首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Interleukin (IL)-12 is a potent inducer of interferon (IFN)-gamma. We postulated that IL-12 would attenuate bleomycin-induced pulmonary fibrosis. To test this hypothesis, we administered IL-12 or murine serum albumin to bleomycin-treated mice by daily intraperitoneal injection until day 12. Mice treated with IL-12 demonstrated decreased hydroxyproline levels compared with control treated mice. Furthermore, administration of IL-12 led to a time-dependent increase in both lung and bronchoalveolar lavage fluid IFN-gamma. The antifibrotic effect of IL-12 could be attenuated with simultaneous administration of neutralizing anti-IFN-gamma antibodies. These findings support the notion that IL-12 attenuates bleomycin-induced pulmonary fibrosis via modulation of IFN-gamma production.  相似文献   

2.
Impairment of bleomycin-induced lung fibrosis in CD28-deficient mice   总被引:3,自引:0,他引:3  
Lung fibrosis is an important pulmonary disease with a high mortality rate, but its pathophysiological mechanism has not been fully clarified. Various types of cells have been implicated in the development of lung fibrosis, including T cells. However, the contribution of functional molecules expressed on T cells to the development of lung fibrosis remains largely unknown. In this study, we determined whether costimulation via CD28 on T cells was crucial for the development of lung fibrosis by intratracheally administering bleomycin into CD28-deficient mice. Compared with wild-type mice, the CD28-deficient mice showed markedly impaired lung fibrosis after injection with low doses of bleomycin, as judged by histological changes and hydroxyproline content in the lungs. In addition, bleomycin-induced T cell infiltration into the airways and production of several cytokines and chemokines including IL-5 were also impaired in the CD28-deficient mice. Furthermore, adoptive transfer of CD28-positive T cells from wild-type mice recovered the impaired bleomycin-induced lung fibrosis in CD28-deficient mice. These findings suggest that the CD28-mediated T cell costimulation plays a critical role in the development of lung fibrosis, possibly by regulating the production of cytokines and chemokines in the lung. Thus, manipulation of the CD28-mediated costimulation could be a potential therapeutic strategy for the prevention of lung fibrosis.  相似文献   

3.
To characterize the role of GM-CSF in pulmonary fibrosis, we have studied bleomycin-induced fibrosis in wild-type mice vs mice with a targeted deletion of the GM-CSF gene (GM-CSF-/- mice). Without GM-CSF, pulmonary fibrosis was worse both histologically and quantitatively. These changes were not related to enhanced recruitment of inflammatory cells because wild-type and GM-CSF-/- mice recruited equivalent numbers of cells to the lung following bleomycin. Interestingly, recruitment of eosinophils was absent in GM-CSF-/- mice. We investigated whether the enhanced fibrotic response in GM-CSF-/- animals was due to a deficiency in an endogenous down-regulator of fibrogenesis. Analysis of whole lung homogenates from saline- or bleomycin-treated mice revealed that GM-CSF-/- animals had reduced levels of PGE2. Additionally, alveolar macrophages were harvested from wild-type and GM-CSF-/- mice that had been exposed to bleomycin. Although bleomycin treatment impaired the ability of alveolar macrophages from wild-type mice to synthesize PGE2, alveolar macrophages from GM-CSF-/- mice exhibited a significantly greater defect in PGE2 synthesis than did wild-type cells. Exogenous addition of GM-CSF to alveolar macrophages reversed the PGE2 synthesis defect in vitro. Administration of the PG synthesis inhibitor, indomethacin, to wild-type mice during the fibrogenic phase postbleomycin worsened the severity of fibrosis, implying a causal role for PGE2 deficiency in the evolution of the fibrotic lesion. These data demonstrate that GM-CSF deficiency results in enhanced fibrogenesis in bleomycin-induced pulmonary fibrosis and indicate that one mechanism for this effect is impaired production of the potent antifibrotic eicosanoid, PGE2.  相似文献   

