首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vacuolar H+-pyrophosphatase (V-PPase) is an electrogenic H+ pump, which was found in the plant vacuolar membrane. Two cDNA clones (OVP1 and OVP2) encoding the V-PPase were isolated from cultured rice (Oryza sativa L.) cells and subsequently sequenced. The sequence analysis has revealed thatOVP1 contains 2316 nucleotides of open reading frame (ORF) and 362 nucleotides of the 3-untranslated region, whereasOVP2 comprises 2304 nucleotides of ORF and 312 nucleotides of the 3-untranslated region. The nucleotide sequences of ORF ofOVP1 andOVP2 are 80.7% identical, and their 5- and 3-untranslated regions have 39.4% and 48.4% identity, respectively. The polypeptides encoded by the ORF ofOVP1 andOVP2 contain 771 and 767 amino acids, respectively, and the sequences of the OVP proteins are very similar to those of other V-PPases, which are shown to have 85–91% homology. Chromosomal mapping by RFLP techniques demonstrates that OVP1 and OVP2 are isoforms encoded by different genes. BothOVP1 andOVP2 are mapped on the same chromosome (chromosome 6) to a distance of ca. 90 cM. Northern analysis indicates that theOVP1 andOVP2 are also expressed in intact rice plants andOVP2 shows higher expression in the calli than the roots and shoots, compared toOVP1. These results show that at least two genes encoding the V-PPases are present in rice genome and their expressions are probably regulated in a different manner.  相似文献   

2.
Vacuolar H(+)-translocating inorganic pyrophosphatase (V-PPase; EC 3.6.1.1) is a homodimeric proton-translocase; it contains a single type of polypeptide of approximately 81kDa. A line of evidence demonstrated that the carboxyl terminus of V-PPase is relatively conserved in various plant V-PPases and presumably locates in the vicinity of the catalytic site. In this study, we attempt to identify the roles of the C-terminus of V-PPase by generating a series of C-terminal deletion mutants over-expressed in Saccharomyces cerevisiae, and determining their enzymatic and proton translocating reactions. Our results showed that the deletion mutation at last 5 amino acids in the C-terminus (DeltaC5) induced a dramatic decline in enzymatic activity, proton translocation, and coupling efficiency of V-PPase; but the mutant lacking last 10 amino acids (DeltaC10) retained about 60-70% of the enzymatic activity of wild-type. Truncation of the C-terminus by more than 10 amino acids completely abolished the enzymatic activity and proton translocation of V-PPase. Furthermore, the DeltaC10 mutant displayed a shift in T(1/2) (pretreatment temperature at which half enzymatic activity is observed) but not the optimal pH for PP(i) hydrolytic activity. The deletion of the C-terminus substantially modified apparent K(+) binding constant, but exert no significant changes in the Na(+)-, F(-)-, and Ca(2+)-inhibition of the enzymatic activity of V-PPase. Taken together, we speculate that the C-terminus of V-PPase may play a crucial role in sustaining enzymatic activity and is likely involved in the K(+)-regulation of the enzyme in an indirect manner.  相似文献   

3.
Salt modulation of the tonoplast H+-pumping V-ATPase and H+-PPase was evaluated in hypocotyls ofVigna unguiculata seedlings after 3 and 7 days of treatment. In 3-day-old seedlings, treatment with 100 mmol/L NaCl decreased the proton transport and hydrolytic activities of both the V-ATPase and the H+-PPase. After 7 days, the proton transport and hydrolysis activities of the V-ATPase were higher, while the H+-PPase activities were lower in seedlings. Western blot analysis of A- and B-subunits of V-ATPase revealed that the protein content of the two subunits varied in parallel with their activities, i.e. to a higher activity corresponded a higher protein content of the subunits and vice versa. Contrarily, Western blot analysis of H+-PPase levels failed to show any correlation with PPase activity, suggesting a partial enzyme inactivation. The results indicate that salt stress induces V-ATPase expression inV. unguiculata with concomitant enhancement of its activity as a homeostatic mechanism to cope with salt stress. Under the same conditions PPase is inhibited.  相似文献   

