首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of a single dose of doxorubicin (DOX) (7.5 mg/kg, i.v.) produces cardiotoxicity, manifested biochemically by significant decrease in blood glutathione (GSH) and tissue GSH along with elevated levels of serum lactate dehydrogenase (LDH) and serum creatine phosphokinase (CPK). In addition, cardiotoxicity was further confirmed by significant increase in lipid peroxides expressed as malondialdehyde (MDA, secondary indicator of lipid peroxidation), tissue catalase and tissue superoxide dismutase (SOD). Administration ofA. vera gel (100 and 200 mg/kg) orally for 10 days produced a significant protection against cardiotoxicity induced by DOX evidenced by significant reductions in serum LDH, serum CPK, cardiac lipid peroxides, tissue catalase and tissue SOD along with increased levels of blood and tissue GSH. The results revealed that A. vera gel produced a dose dependent protection against DOX induced cardiotoxiaty.  相似文献   

2.
The higher incidence of cardiotoxicity of doxorubicin (DOX)/paclitaxel (PTX) combination compared with DOX alone remains to be a major obstacle against effective chemotherapeutic treatment. We investigated the effect of sequence and time interval between administration of both drugs on the severity of cardiotoxicity of the combination. Male Wistar rats were divided into seven groups. DOX was administered intraperitoneally (i.p.) at a single dose of 5 mg x kg(-1) every other 2 days, 2 doses per week for a total cumulative dose of 20 mg x kg(-1). PTX was administered by an i.p. route at a dose of 20 mg x kg(-1) every other 2 days. Both drugs were injected either alone or sequentially in combination. In one case, DOX preceded PTX by 30 min and 24 h and in the other case, PTX preceded DOX by 30 min and 24 h. Cardiotoxicity was evaluated by both biochemical and histopathological examination, 48 h after the last DOX dose. DOX-induced cardiotoxicity was manifested by abnormal biochemical changes including marked increases in serum creatine phosphokinase isoenzyme (CK-MB), lactate dehydrogenase (LDH), glutathione peroxidase (GSH-Px), and aspartate aminotransferase (AST) activity levels. Myocardial tissue from DOX-treated rats showed significant increases in malondialdehyde (MDA) production and total nitrate/nitrite (NOx) levels, parallel with depletion of "endogenous antioxidant reserve," including GSH contents and GSH-Px activity level. PTX treatment produced significant changes in the biochemical parameters measured by a lower magnitude than those changes produced by DOX alone. Combination of both drugs resulted in aggravation of DOX-induced cardiotoxicity regardless the sequence and time interval between administration of either drug. Administration of PTX 30 min and 24 h after DOX treatment showed exaggeration of combination-induced cardiotoxicity compared with the reverse sequence. This exacerbation was manifested by much more pronounced changes in serum and cardiac tissue parameters measured. Histopathological examination of ventricles of rat's heart revealed that DOX treatment produced myo-cytolysis and myocardial necrosis. Administration of PTX following DOX treatment showed extensive myocardial necrosis compared with those rats treated with either DOX alone or the reverse sequence of administration. Moreover, rats treated with PTX 24 h after DOX treatment showed exaggeration of the combination-induced cardiotoxicity. In conclusion, PTX might synergistically aggravate DOX-induced cardiotoxicity. The effect might be much more pronounced with those rats treated with PTX 24 h after DOX treatment.  相似文献   

3.
The effect of aminoguanidine (AG) on nephrotoxicity induced by cisplatin (CDDP) was investigated. A single dose of CDDP (7.5 mg/kg i.p.) induced nephrotoxicity, manifested biochemically by a significant elevation in serum urea, creatinine and a severe decrease in serum albumin. Moreover, marked increases in kidney weight, urine volume and urinary excretion of albumin were observed. Nephrotoxicity was further confirmed by a significant decrease in glutathione-S-transferase (GST, E.C. 2.5.1.18), glutathione peroxidase (GSH-Px, E.C. 1.11.1.9) and catalase (E.C. 1.11.1.6) and a significant increase in lipid peroxides measured as malondialdhyde (MDA) in kidney homogenates. Administration of AG (100 mg/kg per day p.o.) in drinking water 5 days before and 5 days after CDDP injection produced a significant protection against nephrotoxicity induced by CDDP. The amelioration of nephrotoxicity was evidenced by significant reductions in serum urea and creatinine concentrations. In addition, AG tended to normalize decreased levels of serum albumin. Urine volume, urinary excretions of albumin and GST and kidney weight were significantly decreased. Moreover, AG prevented the rise of MDA and the reduction of GST and GSH-Px activities in the kidney. These results suggest that AG has a protective effect on nephrotoxicity induced by CDDP and it may therefore improve the therapeutic index of CDDP.  相似文献   