4.
The pathogenesis of pulmonary fibrosis remains unclear. The receptor for advanced glycation end-products (RAGE) is a multi-ligand receptor known to be involved in the process of fibrotic change in several organs, such as peritoneal fibrosis and kidney fibrosis. The aim of this study was to examine the contribution of RAGE during the acute inflammation and chronic fibrotic phases of lung injury induced by intratracheal instillation of bleomycin in mice. Bleomycin-induced lung fibrosis was evaluated in wild-type and RAGE-deficient (RAGE-/-) mice. Bleomycin administration to wild-type mice caused an initial pneumonitis that evolved into fibrosis. While RAGE-/- mice developed a similar early inflammatory response, the mice were largely protected from the late fibrotic effects of bleomycin. The protection afforded by RAGE deficiency was accompanied by reduced pulmonary levels of the potent RAGE-inducible profibrotic cytokines transforming growth factor (TGF)-beta and PDGF. In addition, bleomycin administration induced high mobility group box 1 (HMGB-1) production, one of the ligands of RAGE, from inflammatory cells that accumulated within the air space. Coculture with HMGB-1 induced epithelial-mesenchymal transition (EMT) in alveolar type II epithelial cells from wild-type mice. However, alveolar type II epithelial cells derived from RAGE-/- mice did not respond to HMGB-1 treatment, such that the RAGE/HMGB-1 axis may play an important role in EMT. Also, bleomycin administration induced profibrotic cytokines TGF-beta and PDGF only in wild-type mouse lungs. Our results suggested that RAGE contributes to bleomycin-induced lung fibrosis through EMT and profibrotic cytokine production. Thus, RAGE may be a new therapeutic target for pulmonary fibrosis.  相似文献   

5.
6.
Bleomycin administration results in well-described intracellular oxidative stress that can lead to pulmonary fibrosis. The role of alveolar interstitial antioxidants in this model is unknown. Extracellular superoxide dismutase (EC-SOD) is the primary endogenous extracellular antioxidant enzyme and is abundant in the lung. We hypothesized that EC-SOD plays an important role in attenuating bleomycin-induced lung injury. Two weeks after intratracheal bleomycin administration, we found that wild-type mice induced a 106 +/- 25% increase in lung EC-SOD. Immunohistochemical staining revealed that a large increase in EC-SOD occurred in injured lung. Using mice that overexpress EC-SOD specifically in the lung, we found a 53 +/- 14% reduction in bleomycin-induced lung injury assessed histologically and a 17 +/- 6% reduction in lung collagen content 2 wk after bleomycin administration. We conclude that EC-SOD plays an important role in reducing the magnitude of lung injury from extracellular free radicals after bleomycin administration.  相似文献   

7.
We previously showed that murine Langerhans cells (LC) express CD40 ligand (CD40L). In this study, we further investigated the function of CD40L on LC using agonistic antibodies and CD40L knockout (KO) mice. Signaling through CD40L decreased CD80 expression on LC 48 h after stimulation and the decrease was more remarkable in the presence of interferon-gamma (IFN-gamma). Signaling through CD40 enhanced the production of IL-12 p40 from LC, and simultaneous signaling through CD40L slightly augmented this effect. Addition of IFN-gamma further enhanced IL-12 p40 production. LC from CD40L KO mice expressed similar levels of surface molecules such as CD40, CD80, CD86, and MHC class II, compared with those from wild-type mice. However, they produced less amount of IL-12 p40 during 48 h after purification. These results suggest that signaling through CD40L on LC is important in regulating IL-12 production, which is critical for Th1 type immune responses.  相似文献   

8.
Severe forms of idiopathic interstitial pneumonia (IIP), such as usual interstitial pneumonia, can be impervious to modern steroid and immunosuppressive treatment regimens, thereby emphasizing the need for novel effective therapies. Consequently, research attention has been directed toward understanding the cytokine networks that may affect fibroblast activation and, hence, the progression of certain IIPs. This led us to investigate whether the specific targeting of resident lung cells responsive to IL-4 and IL-13 exerted a therapeutic effect in an experimental model of IIP, namely the bleomycin-induced model of pulmonary fibrosis. IL-4, IL-13, and their corresponding receptor subunits, IL-4Ralpha, IL-13Ralpha1, and IL-13Ralpha2, were maximally expressed at the mRNA and protein levels in whole lung samples on day 21 or 28 after an intratracheal bleomycin challenge. The intranasal administration of an IL-13 immunotoxin chimeric molecule (IL13-PE) from days 21-28, but not for 1-wk periods at earlier times, after bleomycin challenge had a significant therapeutic effect on histological and biochemical parameters of bleomycin-induced pulmonary fibrosis compared with the control group. The intranasal IL13-PE therapy significantly reduced the numbers of IL-4 and IL-13 receptor-positive mononuclear cells and macrophages and the levels of profibrotic cytokine and chemokine in the lungs of bleomycin-challenged mice on day 28. Thus, this study demonstrates that IL-4- and/or IL-13-binding cells are required for the maintenance of pulmonary fibrosis induced by bleomycin and highlights the importance of further investigation of antifibrotic therapeutics that target these cells during pulmonary fibrosis.  相似文献   

9.

