首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 928 毫秒
1.
亚低温减少沙土鼠脑缺血后延迟性神经元死亡机制的研究   总被引:1,自引:0,他引:1  
目的:研究亚低温对脑缺血后延迟性神经元死亡的影响及其与海马羟自由基产生以及纹状体多巴胺和ATP含量变化的关系。方法:沙土鼠前脑缺血再灌注模型,缺血10min,应用病理检查方法判断海马CAl锥体细胞死亡的数目。动物随机分为假手术组、缺血组、缺血再灌注组和亚低温缺血再灌注组。高效液相加电化学检测器方法测定海马羟自由基和纹状体多巴胺的含量,高效液相紫外检测器法测定纹状体ATP含量。结果:亚低温条件下沙土  相似文献   

2.
脑缺血再灌注损伤的主要机制是多种因素诱导的神经元凋亡。而神经元凋亡在一定程度上是可以调控和逆转的。亚低温以其对条件的要求不高实施方便等特点,奠定了其可以大范围推广的基础。作为能够辅助治疗脑缺血再灌注损伤的措施之一,亚低温的作用已经越来越多的得到了大家的重视,其脑缺血保护机制的相关研究也逐年增加。现阶段研究者对亚低温脑保护作用的研究重点放在了抑制细胞凋亡的机制上,也证实了亚低温的脑保护作用的机制和其抑制细胞凋亡密不可分。本文针对这一点,对近几年有关亚低温抑制大鼠脑缺血再灌注诱导的细胞凋亡机制的研究进展作一综述,为亚低温治疗脑缺血性疾病的临床应用提供理论支持。  相似文献   

3.
4.
The underlying mechanisms leading to neuronal damage in cerebral ischemia are multifactoral. In this study, we evaluated the neuroprotective effects of acetyl-l-carnitine, a medication that may enhance metabolic recovery after cerebral ischemia. The 5-minute transient forebrain ischemia model in gerbils was used. Acetyl-l-carnitine was given 30 minutes before the insult in one set of animals and 30 minutes after the insult in a second set of animals with histological evaluation at 7 days (Group A) and 28 days (Group B). Damage assessment was done using a 4-point damage score and Mann-Whitney U test was used for statistical analysis. Compared to the controls, there was significant protection in the cerebral cortex, hippocampus and the striatum in animals treated with the medicationbefore the insult in Group A and Group B Post-ischemic therapy showed little evidence of neuronal protection in either group. Behavioral tests in the Group B animals showed no significant differences between the treated or the saline controls. Our study shows, that pre-ischemic treatment with acetyl-l-carnitine results in neuronal protection. This may have clinical significance in situations (such as bypass surgery) where treatment could be initiatedprior to the insult.  相似文献   

5.
肢体缺血预处理减轻大鼠海马缺血/再灌注损伤   总被引:10,自引:0,他引:10  
目的:探讨肢体缺血预处理(LIP)对大鼠全脑缺血/再灌注损伤的影响.方法: 36只大鼠椎动脉凝闭后随机分为假手术(Control)组、脑缺血组、肢体缺血组、LIP 0 d组(LIP后即刻行脑缺血)、LIP 1 d组(LIP后1 d行脑缺血)和LIP 2 d组(LIP后2 d行脑缺血).重复夹闭大鼠双侧股动脉3次(每次10 min,间隔10 min)作为LIP,夹闭颈总动脉进行全脑缺血8 min后再灌注.硫堇染色观察海马CA1区组织学分级及锥体神经元密度以判断海马损伤程度.结果:脑缺血组海马CA1区锥体神经元损伤严重,与Control组比较,组织学分级明显升高,神经元密度明显降低(P<0.01).LIP 0 d组海马CA1区神经元损伤较脑缺血组明显减轻,组织学分级明显降低,神经元密度明显升高(P<0.01).而LIP 1 d组和LIP 2 d组大鼠海马CA1区锥体细胞缺失较多,仍有明显的组织损伤.结论:LIP可减轻随后立即发生的脑缺血/再灌注损伤,但对间隔1 d后的脑缺血/再灌注损伤无显著对抗作用.  相似文献   