4.
Plant vacuoles were isolated from cotyledons of germinatingAcacia mangium seeds, which had been treated with or withoutcolchicine, to measure vacuolar membrane pyrophosphate (PPi)- andATP-dependent H+ transport activities, and enzymaticactivities of H+-pyrophosphatase(H+-PPase) and H+-ATPase. Innon-colchicine-treated seeds, activities of the two enzymes increasedrapidly after seed germination to almost a maximal level on the seventhday. A linear function relationship exists in magnitude between PPi- orATP-dependent H+transport activity and its correspondingenzymatic activity. The former regression equation is: PPi-dependentH+ transport activity(%A.min–1.g–1) =–0.039 + H+-PPase activity(units.mg–1) × 1.574, the latter is:ATP-dependent H+ transport activity(%A.min–1.g–1) =–0.003 + H+-ATPase activity(units.mg–1) × 0.549. In colchicine-treatedseeds, activities of the two enzymes increased very slowly during 8 daysof germination and the relationship to their respectiveH+ transport activities was not in agreement with theabove-mentioned regression equations. PPi- and ATP-dependentH+ transport activities were lower than thecorresponding values calculated from H+-PPase activityand H+-ATPase activity according to the two regressionequations, respectively. However, when sucrose, indole butyric acid(IBA), or 6-benzyladenine (6-BA) were applied exogenously to the seedsfollowing colchicine treatment for 3 days, activities ofH+-PPase, H+-ATPase, PPi- andATP-dependent H+ transport in the 6-day-old seedlingsall increased. By statistical analysis, it was concluded that colchicineinhibits cotyledon vacuolar membrane H+-PPase,H+-ATPase activities, PPi- and ATP-dependentH+ transport activities during seed germination andearly seedling growth of Acacia mangium. The inhibitory effectsof colchicine could be overcome by IBA, 6-BA and sucrose to varyingdegrees.  相似文献   

5.
6.
Qiao WH  Zhao XY  Li W  Luo Y  Zhang XS 《Plant cell reports》2007,26(9):1663-1672
Agropyron elongatum, a species in grass family, has a strong tolerance to salt stress. To study the molecular mechanism of Agropyron elongatum in salt tolerance, we isolated a homolog of Na+/H+ antiporters from the root tissues of Agropyron plants. Sequence analysis revealed that this gene encodes a putative vacuolar Na+/H+ antiporter and was designated as AeNHX1. The AeNHX1–GFP fusion protein was clearly targeted to the vacuolar membrane in a transient transfection assay. Northern analysis indicated that AeNHX1 was expressed in a root-specific manner. Expression of AeNHX1 in yeast Na+/H+ antiporter mutants showed function complementation. Further, overexpression of AeNHX1 promoted salt tolerance of Arabidopsis plants, and improved osmotic adjustment and photosynthesis which might be responsible for normal development of transgenic plants under salt stress. Similarly, AeNHX1 also functioned in transgenic Festuca plants. The results suggest that this gene might function in the roots of Agropyron plants, and its expression is involved in the improvement of salt tolerance.  相似文献   

7.
8.
The malaria parasite is a unicellular protozoan parasite of the genus Plasmodium that causes one of the most serious infectious diseases for human beings. Like other protozoa, the malaria parasite possesses acidic organelles, which may play an essential role(s) in energy acquisition, resistance to antimalarial agents, and vesicular trafficking. Recent evidence has indicated that two types of vacuolar proton pumps, vacuolar H+-ATPase and vacuolar H+-pyrophosphatase, are responsible for their acidification. In this mini-review, we discuss the recent progress on vacuolar proton pumps in the malaria parasite.  相似文献   

9.
The yeast vacuolar proton-translocating ATPase is a member of the third class of H+-pumping ATPase. A family of this type of H+-ATPase is now known to be ubiquitously distributed in eukaryotic vacuo-lysosomal organelles and archaebacteria. NineVMA genes that are indispensable for expression of the enzyme activity have been cloned and characterized in the yeastSaccharomyces cerevisiae. This review summarizes currently available information on theVMA genes and cell biological functions of theVMA gene products.  相似文献   