Background

Catalase is preferentially expressed in bronchiolar and alveolar epithelial cells, and acts as an endogenous antioxidant enzyme in normal lungs. We thus postulated epithelial damage would be associated with a functional deficiency of catalase during the development of lung fibrosis.

Methods

The present study evaluates the expression of catalase mRNA and protein in human interstitial pneumonias and in mouse bleomycin-induced lung injury. We examined the degree of bleomycin-induced inflammation and fibrosis in the mice with lowered catalase activity.

Results

In humans, catalase was decreased at the levels of activity, protein content and mRNA expression in fibrotic lungs (n = 12) compared to control lungs (n = 10). Immunohistochemistry revealed a decrease in catalase in bronchiolar epithelium and abnormal re-epithelialization in fibrotic areas. In C57BL/6J mice, catalase activity was suppressed along with downregulation of catalase mRNA in whole lung homogenates after bleomycin administration. In acatalasemic mice, neutrophilic inflammation was prolonged until 14 days, and there was a higher degree of lung fibrosis in association with a higher level of transforming growth factor-β expression and total collagen content following bleomycin treatment compared to wild-type mice.

Conclusions

Taken together, these findings demonstrate diminished catalase expression and activity in human pulmonary fibrosis and suggest the protective role of catalase against bleomycin-induced inflammation and subsequent fibrosis.  相似文献   

10.
Evidence derived from human and animal studies strongly supports the notion that dysfunctional alveolar epithelial cells (AECs) play a central role in determining the progression of inflammatory injury to pulmonary fibrosis. We formed the hypothesis that impaired production of the regulatory cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) by injured AECs plays a role in the development of pulmonary fibrosis. To test this hypothesis, we used the well-characterized model of bleomycin-induced pulmonary fibrosis in rats. GM-CSF mRNA is expressed at a constant high level in the lungs of untreated or saline-challenged animals. In contrast, there is a consistent reduction in expression of GM-CSF mRNA in the lung during the first week after bleomycin injury. Bleomycin-treated rats given neutralizing rabbit anti-rat GM-CSF IgG develop increased fibrosis. Type II AECs isolated from rats after bleomycin injury demonstrate diminished expression of GM-CSF mRNA immediately after isolation and in response to stimulation in vitro with endotoxin compared with that in normal type II cells. These data demonstrate a defect in the ability of type II epithelial cells from bleomycin-treated rats to express GM-CSF mRNA and a protective role for GM-CSF in the pathogenesis of bleomycin-induced pulmonary fibrosis.  相似文献   

11.

Background

Lung fibrosis is a devastating pulmonary disorder characterized by alveolar epithelial injury, extracellular matrix deposition and scar tissue formation. Due to its potent collagenolytic activity, cathepsin K, a lysosomal cysteine protease is an interesting target molecule with therapeutic potential to attenuate bleomycin-induced pulmonary fibrosis in mice. We here tested the hypothesis that over-expression of cathepsin K in the lungs of mice is protective in bleomycin-induced pulmonary fibrosis.

Methods

Wild-type and cathepsin K overexpressing (cathepsin K transgenic; cath K tg) mice were challenged intratracheally with bleomycin and sacrificed at 1, 2, 3 and 4 weeks post-treatment followed by determination of lung fibrosis by estimating lung collagen content, lung histopathology, leukocytic infiltrates and lung function. In addition, changes in cathepsin K protein levels in the lung were determined by immunohistochemistry, real time RT-PCR and western blotting.

Results

Cathepsin K protein levels were strongly increased in alveolar macrophages and lung parenchymal tissue of mock-treated cathepsin K transgenic (cath K tg) mice relative to wild-type mice and further increased particularly in cath K tg but also wild-type mice in response to bleomycin. Moreover, cath K tg mice responded with a lower collagen deposition in their lungs, which was accompanied by a significantly lower lung resistance (RL) compared to bleomycin-treated wild-type mice. In addition, cath K tg mice responded with a lower degree of lung fibrosis than wild-type mice, a process that was found to be independent of inflammatory leukocyte mobilization in response to bleomycin challenge.