6.
1. Spinal cord ischemia evoked a biphasic increase in CSF-Glu during 20 min of ischemia (40%) and at 2 hr after reperfusion (70%) in the nontreated group that was attenuated by all treated groups. But MK-801(15 g i.t.) did not affect the increased Glu at 2 hr (80%).2. The argyrophilia observed in laminae II–V at 8 hr after reperfusion was attenuated by hypothermia (33°C) and combination with MK-801, but the attenuation was less with MK-801.3. Mild hypothermia attenuated the biphasic increase in CSF-Glu and corresponding development of neuronal damage after spinal cord ischemia.4. Mild hypothermia with NMDA antagonism did not yield any further effects, suggesting that hypothermia itself plays a pivotal role in the protection.  相似文献   

7.
扩散性抑制对脑缺血后海马迟发性神经元死亡的影响   总被引:3,自引:0,他引:3  
目的为了研究阻断大鼠局灶性脑缺血诱导的扩散性抑制对同侧海马迟发性神经元死亡的影响。方法颈内动脉插线法制备大鼠大脑中动脉缺血再灌注模型,采用电生理学方法记录扩散性抑制波,尼氏染色和TUNEL染色检测海马迟发性神经元死亡;观察阻断局灶性脑缺血再灌注诱导的扩散性抑制对海马迟发性神经元死亡的影响。结果不给予SD阻断剂,大脑中动脉缺血模型有39%的动物出现海马迟发性神经元死亡;用MK-801阻断扩散性抑制后仅10%的动物出现海马迟发性神经元死亡,机率明显减小。结论局灶性脑缺血引起的海马迟发性神经元死亡可能与扩散性抑制由缺血区不断向远隔部位播散有关。  相似文献   

8.
The present study shows that anoxic neuronal depolarization or NMDA receptor activation are potent stimuli for inducing spinal neuronal heat shock protein 70 (Hsp70). Spinal hyperthermia, despite its significant glutamate releasing effect, induced only glial Hsp70 upregulation. No significant increase in spinal Hsp70 expression after potassium depolarization was seen. Transient spinal ischemia (6 min) was induced by the inflation of a 2F Fogarty catheter placed into descending thoracic aorta during concurrent hypotension (40 mmHg). To determine the onset of anoxic depolarization extracellular concentration of K+ was measured in the lumbar dorsal horn using a microelectrode. Spinal hyperthermia (42 degrees C) or hypothermia (27 degrees C) was induced using a heat exchanger placed in the paravertebral subcutaneous space overlying Th5-S4 spinal segments. To measure extracellular concentration of glutamate during hyperthermia a loop dialysis catheter was implanted into lumbar intrathecal space. Receptor specific (NMDA, 3 microg) or non-specific (KCl, 10 microl, 1M) neuronal depolarization was induced using previously implanted intrathecal catheters. After ischemia, temperature manipulations or drug injections animals survived for 4 or 24h. Animals were then terminally anesthetized and perfusion fixed for Hsp70 immunohistochemistry. After spinal ischemia or NMDA administration a neuronal Hsp70 expression was seen at 24h. After spinal hyperthermia only glial expression was seen at 4h. Hyperthermia significantly increased CSF glutamate concentration, however, MK-801 (a non-competitive NMDA receptor antagonist) pretreatment failed to block Hsp70 expression. After hypothermia or potassium depolarization only minimal or no Hsp70 expression was seen in glial cells. Exposure of neuronal tissue to a specific stimuli may lead to intervals of increased resistance to subsequent neurotoxic/ischemic insult. The intervening biochemistry of this protection has been attributed to a family of molecules referred to as HSP. In the present study, we demonstrate that short-lasting anoxic depolarization or activation of NMDA receptor are the most potent stimuli for spinal neuronal Hsp70 induction. This effect corresponds with the observed ischemic tolerance state induced by short-lasting preconditioning spinal ischemia.  相似文献   