4.
Doxorubicin (DOX) is a broad-spectrum anthracycline antibiotic that has cardiotoxicity as a major side effect. One mechanism of this toxicity is believed to involve the reactive oxygen radical species (ROS); these agents likely account for the pathophysiology of DOX-induced cardiomyopathy. Aminoguanidine (AG) is an effective antioxidant and free radical scavenger which has long been known to protect against ROS formation. We investigated the effects of AG on DOX-induced changes in thiobarbituric acid reactive substances (TBARS) and reduced glutathione (GSH) content. The rats were divided into four groups:1) Control; 2) DOX group; injected intraperitoneally (i.p.) with DOX 20 mg/kg in a single dose 3) AG-treated group; injected i.p. in single dose of 20 mg/kg DOX plus 100 mg/kg AG 1 h before the DOX for 3 days, 4) AG group; injected i.p. with AG 100 mg/kg for 3 days. DOX administration to control rats increased TBARS and decreased GSH levels. AG administration before DOX injection caused significant decrease in TBARS and increase in GSH levels in the heart tissue when compared with DOX only. Morphological changes, including severe myocardial fibrosis and inflammatory cell infiltration were clearly observed in the DOX-treated heart. AG reversed the DOX-induced heart damage. Therefore AG could protect the heart tissue against free radical injury. The application of AG during cancer chemotherapy may attenuate tissue damage and improve the therapeutic index of DOX.  相似文献   

5.
The effects of Nomega-nitro-L-arginine methylester (L-NAME) and L-arginine on cardiotoxicity that is induced by doxorubicin (Dox) were investigated. A single dose of Dox 15 mg/kg i.p. induced cardiotoxicity, manifested biochemically by a significant elevation of serum creatine phosphokinase (CPK) activity [EC 2.7.3.2]. Moreover, cardiotoxicity was further confirmed by a significant increase in lipid peroxides, measured as malon-di-aldehyde (MDA) in cardiac tissue homogenates. The administration of L-NAME 4 mg/kg/d p.o. in drinking water 5 days before and 3 days after the Dox injection significantly ameliorated the cardiotoxic effects of Dox, judged by the improvement in both serum CPK activity and lipid peroxides in the cardiac tissue homogenates. On the other hand, the administration of L-arginine 70 mg/kg/d p.o. did not protect the cardiac tissues against the toxicity that was induced by the Dox treatment. The findings of this study suggest that L-NAME can attenuate the cardiac dysfunction that is produced by the Dox treatment via the mechanism(s), which may involve the inhibition of the nitric oxide (NO) formation. L-NAME may, therefore, be a beneficial remedy for cardiotoxicity that is induced by Dox and can then be used to improve the therapeutic index of Dox.  相似文献   

