首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Kuang  M. E. Musgrave 《Protoplasma》1996,194(1-2):81-90
Summary Ultrastructural changes of pollen cytoplasm during generative cell formation and pollen maturation inArabidopsis thaliana were studied. The pollen cytoplasm develops a complicated ultra-structure and changes dramatically during these stages. Lipid droplets increase after generative cell formation and their organization and distribution change with the developmental stage. Starch grains in amyloplasts increase in number and size during generative and sperm cell formation and decrease at pollen maturity. The shape and membrane system of mitochondria change only slightly. Dictyo-somes become very prominent, and numerous associated vesicles are observed during and after sperm cell formation. Endoplasmic reticulum appears extensively as stacks during sperm cell formation. Free and polyribosomes are abundant in the cytoplasm at all developmental stages although they appear denser at certain stages and in some areas. In mature pollen, all organelles are randomly distributed throughout the vegetative cytoplasm and numerous small particles appear. Organization and distribution of storage substances and appearance of these small particles during generative and sperm cell formation and pollen maturation are discussed.  相似文献   

2.
Serially sectioned embryo sacs of Nicotiana tabacum were examined during fertilization events using transmission electron microscopy. After pollen tube discharge, the outer membrane of the sperm pair is removed, the two sperm cells are deposited in the degenerate synergid and the sperm cells migrate to the chalazal edge of the synergid where gametic fusion occurs. During fertilization, the male cytoplasm, including heritable organelles, is transmitted into the female reproductive cells as shown by: (1) the cytoplasmic confluence of one sperm and the central cell during cellular fusion, (2) the occurrence of sperm mitochondria (distinguished by ultrastructural differences) in the zygote cytoplasm and adjacent to the sperm nucleus, (3) the presence of darkly stained aggregates which are found exclusively in mature sperm cells within the cytoplasm of both female cells soon after cell fusion, and (4) the absence of any large enucleated cytoplasmic bodies containing recognizable organelles outside the zygote or endosperm cells. The infrequent occurrence of plastids in the sperm and the transmission of sperm cytoplasm into the egg during double fertilization provide the cytological basis for occasional biparental plastid inheritance as reported previously in tobacco. Although sperm mitochondria are transmitted into the egg/zygote, their inheritance has not been detected genetically. In one abnormal embryo sac, a pair of sperm cells was released into the cytoplasm of the presumptive zygote. Although pollen tube discharge usually removes the inner pollen-tube plasma membrane containing the two sperm cells, this did not occur in this case. When sperm cells are deposited in a degenerating synergid or outside of a cell, this outer membrane is removed, as it apparently is for fertilization.  相似文献   

3.
Summary The sperm cells of Rhododendron laetum and R. macgregoriae differentiate within the pollen tube about 24 h after germination in vitro. Threedimensional reconstruction shows that the sperm cells are paired together, and both have extensions that link with the tube nucleus, forming a male germ unit. Quantitative analysis shows that the sperm cells in each pair differ significantly in surface area, but not in cell volume nor in numbers of mitochondria or plastids. When isolated from pollen tubes by osmotic shock, the sperm cells became ellipsoidal and surrounded by their own plasma membrane, while a proportion remained in pairs linked by the inner tube plasma membrane. Both generative and sperm cells are visualized in pollen tube preparations by immunofluorescence with anti-tubulin and anti-actin monoclonal antibodies (MAbs) combined with H33258 fluorescence of the nuclei. Video-image processing shows the presence of an axial microtubule cage in the generative cells, and some microtubules are present in the cytoplasmic extensions that clasp the tube nucleus. Following sperm cell division, the extensive phragmoplast between the sperm nuclei is partitioned by the plasma membranes.  相似文献   