9.
Zhao HG  Li WB  Sun XC  Li QJ  Ai J  Li DL 《中国应用生理学杂志》2007,23(1):19-23,I0002
目的:探讨神经途径在肢体缺血预处理(limbi schemic preconditioning,LIP)抗脑缺血/再灌注损伤中的作用。方法:脑缺血采用四血管闭塞模型,重复短暂夹闭放松大鼠双侧股动脉3次作为LIP。将凝闭椎动脉的大鼠随机分为sham组、脑缺血组、股神经切断+脑缺血组、LIP+脑缺血组、股神经切断+LIP+脑缺血组。于Sham手术和脑缺血后7d处死大鼠,硫堇染色观察海马CA1区锥体神经元迟发性死亡的变化。于Sham手术和脑缺血后6h心脏灌注固定大鼠,免疫组化法测定海马CAI区c-Fos表达的变化。结果:硫堇染色结果显示,与sham组比较。脑缺血组和股神经切断+脑缺血组大鼠海马CAI区均有明显组织损伤。LIP+脑缺血组CAI区无明显细胞缺失,神经元密度明显高于脑缺血组(P〈0.01)。而股神经切断+LIP+脑缺血组大鼠海马CA1区明显损伤,锥体细胞缺失较多,与LIP+脑缺血组组比较,神经元密度显著降低(P〈O.01),提示LIP前切断双侧股神经取消了LIP抗脑缺血/再灌注损伤作用。c—Fos免疫组化染色结果显示,Sham组海马CAI区未见明显的c-Fos蛋白表达。脑缺血组海马CAI区偶见c—Fm的阳性表达。LIP+脑缺血组c—Fos表达增强,数量增加,与Sham组和脑缺血组比较。c-Fos阳性细胞数和光密度均明显升高(P〈0.01)。而股神经切断+LIP+脑缺血组c-Fos表达明显减少,仅见少量弱阳性e-Fos表达。结论:LIP可通过神经途径发挥抗脑缺血/再灌注损伤作用,而LIP诱导c—Fos表达增加可能是LIP诱导脑缺血耐受神经途径的一个环节。  相似文献   

10.
To date, hypothermia has focused on improving rates of resuscitation to increase survival in patients sustaining cardiac arrest (CA). Towards this end, the role of body temperature in neuronal damage or death during CA needs to be determined. However, few studies have investigated the effect of regional temperature variation on survival rate and neurological outcomes. In this study, adult male rats (12 week-old) were used under the following four conditions: (i) whole-body normothermia (37 ± 0.5 °C) plus (+) no asphyxial CA, (ii) whole-body normothermia + CA, (iii) whole-body hypothermia (33 ± 0.5 °C)+CA, (iv) body hypothermia/brain normothermia + CA, and (v) brain hypothermia/body normothermia + CA. The survival rate after resuscitation was significantly elevated in groups exposed to whole-body hypothermia plus CA and body hypothermia/brain normothermia plus CA, but not in groups exposed to whole-body normothermia combined with CA and brain hypothermia/body normothermia plus CA. However, the group exposed to hypothermia/brain normothermia combined with CA exhibited higher neuroprotective effects against asphyxial CA injury, i.e. improved neurological deficit and neuronal death in the hippocampus compared with those involving whole-body normothermia combined with CA. In addition, neurological deficit and neuronal death in the group of rat exposed to brain hypothermia/body normothermia and CA were similar to those in the rats subjected to whole-body normothermia and CA. In brief, only brain hypothermia during CA was not associated with effective survival rate, neurological function or neuronal protection compared with those under body (but not brain) hypothermia during CA. Our present study suggests that regional temperature in patients during CA significantly affects the outcomes associated with survival rate and neurological recovery.  相似文献   