10.
Roots undergo multiple changes as a consequence of arbuscular mycorrhizal (AM) interactions. One of the major alterations expected is the induction of membrane transport systems, including proton pumps. In this work, we investigated the changes in the activities of vacuolar and plasma membrane (PM) H(+) pumps from maize roots (Zea mays L.) in response to colonization by two species of AM fungi, Gigaspora margarita and Glomus clarum. Both the vacuolar and PM H(+)-ATPase activities were inhibited, while a concomitant strong stimulation of the vacuolar H(+)-PPase was found in the early stages of root colonization by G. clarum (30 days after inoculation), localized in the younger root regions. In contrast, roots colonized by G. margarita exhibited only stimulation of these enzymatic activities, suggesting a species-specific phenomenon. However, when the root surface H(+) effluxes were recorded using a noninvasive vibrating probe technique, a striking activation of the PM H(+)-ATPases was revealed specifically in the elongation zone of roots colonized with G. clarum. The data provide evidences for a coordinated regulation of the H(+) pumps, which depicts a mechanism underlying an activation of the root H(+)-PPase activity as an adaptative response to the energetic changes faced by the host root during the early stages of the AM interaction.  相似文献   

11.
Summary We have examined the effect of second messengers on ATP-driven H+ transport in an H+ ATPase-bearing endosomal fraction isolated from rabbit renal cortex. cAMP (0.1mm) had no effect on H+ transport. Acridine orange fluorescence in the presence of 0.5mm Ca2+ (+1mm EGTA) was 19±6% of control. Inhibition of ATP-driven H+ transport by Ca2+ was concentration dependent; 0.25 and 0.5mm Ca2+ (+1mm EGTA) inhibited acridine orange fluorescence by 50 and 80%, respectively. Ca2+ also produced a concentration-dependent increase in the rate of pH-gradient dissipation. Ca2+ did not affect ATP hydrolysis. ATP-dependent Br uptake was virtually unchanged in the presence of 0.5mm Ca2+ (+1mm EGTA). These vesicles were also shown to transport Ca2+ in an ATP-dependent mode. Inositol 1, 4, 5-trisphosphate had no effect on ATP-dependent Ca2+ uptake. These results are consistent with the co-existence of an H+ ATPase and an H+/Ca2+ exchanger on these endosomes, the latter transport system using the H+ gradient to energize Ca2+ uptake. Attempts to demonstrate an H+/Ca2+ antiporter in the absence of ATP have been unsuccessful. Yet, when a pH gradient was established by preincubation with ATP and residual ATP was subsequently removed by hexokinase + glucose, stimulation of Ca2+ uptake could be demonstrated. A Ca2+-dependent increase in H+ permeability and an ATP-dependent Ca2+ uptake might have important implications for the regulation of vacuolar H+ ATPase activity as well as the homeostasis of cytosolic Ca2+ concentration.  相似文献   

12.
We examined the function of a highly conserved Histidine rich sequence ofamino acids found in the carboxyl-terminal of the Na+/H+exchanger (NHE1). A fusion protein containing the sequenceHYGHHH (540–545) and the balance of the carboxyl terminalof the protein did not bind calcium but bound to an immobilizedmetal affinity column and could be used to partially purify theexchanger protein. Mutation of the sequence to either HYGAAA orHYGRRR did not affect activity of the intact protein. Mutationto HHHHHH did not affect proton activation of the Na+/H+exchanger or localization but caused a decreased maximal velocitysuggesting that this conserved sequence is important in maximalactivity of the Na+/H+ exchanger.  相似文献   

13.
Mimura H  Nakanishi Y  Maeshima M 《FEBS letters》2005,579(17):3625-3631
Redox control of disulfide-bond formation in the H+-pyrophosphatase of Streptomyces coelicolor was investigated using cysteine mutants expressed in Escherichia coli. The wild-type enzyme, but not a cysteine-less mutant, was reversibly inactivated by oxidation. To determine the residues involved in oxidative inactivation, different cysteine residues were replaced. Analysis with a cysteine-modifying reagent revealed that the formation of a disulfide bond between cysteines 253 and 621 was responsible for enzyme inactivation. This result suggests that residues in different cytoplasmic loops are close to each other in the tertiary structure. Both cysteine residues are conserved in K+-independent (type II) H+-pyrophosphatases.  相似文献   