4.
The sperm cell morphology and spermatogenesis of Halacaroides antoniazziae Pepato Tiago and da Rocha 2011 and Acaromantis vespucioi Pepato and Tiago 2004 was investigated. Halacaroides sperm cells have a complete acrosomal complex, dense tubules crossing the cytoplasm and modified mitochondria. Mature sperm cells are surrounded by two kinds of secretions. Inside the ejaculatory duct, they lie upon a centre composed of a secretion structured as heaps of elongated bodies. Acaromantis spermatozoa are spindle shaped and lack an acrosomal complex. The plasmalemma is deeply folded; the cytoplasm is very reduced and devoid of organelles. A single kind of globular secretion was found. The sperm mass is surrounded by two layers of amorphous secretions. These species share a peripheral pattern of nuclear condensation during spermatogenesis, a possible apomorphy for most halacarids, and no special adaptation to the interstitial environment could be related to their sperm cell morphology.  相似文献   

5.
Guo F  Hu SY  Yuan Z  Zee SY  Han Y 《Protoplasma》2005,225(1-2):5-14
Summary. In this paper, the stages of normal sexual reproduction between pollen tube penetration of the archegonium and early embryo formation in Pinus tabulaeformis are described, emphasizing the transmission of parental cytoplasm, especially the DNA-containing organelles – plastids and mitochondria. The pollen tube growing in the nucellus contained an irregular tube nucleus followed by a pair of sperm cells. The tube cytoplasm contained abundant organelles, including starch-containing plastids and mitochondria. The two sperm cells differed in their volume of cytoplasm. The leading sperm, with more cytoplasm, contained abundant plastids and mitochondria, while the trailing one, with a thin layer of cytoplasm, had very few organelles. The mature egg cell contained a great number of mitochondria, whereas it lacked normal plastids. At fertilization, the pollen tube penetrated into the egg cell at the micropylar end and released all of its contents, including the two sperms. One of the sperm nuclei fused with the egg nucleus, whereas the other one was retained by the receptive vacuole. Very few plastids and mitochondria of male origin were observed around the fusing sperm and egg nuclei, while the retained sperm nucleus was surrounded by a large amount of male cytoplasm. The discharged tube cytoplasm occupied a large micropylar area in the egg cell. In the free nuclear proembryo, organelles of maternal and paternal origins intermingled in the neocytoplasm around the free nuclei. Most of the mitochondria had the same features as those of the egg cell, but some appeared to be from sperm cells and tube cytoplasm. Plastids were obviously of male origin, with an appearance similar to those of the sperm or tube cells. After cellularization of the proembryo, maternal mitochondria became more abundant than the paternal ones and the plastids enlarged and began to accumulate starch. The results reveal the cytological mechanism for paternal inheritance of plastids and biparental inheritance of mitochondria in Chinese pine. Correspondence and reprints: State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Science, China Agricultural University, Beijing 100094, People’s Republic of China.  相似文献   

6.
Summary The behavior of organelle nucleoids in the generative cell was examined at the second (pollen grain) mitosis by epifluorescence microscopy after staining with 4,6-diamidino-2-phenylindole (DAPI) inOenothera biennis. TheO. biennis generative cell contained a large number of organelle nucleoids distributed randomly in the cytoplasm before mitosis. The epifluorescence images of the nucleoids could be classified distinctly into two groups which corresponded to plastid nucleoids (pt-nucleoids) and mitochondrial nucleoids (mt-nucleoids). Discrimination between pt- and mt-nucleoids was carried out with the aid of DNA immunogold electron microscopy. At metaphase, both pt- and mt-nucleoids migrated to the pole regions of the generative cell. After mitosis, organelle nucleoids in both of the sperm cells scattered in the cytoplasm again. A quantitative examination of pt-nucleoids on 202 pairs of sperm cells showed that the leading sperm cell (Svn) contained 0–39 pt-nucleoids (19.0 ± 7.4) and the trailing sperm cell (Sua) contained 0–40 pt-nucleoids (15.4 ± 6.5). For mt-nucleoids, examination of 28 pairs of sperm cells showed that Svn contained 5–32 mt-nucleoids (14.5 ± 6.8) and Sua contained 6–30 mt-nucleoids (13.4 ±7.5). These results showed that (1) the number of organelle nucleoids per sperm cell varied considerably in the cells studied; (2) quantitative difference in pt- and mt-nucleoids between Svn and Sua could occur in some gametophytes studied; but (3) it was unlikely that there was any pre-differentiational cytoplasm localization and essential sperm heteromorphy with respect to organelle nucleoid content in the gametophyte population.  相似文献   