11.
Duz B  Oztas E  Erginay T  Erdogan E  Gonul E 《Cryobiology》2007,55(3):279-284
Pericytes are essential components of the blood–brain barrier together with endothelial cells and astrocytes. Any disturbance of brain perfusion may result in blood–brain barrier dysfunction due to pericyte migration from the microvascular wall. The neuroprotective influence of hypothermia on ischemic brain injury has been clearly shown in models of both global and focal ischemia. Leakage of plasma proteins contributes to the extension of neuronal injury and hypothermia has a neuroprotective influence during the ischemic insult. This line of thinking impelled us to investigate the possible role of the pericytes in the occurrence of hypothermic protection during cerebral ischemia.In this study, we examined at the ultrastructural level the effect of moderate hypothermia on microvascular pericyte responses using a rat model of permanent middle cerebral artery occlusion. Twenty rats were divided into four groups. Middle cerebral artery occlusion was performed in all rats except the control group (first group), which was used to determine the pericyte morphology under normal conditions. In the second group, pericyte response to irreversible ischemia under normothermic conditions was examined at the end of the first hour. In the third group, pericyte response to hypoxia was examined under normothermic conditions three hours after ischemia. In the fourth group, temporalis muscle temperature was maintained at 27–29 °C for 1 h after middle cerebral artery occlusion and pericyte response was then examined at the ultrastructural level. In ischemic normothermic conditions at the end of the first hour (Group 2), a separation was observed between pericytes and the basement membrane and this was interpreted as pericyte migration from the microvascular wall. In ischemic normothermic conditions at the end of the third hour (Group 3), basement membrane disorganization and increased space between the basement membranes were seen in addition to the differentiation of second group. In ischemic hypothermic conditions at the end of the first hour (Group 4), pericyte separation or migration from basement membrane were not seen and the blood–brain barrier remained firm. These findings were interpreted by the authors as a possible relationship between pericyte behavior and neural protection during hypothermia. We suggest that hypothermia may delay the pericyte response but not necessarily attenuate it, and should be associated with hypothermic protection.  相似文献   

12.
Zhao HG  Li WB  Li QJ  Chen XL  Liu HQ  Feng RF  Ai J 《生理学报》2004,56(3):407-412
探探讨肢体缺血预处理(limb ischemic preconditioning,LIP)对大鼠全脑缺血再灌注后海马CA1区锥体细胞凋亡的影响。46只大鼠椎动脉凝闭后分为假手术组、肢体缺血组、脑缺血组、LIP组。重复夹闭大鼠双侧股动脉3次(每次10min,间隔10min)作为LIP,之后立即夹闭双侧颈总动脉进行全脑缺血8min后再灌注。DNA凝胶电泳、TUNEL和吖啶橙/溴乙锭(AO/EB)双染技术从生化和形态学方面观察海马神经元凋亡的情况。凝胶电泳显示,脑缺血组出现了凋亡特征性DNA梯状条带,而LIP组无上述条带出现。与脑缺血组比较,LIP可明显减少海马CAI区TUNEL阳性神经元数(17.8±5.8vs 69.8±12,P<0.01)。AO/EB染色也显示LIP可明显减少脑缺血再灌注引起的神经元凋亡。以上结果提示,LIP可抑制脑缺血再灌注后海马神经元的凋亡,进而减轻脑缺血再灌注损伤,提供脑保护作用。  相似文献   