14.
Salt stress is one of the most serious factors limiting the productivity of agricultural crops. Increasing evidence has demonstrated that vacuolar Na+/H+ antiporters play a crucial role in plant salt tolerance. In the present study, we expressed the Suaeda salsa vacuolar Na+/H+ antiporter SsNHX1 in transgenic rice to investigate whether this can increase the salt tolerance of rice, and to study how overexpression of this gene affected other salt-tolerant mechanisms. It was found that transgenic rice plants showed markedly enhanced tolerance to salt stress and to water deprivation compared with non-transgenic controls upon salt stress imposition under outdoor conditions. Measurements of ion levels indicated that K+, Ca2+ and Mg2+ contents were all higher in transgenic plants than in non-transformed controls. Furthermore, shoot V-ATPase hydrolytic activity was dramatically increased in transgenics compared to that of non-transformed controls under salt stress conditions. Physiological analysis also showed that the photosynthetic activity of the transformed plants was higher whereas the same plants had reduced reactive oxygen species generation. In addition, the soluble sugar content increased in the transgenics compared with that in non-transgenics. These results imply that up-regulation of a vacuolar Na+/H+ antiporter gene in transgenic rice might cause pleiotropic up-regulation of other salt-resistance-related mechanisms to improve salt tolerance.Fengyun Zhao and Zenglan Wang contributed equally to this work.  相似文献   

15.
Recently, two distinct cDNA clones encoding the catalytic subunit of the vacuolar H+-ATPase (V-ATPase) were isolated from the allotetraploid cotton species Gossypium hirsutum L. cv Acala SJ-2 (Wilkins 1992, 1993). Differences in the nucleotide sequence of these clones were used as molecular markers to explore the organization and structure of the V-ATPase catalytic subunit genes in the A and D genomes of diploid and allotetraploid cotton species. Nucleotide sequencing of polymerase chain reaction (PCR) products amplified from G. arboreum (A2, 2n=26), G. raimondii (D5, 2n=26), and G. hirsutum cv Acala SJ-2 [(AD)1, 2n=4x=52] revealed a V-ATPase catalytic subunit organization more complex than indicated hitherto in any species, including higher plants. In the genus Gossypium, the V-ATPase catalytic subunit genes are organized as a superfamily comprising two diverse but closely related multigene families, designated as vat69A and vat69B, present in both diploid and allotetraploid species. As expected, each vat69 subfamily is correspondingly more complex in the allotetraploid species due to the presence of both A and D alloalleles. Because of this, about one-half of the complex organization of V-ATPase catalytic subunit genes predates polyploidization and speciation of New World tetraploid species. Comparison of plant and fungal V-ATPase catalytic subunit gene structure indicates that introns accrued in the plant homologs following the bifurcation of plant and fungi but prior to the gene duplication event that gave rise to the vat69A and vat69B genes approximately 45 million years ago. The structural complexity of plant V-ATPase catalytic subunit genes is highly conserved, indicating the presence of at least ten introns dispersed throughout the coding region.  相似文献   

16.
The vacuolar H+-pyrophosphatase (V-PPase) is an electrogenic H+ pump localized in the plant vacuolar membrane. V-PPase from many species has been characterized previously and the corresponding genes/cDNAs have been cloned. Cloning of the V-PPase genes from many plant species has revealed conserved motifs that may correspond to catalytic sites. The completion of the entire DNA sequence of Oryza sativa (430 Mb) presented an opportunity to study the structure and function of V-PPase proteins, and also to identify new members of this family in Oryza sativa. Our analysis identified three novel V-PPase proteins in the Oryza sativa genome that contain functional domains typical of V-PPase. We have designated them as OVP3 to OVP5. The new predicted OVPs have chromosomal locations different from previously characterized V-PPases (OVP1 and OVP2) located on chromosome 6. They all contain three characteristic motifs of V-PPase and also a conserved motif [DE]YYTS, specific to type I V-PPases and involved in coupling PPi hydrolysis to H+ translocation.  相似文献   