Conclusion

Over-expression of cathepsin K reduced lung collagen deposition and improved lung function parameters in the lungs of transgenic mice, thereby providing at least partial protection against bleomycin-induced lung fibrosis.  相似文献   

12.
Idiopathic pulmonary fibrosis is a devastating disease characterized by a progressive, irreversible, and ultimately lethal form of lung fibrosis. Except for lung transplantation, no effective treatment options currently exist. The bleomycin animal model is one of the best studied models of lung injury and fibrosis. A previous study using mouse tumor models observed that liposome-encapsulated bleomycin exhibited reduced lung toxicity. Therefore, we hypothesized that airway delivery of synthetic phosphatidylcholine-containing liposomes alone would protect mice from bleomycin-induced lung toxicity. C57BL/6 mice were administered uncharged multilamellar liposomes (100 μl) or PBS vehicle on day 0 by airway delivery. Bleomycin (3.33 U/kg) or saline vehicle was then given intratracheally on day 1 followed by four additional separate doses of liposomes on days 4, 8, 12, and 16. Fluorescent images of liposomes labeled with 1,1'-dioctadecyl-3,3,3',3' tetramethylindocarbocyanine perchlorate confirmed effective and widespread delivery of liposomes to the lower respiratory tract as well as uptake primarily by alveolar macrophages and to a lesser extent by type II alveolar epithelial cells. Results at day 22, 3 wk after bleomycin treatment, showed that airway delivery of liposomes before and after intratracheal administration of bleomycin significantly reduced bleomycin-induced lung toxicity as evidenced by less body weight loss, chronic lung inflammation, and fibrosis as well as improved lung compliance compared with controls. These data indicate that airway-delivered synthetic liposomes represent a novel treatment strategy to reduce the lung toxicity associated with bleomycin in a mouse model.  相似文献   

13.
Interleukin (IL)-10 has been shown to reduce many inflammatory reactions. We investigated the in vivo effects of IL-10 on a bleomycin-induced lung injury model. Hemagglutinating virus of Japan (HVJ)-liposomes containing a human IL-10 expression vector (hIL10-HVJ) or a balanced salt solution as a control (Cont-HVJ) was intraperitoneally injected into mice on day -3. This was followed by intratracheal instillation of bleomycin (0.8 mg/kg) on day 0. Myeloperoxidase activity of bronchoalveolar lavage fluid and tumor necrosis factor-alpha mRNA expression in bronchoalveolar lavage fluid cells on day 7 and hydroxyproline content of the whole lung on day 21 were inhibited significantly by hIL10-HVJ treatment. However, Cont-HVJ treatment could not suppress any of these parameters. We also examined the in vitro effects of IL-10 on the human lung fibroblast cell line WI-38. IL-10 significantly reduced constitutive and transforming growth factor-beta-stimulated type I collagen mRNA expression. However, IL-10 did not affect the proliferation of WI-38 cells induced by platelet-derived growth factor. These data suggested that exogenous IL-10 may be useful in the treatment of pulmonary fibrosis.  相似文献   

14.
Tzurel A  Segel MJ  Or R  Goldstein RH  Breuer R 《Life sciences》2002,71(14):1599-1606
Halofuginone, a coccidiostatic alkaloid, has anti-fibrotic properties, and may be useful as a therapeutic agent in lung fibrosis. To test this hypothesis we investigated the effect of halofuginone on bleomycin-induced lung fibrosis in Sprague-Dawley rats. Treatment groups included: (1) a single intratracheal (IT) instillation of 1.2U bleomycin, and intraperitoneal (IP) injection of halofuginone (0.5 mg/dose), every other day; (2) IT 1.2U bleomycin and IP distilled water (D.W.), every other day; (3) IT 0.8U bleomycin and daily IP halofuginone (0.5 mg/dose); (4) IT 0.8U bleomycin and daily IP D.W.; (5) IT saline and IP halofuginone, every other day; (6) IT saline and daily IP D.W.; (7) IT 0.625U bleomycin and oral halofuginone (10 mg/kg rodent lab chow); (8) IT 0.625U bleomycin and standard lab chow. Animals were studied 14 days after IT instillation. Lung injury was evaluated by total and differential cell count in bronchoalveolar lavage fluid, by a semi-quantitative morphological index of lung injury, and by biochemical analysis of lung hydroxyproline content. Overt signs of lung injury were apparent in bleomycin-treated rats by all measures. These changes were not affected by treatment with halofuginone, irrespective of the treatment regimen used. This study does not support the use of halofuginone to prevent or ameliorate lung fibrosis.  相似文献   