7.
Since the initial discovery of double fertilization in angiosperms in 1898, a number of reports of double fertilization-like events in the genus Ephedra have appeared. Until recently, convincing documentation of double fertilization in Ephedra had not been presented. In Ephedra nevadensis, following entry of a single binucleate sperm cell into the egg cell, one sperm nucleus migrates in a chalazal direction to fuse with the egg nucleus. Contemporaneous with this first fertilization event, the ventral canal nucleus regularly migrates from its initially apical position within the egg cell to a more central position within the egg cytoplasm, where it fuses with a second sperm nucleus. Based on quantitative microspectrofluorometric analysis, occasional supernumerary nuclei within the egg cell (derived by migration through pores in the cell walls between jacket cells and the central cell or egg cell) can be ruled out as participating in the second fertilization event. The evolutionary establishment of double fertilization in Ephedra (or its ancestors) was dependent on a number of specific developmental preconditions: 1) persistence of the ventral canal nucleus (which is degenerate in many groups of nonflowering seed plants) through the time of normal fertilization; 2) regular displacement of the ventral canal nucleus from its initially apical position within the egg cell to a position within the egg cytoplasm where fusion of the egg nucleus with the first sperm nucleus earlier occurred; 3) acquisition of egg-like features by the ventral canal nucleus that allow it to attract and fuse with a sperm nucleus; and 4) consistent entry of a second sperm nucleus into the archegonial cavity to participate in a second fertilization event. Although it cannot be determined definitively whether double fertilization in Ephedra is evolutionarily homologous with double fertilization in flowering plants, comparative evidence is consistent with the hypothesis that double fertilization arose in a common ancestor of the Gnetales and angiosperms.  相似文献   

8.
A total of 17 species, in 14 genera of majids have been examined for sperm ultrastructure. The present account describes the sperm of six of these species, in two subfamilies: Pisinae—Sphenocarcinus orbiculatus and Sphenocarcinus stuckiae and Inachinae—Cyrtomaia furici, Grypacheus hyalinus, Platymaia rebierei and Macropodia longirostris. M. longirostris has the only eubrachyuran sperm in which the acrosome is known to depart radically from a subspheroidal form. The acrosome is semilunar in shape and is bordered by a very thin layer of cytoplasm and an unusually uniform, narrow band of chromatin. The apical surface of the acrosome is almost flat, though slightly concave, whereas the posterior surface forms a hemisphere, and is almost completely occupied by the thin, centrally perforate, electron dense operculum. The bulk of the acrosome consists of a homogeneous, moderately electron dense outer acrosome zone. This surrounds a small inner acrosome zone internal to which is an ellipsoidal, pale perforatorium capped by a central acrosome zone. Majid sperm are distinguished by a flattened and/or centrally depressed operculum; a further characteristic is that the pointed perforatorium is relatively short and frequently does not reach the operculum. They vary inter alia with regard to presence or absence of a posterior median process and, apparently, of centrioles and of microtubules in the nuclear arms, and in the number of these arms. Perforation of the operculum, seen in the Pisinae, is not constant in the Inachinae. Spermatozoal ultrastructure offers no certain support for a close relationship of majids with parthenopids or hymenosomatids.  相似文献   