17.
Agriculture productivity is severely affected by soil salinity. One possible mechanism by which plants could survive salt stress is to compartmentalize sodium ions away from the cytosol. In the present work, transgenic buckwheat plants overexpressing AtNHX1, a vacuolar Na+/H+ antiporter gene from Arabidopsis thaliana, were regenerated after transformation with Agrobacterium tumefaciens. These plants were able to grow, flower and accumulate more rutin in the presence of 200 mmol/l sodium chloride. Moreover, the content of important nutrients in buckwheat was not affected by the high salinity of the soil. These results demonstrated the potential value of these transgenic plants for agriculture use in saline soil.  相似文献   

18.
19.
Vacuolar H+-ATPases (V-ATPases) are large, multisubunit proton pumps that acidify the lumen of organelles in virtually every eukaryotic cell and in specialized acid-secreting animal cells, the enzyme pumps protons into the extracellular space. In higher organisms, most of the subunits are expressed as multiple isoforms, with some enriched in specific compartments or tissues and others expressed ubiquitously. In mammals, subunit a is expressed as four isoforms (a1-4) that target the enzyme to distinct biological membranes. Mutations in a isoforms are known to give rise to tissue-specific disease, and some a isoforms are upregulated and mislocalized to the plasma membrane in invasive cancers. However, isoform complexity and low abundance greatly complicate purification of active human V-ATPase, a prerequisite for developing isoform-specific therapeutics. Here, we report the purification of an active human V-ATPase in native lipid nanodiscs from a cell line stably expressing affinity-tagged a isoform 4 (a4). We find that exogenous expression of this single subunit in HEK293F cells permits assembly of a functional V-ATPase by incorporation of endogenous subunits. The ATPase activity of the preparation is >95% sensitive to concanamycin A, indicating that the lipid nanodisc-reconstituted enzyme is functionally coupled. Moreover, this strategy permits purification of the enzyme’s isolated membrane subcomplex together with biosynthetic assembly factors coiled-coil domain–containing protein 115, transmembrane protein 199, and vacuolar H+-ATPase assembly integral membrane protein 21. Our work thus lays the groundwork for biochemical characterization of active human V-ATPase in an a subunit isoform-specific manner and establishes a platform for the study of the assembly and regulation of the human holoenzyme.  相似文献   

20.
Summary Exposure of porcine renal brush-border membrane vesicles to 1.2% cholate and subsequent detergent removal by dialysis reorients almost all N-ethylmaleimide (NEM)-sensitive ATPases from the vesicle inside to the outside. ATP addition to cholate-pretreated, but not to intact, vesicles causes H+ uptake as visualized by the pH indicator, acridine organge. The reoriented H+-pump is electrogenic because permeant extravesicular anions or intravesicular K+ plus valinomycin enhance H+ transport. ATP stimulates H+ uptake with an apparentK m of 93 m. Support of H+ uptake andP i liberation by ATP>GTPITP> UTP indicates a preference for ATP and utilization of other nucleotides at lower efficiency. ADP is a potent, competitive inhibitor of ATP-driven H+ uptake,(K i , 24 m). Mg2+ and Mn2– support ATP-driven H+ uptake, but Ca2+, Ba2+ and Zn2+ do not. Imm Zn2+ inhibits MgATP-driven H+ transport completely. NEM-sensitiveP i liberation is stimulated by Mg2+ and Mg2– and, unlike H+ uptake, also by Ca2+ suggesting Ca2+-dependent ATP hydrolysis unrelated to H+ transport. The inside-out oriented H+-pump is relatively insensitive toward oligomycin, azide, N,N-dicyclohexylcarbodiimide (DCCD) and vanadate, but efficiently inhibited by NEM (apparentK i , 0.77 m), and 4-chloro-7-nitro-benzoxa-1,3-diazole (NBD-Cl; apparentK i , 0.39 m). Taken together, the H+-ATPase of proximal tubular brush-border membranes exhibits characteristics very similar to those of vacuolar type (V-type) H+-ATPases. Hence,V-type H+-ATPases occur not only in intracellular organelles but also in specialized plasma membrane areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号