustained and nonsustained reentry occurred. We conclude that heterogeneous activation responses to endocardial pacing during acute ischemia provide the substrate for initiating reentry, suppressed reentry during further ischemia, and caused reentry during reperfusion.  相似文献   

15.
Bai R  Pu J  Liu N  Lu JG  Zhou Q  Ruan YF  Niu HY  Wang L 《生理学报》2003,55(6):722-730
实验以正常犬和扩张型心肌病心力衰竭犬(dilated cardiomyopathy congestive heart failure,DCM-CHF)模型为对象、以心肌跨室壁复极离散的相关参数为指标,研究左心室心外膜起搏、双心室起搏(模拟临床上心室再同步治疗的方法)后的心肌电生理特性变化。实验以快速右心室起搏的方法制备DCM-CHF犬模型;正常犬和DCM-CHF犬均经射频消融希氏束制备三度房室传导阻滞模型;采用同步记录犬体表心电图和内膜下、中层、外膜下三层心肌单相动作电位(monophasic action potentials,MAP)的方法,测定不同部位起搏时的QT间期、Tpeak-Tend(Tp-Te)间期和三层心肌的单相动作电位时程(MAP duration,MAPD)、跨室壁复极离散度(transmural dispersion of repolaization,TDR)。结果显示:在正常犬,左室心外膜与双心室起搏后三层心肌的MAPD均延长,同时TDR增大(左室心外膜起搏47.16 ms、双心室起搏37.54 ms、右室心内膜起搏26.75 ms,P<0.001),体表心电图Tp-Te间期的变化与之平行;在DCM-CHF犬较正常犬已表现出中层心肌MAPD延长(276.30 ms vs 257.35 ms,P<0.0001)和TDR(33.8 ms vs 27.58 ms,P=0.002)增大的基础上,左室心外膜参与起搏后仍进一步使三层心肌的MAPD延长和TDR增大。研究结果提示,左室心外膜起搏和双心室起搏后使内膜下、中层  相似文献   

16.

Background

Biventricular (BiV) is extensively used in the treatment of congestive heart failure but so far no recommendations for optimized programming of atrioventricular-delay (AVD) settings have been proposed. Can AVD optimization be performed using a simple formula based on non-invasive doppler-echocardiography?

Methods

25 patients (ejection fraction 30±8%) received BiV ICDs. Doppler-echocardiographic evaluation of diastolic and systolic flow was performed for different AVDs (30ms to 150ms) and different stimulation sites (left ventricular (LV), right ventricular and BiV). The optimal atrioventricular delay was calculated applying a simple formula based on systolic and diastolic mechanical delays determined during doppler-echocardiography.

Results

The mean optimal AVD was calculated to be 112±29ms (50 to 180ms) for BiV, 95±30ms (65 to 150ms) for LV and 75±28ms (40 to 125ms) for right ventricular pacing with wide interindividual variations. Compared to suboptimal AVDs diastolic optimization improved preejection and ejection intervals independent to pacing site. Optimization of the AVD significantly increased ejection time during BiV pacing (279ms versus 266ms; p<0.05). Compared to LV or right ventricular pacing BiV pacing produced the shortest mean pre-ejection and longest ejection intervals as parameters of improved systolic ventricular contractile synchrony. Diastolic filling times were longest during BiV pacing compared to LV or RV pacing.

Conclusions

Individual programming of BiV pacing devices increases hemodynamic benefit when implementing the inter-individually widely varying electromechanical delays. Optimization applying a simple formula not only improves diastolic ventricular filling but also increases systolic functional parameters.  相似文献   

17.
We sought to explore the distribution pattern of Na(+) channels across ventricular wall, and to determine its functional correlates, in the guinea pig heart. Voltage-dependent Na(+) channel (Na(v)) protein expression levels were measured in transmural samples of ventricular tissue by Western blotting. Isolated, perfused heart preparations were used to record monophasic action potentials and volume-conducted ECG, and to measure effective refractory periods (ERPs) and pacing thresholds, in order to assess excitability, electrical restitution kinetics, and susceptibility to stimulation-evoked tachyarrhythmias at epicardial and endocardial stimulation sites. In both ventricular chambers, Na(v) protein expression was higher at endocardium than epicardium, with midmyocardial layers showing intermediate expression levels. Endocardial stimulation sites showed higher excitability, as evidenced by lower pacing thresholds during regular stimulation and downward displacement of the strength-interval curve reconstructed after extrasystolic stimulation compared with epicardium. ERP restitution assessed over a wide range of pacing rates showed greater maximal slope and faster kinetics at endocardial than epicardial stimulation sites. Flecainide, a Na(+) channel blocker, reduced the maximal ERP restitution slope, slowed restitution kinetics, and eliminated epicardial-to-endocardial difference in dynamics of electrical restitution. Greater excitability and steeper electrical restitution have been associated with greater arrhythmic susceptibility of endocardium than epicardium, as assessed by measuring ventricular fibrillation threshold, inducibility of tachyarrhythmias by rapid cardiac pacing, and the magnitude of stimulation-evoked repolarization alternans. In conclusion, higher Na(+) channel expression levels may contribute to greater excitability, steeper electrical restitution slopes and faster restitution kinetics, and greater susceptibility to stimulation-evoked tachyarrhythmias at endocardium than epicardium in the guinea pig heart.  相似文献   