9.
Summary The behavior of the generative cell during male gametophyte development inPlumbago zeylanica was examined by epifluorescence microscopy and electron microscopy with organelle nucleoid as a cytoplasm marker. When the thin sections stained with 4,6-diamidino-2-phenylindoIe (DAPI) were observed under an epifluorescence microscope, two types of fluorescence spots were detected in the cytoplasm of the pollen cells before the second mitosis. The spots emitting stronger fluorescence were confirmed as plastid nucleoids and those emitting dimmer fluorescence were mitochondrial nucleoids. Before the first mitosis, both plastid and mitochondrial nucleoids distributed randomly in the cytoplasm of the microspore. A small lenticular generative cell formed with attachment to the interior of the intine after the mitosis. Small vacuoles were found in the lenticular cell. In the cytoplasm of the lenticular cell, both plastid nucleoids and the small vacuoles were distributed randomly at the very beginning but began to migrate in opposite directions immediately. Plastid nucleoids aggregated to the side of the cell that faces the pollen center and the small vacuoles aggregated to the side of the cell that attaches to the inline. As the result, the lenticular generative cell appeared highly polarized in cytoplasm location soon after the first mitosis. In accordance with the definition of the cytoplasm polarization, the primary wall between the generative and the vegetative cells began to flex and the lenticular generative cell started to protrude towards the pollen center. When the generative cell peeled away from the inline, it was spherical in shape with the pole that aggregated plastids towards the vegetative nucleus. But the cell direction appeared to be transformed immediately. The pole that aggregated small vacuoles turned to the position towards the vegetative nucleus and the pole that aggregated plastid nucleoids turned to the position countering to the vegetative nucleus. A cellular protuberance formed at the edge of the pole that aggregated small vacuoles and elongated into a tapered end that got into contact with the vegetative nucleus. The polarization of the cytoplasm kept constant throughout the second mitosis. The small vacuoles that apportioned to the sperm cell which attached the vegetative nucleus (the leading sperm cell) disappeared during sperm cell maturation. Plastid nucleoids were apportioned to the other sperm cell (the trailing sperm cell) completely. Mitochondrial nucleoids became undetectable after the second mitosis.  相似文献   

10.
SYNOPSIS. Eimeria balphae n. sp. is described from the Ord kangaroo rat Dipodomys ordii. The sporulated oocysts are broadly ellipsoidal to ovoid, averaging 16.7 by 14.3 μ. A single, large, homogenous body represents the oocyst residuum. A polar granule is present. There is no micropyle. The ovoid sporocysts average 8.7 by 5.9 μ. The sporocyst residuum is composed of 7–14 round, clear granules. This species of Eimeria was found in 1 of 82 D. ordii in northwestern Utah.  相似文献   

11.
Summary The structure of the generative cell and its association with the vegetative nucleus in the pollen tube ofCyphomandra betacea Sendt. were observed with the electron microscope. The generative cell, bounded by its own plasma membrane and the inner plasma membrane of the vegetative cell, possesses the cytoplasmic extension which lies within the embayments of a vegetative nucleus. The generative cell contains the normal complement of organelles and, especially, microtubules which cluster into several groups adjacent to the plasma membrane, oriented along the longitudinal axis of the cell. In the pollen tube reaching the lower end of the style aftersemivivo pollination, both of the sperm cells are elongated and polyribosomes and microtubules are the outstanding feature in the cytoplasm. The two sperm cells are connected by a common transverse cell wall, while cytoplasmic channels exist in both the periplasm of the two sperm cells and the transverse wall. The leading sperm cell (Svn) is closely associated with the vegetative nucleus. Thus the present study demonstrates the existence of the male germ unit in the pollen tube ofC. betacea. The possible cytoplasmic continuity between the sperm cells and between the gametes and vegetative cell is considered.Abbreviations Svn sperm cell physically associated with the vegetative nucleus - Sua sperm cell unassociated with the vegetative nucleus - RER rough endoplasmic reticulum - SER smooth endoplasmic reticulum  相似文献   