15.
Dual roles of IL-4 in lung injury and fibrosis   总被引:15,自引:0,他引:15  
Increased lung IL-4 expression in pulmonary fibrosis suggests a potential pathogenetic role for this cytokine. To dissect this role, bleomycin-induced pulmonary inflammation and fibrosis were analyzed and compared in wild type (IL-4(+/+)) vs IL-4-deficient (IL-4(-/-)) mice. Lethal pulmonary injury after bleomycin treatment was higher in IL-4(-/-) vs IL-4(+/+) mice. By administration of anti-CD3 Abs, we demonstrated that this early response was linked to the marked T lymphocyte lung infiltration and to the overproduction of the proinflammatory mediators such as TNF-alpha, IFN-gamma, and NO in IL-4(-/-) mice. In contrast to this early anti-inflammatory/immunosuppressive role, during later stages of fibrosis, IL-4 played a profibrotic role since IL-4(-/-) mice developed significantly less pulmonary fibrosis relative to IL-4(+/+) mice. However, IL-4 failed to directly stimulate proliferation, alpha-smooth muscle actin, and type I collagen expression in lung fibroblasts isolated from the wild-type mice. Upon appropriate stimulation with other known fibrogenic cytokines, fibroblasts from IL-4(-/-) mice were relatively deficient in the studied parameters in comparison to fibroblasts isolated from IL-4(+/+) mice. Taken together, these data suggest dual effects of IL-4 in this model of lung fibrosis: 1) limiting early recruitment of T lymphocytes, and 2) stimulation of fibrosis chronically.  相似文献   

16.
We previously demonstrated essential roles of the Fas-Fas ligand (FasL) pathway in bleomycin-induced pneumopathy in mice. T lymphocytes and natural killer cells express FasL on activation and use it as a cytotoxic effector molecule. Because interleukin (IL)-12 is known to play a critical role in cell-mediated immunity, we investigated whether anti-IL-12 antibody treatment suppresses the development of this model. The anti-IL-12 antibody treatment decreased the number of apoptotic cells and the degree of inflammation and fibrosis in lung tissue. The results of RT-PCR showed that IL-12p40, IL-12 receptor (R) beta2, interferon-gamma, tumor necrosis factor-alpha and FasL mRNAs were upregulated after bleomycin instillation. The upregulation of FasL, IL-12Rbeta2, and tumor necrosis factor-alpha mRNA expression in lung tissue was suppressed by anti-IL-12 antibody treatment. The results of enzyme-linked immunosorbent assay showed that the levels of IL-12p40, but not of IL-12p70, were increased in lung tissue after bleomycin instillation. Although the increase in IL-12Rbeta2 mRNA levels suggests that the T helper type 1 cell response may participate in lung injury, the increase in IL-12p40 supports T helper type 2 cell predominance in the fibrotic process of this model. The administration of anti-IL-12 antibody could be a novel therapy against lung injury and pulmonary fibrosis.  相似文献   

17.
Adenosine signaling has diverse actions on inflammation and tissue injury. Levels of adenosine are rapidly elevated in response to tissue injury; however, the mechanisms responsible for adenosine production in response to injury are not well understood. In this study, we found that adenosine levels are elevated in the lungs of mice injured by the drug bleomycin. In addition, increased activity of ecto-5'-nucleotidase (CD73) was found in the lungs in conjunction with adenosine elevations. To determine the contribution of CD73 to the generation of adenosine in the lung, CD73(-/-) mice were subjected to bleomycin challenges. Results demonstrated that CD73(-/-) mice challenged with bleomycin no longer accumulated adenosine in their lungs, suggesting that the primary means of adenosine production following bleomycin injury resulted from the release and subsequent dephosphorylation of adenine nucleotides. CD73(-/-) mice challenged with bleomycin exhibited enhanced pulmonary inflammation and fibrosis as well as exaggerated expression of proinflammatory and profibrotic mediators in the lung. Intranasal instillations of exogenous nucleotidase restored the ability of lungs of CD73(-/-) mice to accumulate adenosine following bleomycin challenge. Furthermore, these treatments were associated with a decrease in pulmonary inflammation and fibrosis. CD73(+/+) animals challenged with bleomycin and supplemented with exogenous nucleotidase also exhibited reduced inflammation. Together, these findings suggest that CD73-dependent adenosine production contributes to anti-inflammatory pathways in bleomycin-induced lung injury.  相似文献   