13.
1. The aim of this work was to study potential mechanisms participating in postischemic protection of selectively vulnerable CA1 neurons in the hippocampus. Experiments were focused on measuring changes in endogenous antioxidant enzyme activity.2. Forebrain cerebral ischemia was induced in a rat by four-vessel occlusion. Ten minutes of ischemia induces so-called delayed neuronal death in selectively vulnerable CA1 region 3 days later. After 7 days of reperfusion, 71.6% of neurons succumb to neurodegeneration. When 5 min of ischemia was used as postconditioning, 2 days after 10 min of cerebral ischemia, delayed neuronal death in CA1 was almost completely (89.9%) prevented.3. Searching for mechanisms of protection, we measured the activity of endogenous antioxidant enzymes. Activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) were measured in the hippocampus, striatum and cortex by spectrophotometric methods after 10 min of ischemia used as the preconditioning. Two days after the preconditioning or the sham operation, second ischemia was induced for 5 min. We observed significant increase of total SOD activity in all studied regions of the brain 5 h after postconditioning (5 min of ischemia). SOD activity decreased to control values after 24 h.4. In some experiments, we used intraperitoneal injections of norepinephrine (3.1 μM/kg) or 3-nitropropionic acid (20 mg/kg) as postconditioning, instead of ischemia. All three treatments resulted in significant increase of SOD activity, but norepinephrine was the most effective. The same effect as was seen for total SOD activity could be observed for CuZn-SOD as well as Mn-SOD activity. Similarly, considerable increase in the activity of catalase was detected 5 h after postconditioning (5 min of ischemia). It is interesting that the greatest changes were established in selectively vulnerable hippocampus and striatum. As in the case of SOD, the highest levels of CAT activity were induced by norepinephrine, while lower but significant increase in CAT activity was induced by 3-nitropropionic acid.5. Our results suggest that endogenous antioxidants SOD and CAT could play considerable neuroprotective role after postconditioning.  相似文献   

14.
Cho KO  Kim SK  Cho YJ  Sung KW  Kim SY 《Life sciences》2007,80(22):2030-2035
We investigated the effect of minocycline on neuronal damage in the hippocampus and striatum in a mouse model of transient global forebrain ischemia. Male C57BL/6 mice were anesthetized with halothane and subjected to bilateral occlusion of the common carotid artery (BCCAO) for 30 min. Minocycline (90 mg/kg, i.p., qd) or saline was injected immediately after BCCAO and daily for the next two days (45 mg/kg, i.p., bid). In order to reduce the variability in ischemic neuronal damage, we applied selection criteria based on regional cerebral blood flow (rCBF), evaluated using laser Doppler flowmetry, and the plasticity of the posterior communicating artery (PcomA), evaluated using India ink solution. In animals with rCBF that was less than 15% of the baseline value and with a smaller PcomA, of diameter less than one-third that of the basilar artery, we consistently observed neuronal damage in the striatum and hippocampal subfields, including medial CA1, CA2, and CA4. When the effect of minocycline was assessed with cresyl violet staining, neuronal damage in the medial part of the CA1 subfield and the striatum was found to be significantly attenuated, although minocycline did not protect against neuronal damage in the remaining hippocampal subfields. Immunohistochemistry for NeuN, adenosine A1 receptor, and SCIP/Oct-6 confirmed the region-specific effect of minocycline in the hippocampus. In summary, our results suggest that minocycline protects neurons against global forebrain ischemia in a subregion-specific manner.  相似文献   

15.
Abstract: It is well established that ischemia-induced release of glutamate and the subsequent activation of postsynaptic glutamate receptors are important processes involved in the development of ischemic neuronal damage. Moderate intraischemic hypothermia attenuates glutamate release and confers protection from ischemic damage, whereas mild intraischemic hyperthermia increases glutamate release and augments ischemic pathology. As protein kinase C (PKC) is implicated in neurotransmitter release and glutamate receptor-mediated events, we evaluated the relationship between intraischemic brain temperature and PKC activity in brain regions known to be vulnerable or nonvulnerable to transient global ischemia. Twenty minutes of bilateral carotid artery occlusion plus hypotension were induced in rats in which intraischemic brain temperature was maintained at 30°C, 37°C, or 39°C. Prior to and following ischemia, brain temperature was 37°C in all groups. Cytosolic, membrane-bound, and total PKC activities were determined in hippocampal, striatal, cortical, and thalamic homogenates at the end of ischemia and at 0.25–24 h of recirculation. PKC activity of control rats varied by region and were affected by altered brain temperature. For both membrane-bound and cytosolic PKC, there was a significant temperature effect, and for membrane-bound PKC there was also a significant effect of region. Rats with normothermic ischemia (37°C) showed extensive depressions of all PKC fractions. Hippocampus and striatum were noteworthy for depressions in PKC activity extending from the earliest (15 min) to the latest (24 h) recirculation times studied, whereas cortex showed PKC depressions chiefly during the first hour of recirculation, and the thalamic pattern was inconsistent. In contrast, in rats with hypothermic ischemia (30°C), significant overall effects were noted only for total PKC in thalamus, which showed depressed levels at both 1 and 24 h of recirculation. Rats with hyperthermic (39°C) ischemia also showed significant overall effects for the time course of membrane-bound, cytosolic, and total PKC activities in the hippocampus, striatum, and cortex. However, no significant reductions in PKC indices were observed in the thalamus. For membrane-bound PKC, significant temperature effects were noted for hippocampus, striatum, and cortex, but not for thalamus. For cytosolic, as well as total PKC, activity, significant temperature effects were noted for all four brain regions. Our results indicate that ischemia, followed by reperfusion, induces a significant reduction in PKC activity and that this process is highly influenced by the brain temperature during ischemia. Furthermore, our data also establish that differences exist in the response of PKC to ischemia/recirculation in vulnerable versus non-vulnerable brain regions. These results suggest that PKC alterations may be an important factor involved in the modulatory effects of temperature on the outcome following transient global ischemia.  相似文献   