12.
Motile sperm cells of land plants are released directly into the environment and encounter numerous constraints on their way to the egg. Sperm cell organization, shape, size, and plasticity are crucial to the processes associated with fertilization. We conducted an ultrastructural investigation to detail insemination (sperm release, swimming and movement within the archegonium) and fertilization in the model fern Ceratopteris richardii. Gametophytes were grown from spores using sterile culture techniques and flooded in water when sexually mature. Materials were examined at different stages post-flooding. During insemination in C. richardii, the sperm cytoskeleton and flagella rearrange, and the coils of the cell extend while entering the neck canal. In this nearly linear configuration, the dense ridge, a densely compacted band of filaments presumed to be actin, expands to surround the leading edge of the sperm cell. This ridge fuses with the receptive site on the female gamete and is the sperm component that initiates contact with the egg nuclear envelope. All cellular components, except plastids, enter the egg cytoplasm. Sperm mitochondria are distinguishable from those of the egg because they are encased by two or three additional membranes and are sequestered from the zygote cytoplasm. During karyogamy, the sperm components, including the microtubule cytoskeleton (spline) and flagella, maintain their spatial integrity. Microtubules play key roles not only in sperm cell structure but also in facilitating karyogamy in this fern. After karyogamy is completed, microtubule arrays of the sperm cell and the components of the locomotory apparatus are disassembled. We provide the first demonstration of the likely involvement of sperm actin in egg penetration in land plants and new insights into the fate of paternal organelles. This study points to the roles sperm cell structure and dynamics play in the intricate processes of insemination and fertilization in land plants.  相似文献   

13.
Developmental phases surrounding the processes of gametic delivery and fusion were examined ultrastructurally in the reduced megagametophyte of Plumbago zeylanica, which lacks synergids. Gametic delivery occurs at the end of pollen tube growth and results in deposition of two male gametes, a vegetative nucleus, and a limited amount of pollen cytoplasm between the egg and central cell. Discharge of these materials from the tube is accompanied by loss of inner and outer pollen tube plasma membranes, loss of sperm-associated cell wall components, and disruption of the formerly continuous cell wall between the egg and central cell. The dispersion of egg cell wall components directly exposes female reproductive cell membranes to the unfused male gametes and pollen tube without disrupting gametic cell plasma membranes. Presence of unfused sperms within the female gametophyte appears to be a transitory phenomenon, lasting less than 5 min at the end of over 8½ hr of pollen tube growth. At the time of gametic deposition, plasma membranes of unfused sperm cells become directly appressed to plasma membranes of both the egg and central cell. Gametic fusion is initiated by a single fusion event between membranes of participating male and female cells, which is rapidly followed by subsequent, secondary fusion events between the same two cells at different locations along their surface. Gametic fusion results in the transmission of male gamete nuclei with co-transmission of nearly the entire sperm cytoplasmic volume and organellar complement, and it is possible to identify heritable male cytoplasmic organelles within both the incipient zygote and endosperm. Paternally originating plastids may be distinguished from maternal plastids by differences in morphology and staining characteristics, whereas paternal mitochondria may be distinguished from maternal mitochondria by populational differences in mitochondrial size which are statistically significant. Such observations further indicate that transmitted paternal mitochondria seem to remain viable, as judged by their ultrastructural appearance, and are transmitted exclusively by sperm cytoplasm rather than discharged pollen cytoplasm. The presence of anucleate, membrane-bounded cytoplasmic bodies between the egg and central cell are identifiable on the basis of their enclosed organelles and indicate that fragmentation of a small amount of the sperm cytoplasm associated with the vegetative nucleus commonly occurs. The presence and identification of sperm cytoplasmic organelles and associated membranes within female reproductive cells following gametic transmission represents strong evidence in support of the cellular basis of nuclear and cytoplasmic transmission during sexual reproduction in Plumbago.  相似文献   