18.
Transforming growth factor-beta (TGF-beta) signaling plays an important regulatory role during lung fibrogenesis. Smad3 was identified in the pathway for transducing TGF-beta signals from the cell membrane to the nucleus. Using mice without Smad3 gene expression, we investigated whether Smad3 could regulate bleomycin-induced pulmonary fibrosis in vivo. Mice deficient in Smad3 demonstrated suppressed type I procollagen mRNA expression and reduced hydroxyproline content in the lungs compared with wild-type mice treated with bleomycin. Furthermore, loss of Smad3 greatly attenuated morphological fibrotic responses to bleomycin in the mouse lungs, suggesting that Smad3 is implicated in the pathogenesis of pulmonary fibrosis. These results show that Smad3 contributes to bleomycin-induced lung injury and that Smad3 may serve as a novel target for potential therapeutic treatment of lung fibrosis.  相似文献   

19.

Background

Antiflammin-1 (AF-1), a derivative of uteroglobin (UG), is a synthetic nonapeptide with diverse biological functions. In the present study, we investigated whether AF-1 has a protective effect against bleomycin-induced pulmonary fibrosis.

Methods

C57BL/6 mice were injected with bleomycin intratracheally to create an animal model of bleomycin-induced pulmonary fibrosis. On Day 7 and Day 28, we examined the anti-inflammatory effect and antifibrotic effect, respectively, of AF-1 on the bleomycin-treated mice. The effects of AF-1 on the transforming growth factor-beta 1 (TGF-β1)-induced proliferation of murine lung fibroblasts (NIH3T3) were examined by a bromodeoxycytidine (BrdU) incorporation assay and cell cycle analysis.

Results

Severe lung inflammation and fibrosis were observed in the bleomycin-treated mice on Day 7 and Day 28, respectively. Administration of AF-1 significantly reduced the number of neutrophils in the bronchoalveolar lavage fluid (BALF) and the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) in the lung homogenates on Day 7. Histological examination revealed that AF-1 markedly reduced the number of infiltrating cells on Day 7 and attenuated the collagen deposition and destruction of lung architecture on Day 28. The hydroxyproline (HYP) content was significantly decreased in the AF-1-treated mice. In vitro, AF-1 inhibited the TGF-β1-induced proliferation of NIH3T3 cells, which was mediated by the UG receptor.

Conclusions

AF-1 has anti-inflammatory and antifibrotic actions in bleomycin-induced lung injury. We propose that the antifibrotic effect of AF-1 might be related to its suppression of fibroblast growth in bleomycin-treated lungs and that AF-1 has potential as a new therapeutic tool for pulmonary fibrosis.  相似文献   

20.
Earlier work from this laboratory showed that local generation of angiotensin (ANG) II is required for the pathogenesis of experimental pulmonary fibrosis and that ANG peptides are expressed robustly in the lungs of patients with idiopathic pulmonary fibrosis (IPF). Angiotensin converting enzyme-2 (ACE-2) degrades the octapeptide ANG II to form the heptapeptide ANG1-7 and thereby limits ANG II accumulation. On this basis, we hypothesized that ACE-2 would be protective against experimental lung fibrogenesis and might be downregulated in human and experimental lung fibrosis. In lung biopsy specimens from patients with IPF, ACE-2 mRNA and enzyme activity were decreased by 92% (P<0.01) and 74% (P<0.05), respectively. ACE-2 mRNA and activity were also decreased similarly in the lungs of bleomycin-treated rats and C57-BL6 mice. In mice exposed to low doses of bleomycin, lung collagen accumulation was enhanced by intratracheal administration of either ACE-2-specific small interfering RNAs (siRNAs) or the peptide DX(600), a competitive inhibitor of ACE-2 (P<0.05). Administration of either ACE-2 siRNA or DX(600) significantly increased the ANG II content of mouse lung tissue above the level induced by bleomycin alone. Coadministration of the ANG II receptor antagonist saralasin blocked the DX(600)-induced increase in lung collagen. Moreover, purified recombinant human ACE-2, delivered to mice systemically by osmotic minipump, attenuated bleomycin-induced lung collagen accumulation. Together, these data show that ACE-2 mRNA and activity are severely downregulated in both human and experimental lung fibrosis and suggest that ACE-2 protects against lung fibrogenesis by limiting the local accumulation of the profibrotic peptide ANG II.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号