16.
目的观察细胞周期调控对大鼠全脑缺血再灌流后海马区迟发性神经元死亡(delayed neuronal death,DND)以及星形胶质细胞的活化、增殖的影响.方法建立大鼠短暂性全脑缺血再灌流模型,利用尼氏染色、TUNEL、免疫组织化学方法观察再灌流后细胞周期素依赖的蛋白激酶(cyclin depedent kinase, CDK)抑制剂Olomoucine对海马DND以及星形胶质细胞活化增殖的影响.结果全脑缺血再灌流后3d、7d、30d海马神经元明显脱失,部分CA1、CA2区神经元凋亡;星形胶质细胞数目增多,GFAP表达上调,应用Olomoucine后TUNEL阳性神经元数目明显减少,幸存神经元数目增加;星形胶质细胞数目无明显增多,GFAP表达明显下调.结论 CDK抑制剂Olomoucine可有效抑制大鼠全脑缺血后海马神经元DND以及星形胶质细胞活化增殖.  相似文献   

17.
1. In the present study, we characterize the time course of spinal FOS protein expression after transient noninjurious (6-min) or injurious (12-min) spinal ischemia induced by inflation of a balloon catheter placed into the descending thoracic aorta. In addition, this work examined the effects of spinal hypothermia on FOS expression induced either by ischemia or by potassium-evoked depolarization (intrathecal KCl).2. Short-lasting (6-min) spinal ischemia evoked a transient FOS protein expression. The peak expression was seen 2 hr after reperfusion in all laminar levels in lumbosacral segments. At 4 hr of reperfusion, more selective FOS expression in spinal interneurons localized in the central part of laminae V–VII was seen. At 24 hr no significant increase in FOS protein was detected.3. After 12 min of ischemia and 2 hr of reflow, nonspecific FOS expression was seen in both white and gray matter, predominantly in nonneuronal elements. Intrathecal KCl-induced FOS expression in spinal neurons in the dorsal horn and in the intermediate zone. Spinal hypothermia (27°C) significantly suppressed FOS expression after 6 or 12 min of ischemia but not after KCl-evoked depolarization.4. Data from the present study show that an injurious (but not noninjurious) interval of spinal ischemia evokes spinal FOS protein expression in glial cells 2 hr after reflow. The lack of neuronal FOS expression corresponds with extensive neuronal degeneration seen in this region 24 hr after reflow. Noninjurious (6-min) ischemia induced a transient, but typically neuronal FOS expression. The significant blocking effect of hypothermia (27°C) on the FOS induction after ischemia but not after potassium-evoked depolarization also suggests that simple neuronal depolarization is a key trigger in FOS induction.  相似文献   