14.
Summary The structure of sperm cells and their association with the vegetative nucleus in pollen tubes ofNicotiana tabacum grown in styles were observed with the electron microscope, demonstrating the existence of a male germ unit. The two sperm cells are arranged in tandem and are closely associated with the vegetative nucleus, which always takes the lead. The leading sperm cell (SC 1) has a long and narrow cytoplasmic projection which lies within the enclaves of the much lobed vegetative nucleus, thus forming a physical association. The trailing sperm cell (SC 2) and the SC 1 are not only joined by a common transverse cell wall but also are surrounded by a periplasm bounded by the plasma membrane of the sperm cells and that of the vegetative cell, thus forming a structural connection. The sperm cells are elongated, with cytoplasmic projections at the anterior end of the SC 1 and at both ends of the SC 2. The cytoplasm of both sperm cells includes mitochondria, endoplasmic reticulum, dictyosomes, ribosomes, small vacuoles and axially oriented microtubules. No plastids were observed.Abbreviations DAPI 4,6-diamino-2-phenylindole - MGU male germ unit - MT microtubule - SC 1 the leading sperm cell physically associated with the vegetative nucleus - SC 2 the trailing sperm cell  相似文献   

15.
The ultrastructure of the embryo sac, nucellus, and parts of the micropyle of Lilium longiflorum were studied both before and after pollen tube penetration to examine the interactions between ovule and pollen tube, using transmission electron microscopy and light microscopy. Before pollen tube penetration the egg cell and two synergids are similar. No filiform apparatus was detected and no synergid degeneration occurs prior to pollen tube penetration. The polar nuclei do not fuse until fertilization. No differences in embryo sac ultrastructure were detected between pollinated ovules unpenetrated by pollen tubes and unpollinated flowers of a comparable age. Shortly after the discharge of the pollen tube two enucleated cytoplasmic bodies with different ribosome densities were observed in the degenerated cytoplasm. These structures border both on the central cell and the egg cell as well as each other and are interpreted as remains of sperm cytoplasm after transmission of sperm nuclei. In the central cell both the sperm nucleus and the polar nuclei are associated with endoplasmic reticulum (ER). ER is thought to be a transport mechanism to achieve contact between the haploid polar nuclei and the sperm nucleus. In the egg cell sperm nucleus alignment is not visibly achieved by ER. The persistent cells of the egg apparatus and the central cell appear to become more metabolically active after pollen tube penetration. Pollen tube penetration already occurs despite the absence of a filiform apparatus and a low level of differences between the cells of the egg apparatus.  相似文献   

16.
小麦受精过程中酸性磷酸酶的超微细胞化学定位   总被引:6,自引:0,他引:6  
小麦(Triticum aestivum )受精前成熟胚囊,除胚囊中央细胞的合点端细胞质中有酸性磷酸酶外,其余部位均未发现酸性磷酸酶。受精时期,以下部位存在酸性磷酸酶活性:卵细胞的细胞核内一部分染色质和细胞质中大部分线粒体;精、卵核融合时两核的核周腔内;退化助细胞合点端细胞质和一些液泡内;进入雌性细胞中的两个精核;胚囊各成员细胞的细胞壁及胚囊周围珠心细胞的细胞壁。二细胞原胚中未见有酸性磷酸酶。早期胚乳游离核染色质上有酸性磷酸酶。小麦受精过程酸性磷酸酶的分布特点可能与卵细胞生理状态的变化和细胞质中线粒体的改组、助细胞的退化、精核的生理状态以及精核与卵核的核膜融合等有关。  相似文献   