18.
The electrophysiological properties of atrioventricular (AV) nodal dual pathways have traditionally been investigated with premature stimuli delivered with right atrial pacing. However, little is known about the functional characteristics of AV nodal inputs outside of this context. Superfused rabbit triangle of Koch preparations (n = 8) and Langendorff-perfused hearts (n = 10) were paced throughout the triangle of Koch and mapped electrically and optically for activation pattern, electrogram and optical action potential morphologies, stimulation thresholds, and stimulus-His (S-H) intervals. Optical mapping and changes in His electrogram morphology were used to confirm the activation pathway. Pacing stimuli >or=2 mm above the tricuspid valve caused fast-pathway activation of the AV node and His with a threshold of 2.4 +/- 1.6 mA. An area directly below the coronary sinus had high thresholds (8.6 +/- 1.4 mA) that also resulted in fast-pathway excitation (P < 0.001). S-H intervals (81 +/- 19 ms) for fast-pathway activation remained constant throughout the triangle of Koch, reflecting the AV delay. Stimuli applied <2 mm from the tricuspid valve resulted in slow pathway (SP) excitation or direct His excitation (4.4 +/- 2.2 mA threshold; P < 0.001 compared with fast pathway). For SP/His pacing, S-H intervals showed a strong dependence on the distance from the His electrode and were significantly lower than S-H intervals for fast-pathway activation. SP/His pacing also displayed characteristic changes in His electrogram morphology. In conclusion, optical maps and S-H intervals for SP/His activation suggest that AV conduction via SP bypasses the compact AV node via the lower nodal bundle, which may be utilized to achieve long-term ventricular synchronization.  相似文献   

19.

Purpose

Unipolar (UE) and bipolar electrograms (BE) are utilized to identify arrhythmogenic substrate. We quantified the effect of increasing distance from the source of propagation on local electrogram amplitude; and determined if transmural electrophysiological gradients exist with respect to propagation and stimulation depth.

Methods

Mapping was performed on 5 sheep. Deployment of >50 quadripolar transmural needles in the LV were located in Cartesian space using Ensite. Contact electrograms from all needles were recorded during multisite bipolar pacing from epicardial then endocardial electrodes. Analysis was performed to determine stimulus distance to local activation time, peak negative amplitude (V-P), and peak-peak amplitude (VP-P) for (1) unfiltered UE, and (2) unfiltered and 30 Hz high-pass filtered BEs. Each sheep was analysed using repeated ANOVA.

Results

Increasing distance from the pacing sites led to significant (p<0.01) attenuation of UEs (V-P = 7.0±0.5%; VP-P = 5.4±0.3% per cm). Attenuation of BE with distance was insignificant (Vp-p unfiltered  = 2.2±0.5%; filtered  = 1.7±1.4% per cm). Independent of pacing depth, significant (p<0.01) transmural electrophysiological gradients were observed, with highest amplitude occurring at epicardial layers for UE and endocardial layers for BE. Furthermore, during pacing, propagation was earlier at the epicardium than endocardial layer by 1.6±2.0 ms (UE) and 1.4±2.8 ms (BE) (all p>0.01) during endocardial stimulation, and 2.3±2.4 ms (UE) and 1.8±3.7 ms (BE) during epicardal stimulation (all p<0.01).

Conclusions

Electrogram amplitude is inversely proportional to propagation distance for unipolar modalities only, which affected V-P>VP-P. Conduction propagates preferentially via the epicardium during stimulation and is believed to contribute to a transmural amplitude gradient.  相似文献   

20.
Despite advances, cardiac resynchronisation therapy (CRT) remains fundamentally orientated to the dyssynchrony of left bundle branch block (LBBB), in which septo-lateral electrical and mechanical delays predominate. For non-LBBB patients response rates to conventional CRT are lower and mortality and rehospitalisation rates are not reduced. Despite this, alternative approaches which tailor CRT to the differing dyssynchrony patterns of non-LBBB have yet to be developed. In the specific non-LBBB subgroup of right bundle branch block (RBBB) with left posterior fascicular block (LPFB), ventricular conduction via the left anterior fascicle results in a unique early lateral, and late septal depolarisation, or lateral to septal left ventricular (LV) delay, an electrical sequence which is followed mechanically. This latero-septal delay is somewhat the reverse of LBBB and was overcome by fusing right ventricular (RV) septal pacing with intrinsic conduction via the left anterior fascicle, achieving successful resynchronisation without implantation of a left ventricular lead. A stable fusion pattern was achieved via the ‘Negative AV Hysteresis with Search’ algorithm (Abbott, St Paul, Minnesota). Improvement in all standard CRT response indices was achieved at 3 months: QRS duration was reduced from 153 to 106 ms, ejection fraction increased from 14 to 32%, and LV end-systolic and end-diastolic diameters reduced by 19% and 12.5% respectively. NYHA class improved from III-IV to class II. Cardiac resynchronisation for RBBB with LPFB can be successfully achieved with a standard pacemaker or defibrillator without left ventricular lead implantation by fusing RV septal-only pacing with intrinsic conduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号