18.
Repeated ischemic insults at one hour intervals result in more severe neuronal damage than a single similar duration insult. The mechanism for the more severe damage with repetitive ischemia is not fully understood. We hypothesized that the prolonged reperfusion periods between the relatively short ischemic insults may result in a pronounced generation of oxygen free radicals (OFRs). In this study, we tested the protective effects of superoxide dismutase (SOD) and catalase (alone or in combination), and U78517F in a gerbil model of repetitive ischemia. Three episodes (two min each) of bilateral carotid occlusion were used at one hour intervals to produce repetitive ischemia. Superoxide dismutase and catalase were infused via osmotic pumps into the lateral ventricles. Two doses of U78517F were given three times per animal, one half hour prior to each occlusion. Neuronal damage was assessed 7 days later in several brain regions using the silver staining technique. The Mann-Whitney U test was used for statistical comparison. Superoxide dismutase showed significant protection in the hippocampus (CA4), striatum, thalamus and the medial geniculate nucleus (MGN). Catalase showed significant protection in the striatum, hippocampus, thalamus, and MGN and the substantia nigra reticulata. Combination of the two resulted in additional protection in the cerebral cortex. Compared to the controls, there was little protection with a dose of 3 mg/kg of U78517F. There was significant protection with a dose of 10 mg/kg in the hippocampus (CA4), striatum, thalamus, medial geniculate nucleus and the substantia nigra reticulata. The significant protection noted with SOD, catalase or U78517F with repeated ischemia supports, the hypothesis that OFRs may play a role in neuronal damage in repeated cerebral ischemia.  相似文献   

19.

Background

Excessive release of chelatable zinc from excitatory synaptic vesicles is involved in the pathogenesis of selective neuronal cell death following transient forebrain ischemia. The present study was designed to examine the neuroprotective effect of a membrane-permeable zinc chelator, clioquinol (CQ), in the CA1 region of the gerbil hippocampus after transient global ischemia.

Methodology/Principal Findings

The common carotid arteries were occluded bilaterally, and CQ (10 mg/kg, i.p.) was injected into gerbils once a day. The zinc chelating effect of CQ was examined with TSQ fluorescence and autometallography. Neuronal death, the expression levels of caspases and apoptosis inducing factor (AIF) were evaluated using TUNEL, in situ hybridization and Western blotting, respectively. We were able to show for the first time that CQ treatment attenuates the ischemia-induced zinc accumulation in the CA1 pyramidal neurons, accompanied by less neuronal loss in the CA1 field of the hippocampus after ischemia. Furthermore, the expression levels of caspase-3, -9, and AIF were significantly decreased in the hippocampus of CQ-treated gerbils.

Conclusions/Significance

The present study indicates that the neuroprotective effect of CQ is related to downregulation of zinc-triggered caspase activation in the hippocampal CA1 region of gerbils with global ischemia.  相似文献   

20.
Protective effect of hypothermia during ischemia in neural cell cultures   总被引:5,自引:0,他引:5  
Hypothermia offers protection from the effects of ischemia in small animals. We have recently shown that similar to small animals, hypothermia may also be protective in an astrocytic model of simulated ischemia in cell culture. This study was designed to look at the protective effects of hypothermia in cultures of cerebellar granular (glutamatergic) and cortical (GABAergic) neurons. We used LDH release into the medium as an indicator for neuron damage. Experiments were all done in sister cultures, in groups of six cultures at two temperatures (37 and 32 degrees Celsius). The duration of ischemia was three hours in cerebellar granular neuronal cell cultures and six hours in cortical neurons. LDH release was measured immediately after the insult. Hypothermia protected both granular and cortical neurons. In granular cells, LDH release was 62+/–18 at 32 degrees and 212+/–15 at 37 degrees (p=0.02). Cortical neurons showed LDH release of 15+/–2 at 32 degrees and 32+/–2 at 37 degrees (p=0.005). Our study suggests that similar to astrocytes, the protective effects of hypothermia are evident in neuronal cell cultures from the cerebellum and the cerebral cortex. Cell culture systems should prove useful techniques in understanding mechanisms of hypothermic protection during simulated ischemia in neurons from different sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号