17.
No acid phosphatase activity was observed in the mature embryo sac of wheat (Triticum aestivum) except the chalazal cytoplasm Of the central cell before fertilization. During fertilization, acid phosphataseactivity was observed in the following loci: part of chromatin of the egg nucleus and most of the mitochondria in the egg cytoplasm; the perinuclear spaces of the egg and sperm nuclei at the fusion of the egg and sperm nuclei; the chalazal cytoplasm and some vacuoles of the degenerated synergid; two sperm nuclei within the cytoplasm of female cells; the cell wall of each cell of the embryo sac and that of the nucellar cells surrounding the embryo sac. No acid phosphatase was observed in the two-celled proembryo. Dense enzyme reaction product was localized in the chromatin of the free nuclei at early stage of the endosperm. The characteristic of acid phosphatase distribution during fertilization may be associated with the physiological change of the egg Cell, the reorganization of mitochondria in the egg cell cytoplasm, the degeneration of one of the two synergids, the physiological state of the sperm nuclei and the nuclear membrane fusion of the egg and sperm nuclei.  相似文献   

18.
Summary Testes of Lesuerigobius friesii and Gobius bucchichi were studied in adult reproductive fish. During the onset of spermatid development, a peculiar system of alternating rough (RER) and smooth (SER) endoplasmic reticular tubules form rings distally to the cell nucleus. The RER tubules are seen to possess up to 12 ribosomes in cross-section, whereas the SER are strongly electron-dense. Nanotubules connect these stacks of tubules to the developing head and tail of the sperm. With ripening of the sperm these tubules disintegrate within the excessive cytoplasm. It seems likely that these are special forms of Macro-Golgi System that possibly provide protamines for the developing sperm.  相似文献   

19.
Mark D. Lazzaro 《Protoplasma》1998,201(3-4):194-201
Summary In conifer pollen, the generative cell divides into a sterile stalk cell and a body cell, which subsequently divides to produce two sperm. InPicea abies (Norway spruce, Pinaceae) this spermatogenous body cell contains actin microfilaments. Microfilament bundles follow the spherical contour of the body cell within the cell cortex, and also traverse the cytoplasm and enmesh amyloplasts and other organelles. In addition, microfilaments are associated with the surface of the body cell nucleus. The sterile stalk cell also contains microfilament bundles in the cytoplasm, around organelles, and along the nuclear surface. Within the pollen grain, microfilament bundles traverse the vegetative-cell cytoplasm and are enriched in a webbed cage which surrounds the body cell. Microfilaments were identified with rhodamine-phalloidin and with indirect immunofluo-rescence using a monoclonal antibody to actin. The majority of evidence in literature suggests that the spermatogenous generative cell in angiosperms does not contain actin microfilaments, so the presence of microfilaments within the spermatogenous body cell inP. abies appears to be a fundamental difference in sexual reproduction between conifers and angiosperms.  相似文献   

20.
Hinsch GW 《Tissue & cell》1993,25(5):743-749
With the onset of spermiogenesis, many changes become apparent in the crayfish spermatid during its transition to mature sperm. The nucleus passes through a series of stages, excess cytoplasm is removed, the acrosome develops, and nuclear arms form and become wrapped around the sperm prior to its enclosure in a capsule. Changes are also apparent in the Sertoli cells surrounding the germ cells in the crayfish testis. The amount of cytoplasm of individual Sertoli cells appears to increase in quantity and changes in the intracellular organelles become apparent. As spermiogenesis commences, the cytoplasm along one side of Sertoli cells adjacent to the spermatids is devoid of obvious organelles. Numerous finger/like projections of Sertoli cytoplasm penetrate into the spermatid and appear to isolate portions of the sperm cytoplasm. During later stages of spermiogenesis, several vesicles in the Sertoli cells which appear to contain droplets of this isolated sperm cytoplasm. appear to undergo lytic changes, As the amount of cytoplasm of the spermatid is reduced, contact is maintained between the spermatid and Sertoli cell in the area of the acrosome. The nuclear arms of the sperm extend into the Sertoli cell during their formation and later become wrapped around the acrosomal area of the sperm. At this time, very little space exists between the Sertoli cell and its many sperm. Large vesicles of electron dense material appear to be released by the Sertoli cells into the space between the sperm and Sertoli cell. This material completely surrounds the sperm and forms the sperm capsule. Spermiation involves the gradual dissolution of the points of contact between the sperm capsule and the Sertoli cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号