6.
Azathioprine (AZA) is an important drug used in the therapy of autoimmune system disorders. It induces hepatotoxicity that restricts its use. The rationale behind this study was the proven efficacy of N-acetylcysteine (NAC; a replenisher of sulfhydryls) and reports on the antioxidant potential of aminoguanidine (AG; an iNOS inhibitor), that might be useful to protect against the toxic implications of AZA. AG (100 mg/kg; i.p.) or NAC (100 mg/kg; i.p.) were administered to the Wistar male rats for 7 days and after that AZA (15 mg/kg, i.p.) was given as a single dose. This caused an increase in the activity of hepatic aminotransferases (AST and ALT) in the serum 24 h after AZA treatment. AZA (7.5 or 15 mg/kg, i.p.) also caused an increase in rat liver lipid peroxides and a lowering of reduced glutathione (GSH) contents. In the other part of experiment, protective effects of AG and NAC were observed on AZA induced hepatotoxicity. NAC significantly protected against the toxic effects produced by AZA. Pretreatment with NAC prevented any change in the activities of both the aminotransferases after AZA. This pretreatment also resulted in a significant decline in the contents of lipid peroxides and a significant elevation in GSH level was evident after AZA treatment. In the group with AG pretreatment the activities of AST and ALT did not increase significantly after AZA when compared to control. However, the lipid peroxides and GSH levels did not have any significant difference when compared to AZA group. These observations also indicate that the improvement in the GSH levels by NAC is the most significant protective mechanism rather than any other mechanistic profile. The protective effect of AG against the enzyme leakage seems to be through the liver cell membrane permeability restoration and is independent of any effects on liver GSH contents.  相似文献   

7.
Doxorubicin (DOX) is a potent antitumor antibiotic drug known to cause severe cardiac toxicity. Moreover, its adverse effects were found to be extended to the cerebral tissue. Several mechanisms for this toxicity have been ascribed. Currently, one of the most accepted mechanisms is through free radicals; however, the exact role of nitric oxide (NO) is still unclear. Accordingly, a NO-synthase inhibitor with some antioxidant property, aminoguanidine (AG), was selected to examine its potential protective effect against DOX-induced toxicity. Male Wistar albino rats (150-200 g) were allocated into a normal control group, DOX-induced toxicity group, and DOX + AG-treated group. DOX was injected i.p. at a dose of 10 mg/kg divided into four equal injections over a period of 2 weeks. AG was injected i.p. at a dose of 100 mg/kg 1 h before each DOX injection. The animals were sacrificed 24 h after the last DOX injection and the following parameters were measured: serum lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) activities, cardiac and cerebral contents of malondialdehyde (MDA), conjugated diene (CD), glutathione (GSH), NO, and cytosolic calcium, as well as superoxide dismutase (SOD) and glutathione peroxidase (GSHP(X)) activities. Cardiotoxicity was manifested by a marked increase in serum LDH and CPK in addition to the sharp increase in MDA reaching eightfolds the basal level. This was accompanied by significant increase in CD, NO, cytosolic calcium, SOD, and GSHP(X) content/activity by 69, 85, 76, 125, and 41% respectively as compared to normal control. On the other hand, GSH was significantly depressed. In brain, only significant increase in MDA and GSHP(X) and decrease in GSH were obtained but to a lesser extent than the cardiac tissue. AG treatment failed to prevent the excessive release of cardiac enzymes; however, it alleviated the adverse effects of DOX in heart. AG administration resulted in marked decrease in the elevated levels of MDA, NO, SOD, and GSHP(X), however, MDA level was still pathological. The altered parameters in brain were restored by AG. It is concluded that, AG could not provide complete protection against DOX-induced toxicity. Therefore, it is recommended that, maintenance of the endogenous antioxidant, GSH, and regulation of calcium homeostasis must be considered, rather than NO formation, to guard against DOX-induced toxicity.  相似文献   

8.
Grape seed proanthocyanidins (GSPE) and ginkgo biloba extract (EGb761) are considered to have protective effects against several diseases. The cardiotoxicity of doxorubicin (DOX) has been reported to be associated with oxidative damage. This study was conducted to evaluate the cardioprotective effects of GSPE and EGb761 against DOX‐induced heart injury in rats. DOX was administered as a single i.p. dose (20 mg kg–1) to adult male rats. DOX‐intoxicated rats were orally administered GSPE (200 mg kg–1 day–1) or EGb761 (100 mg kg–1 day–1) for 15 consecutive days, starting 10 days prior DOX injection. DOX‐induced cardiotoxicity was evidenced by a significant increase in serum aspartate transaminase (AST), creatine phosphokinase isoenzyme (CK‐MB), lactate dehydrogenase (LDH), total cholesterol (TC) and triglyceride (TG) activities and levels. Increased oxidative damage was expressed by the depletion of cardiac reduced glutathione (GSH), elevation of cardiac total antioxidant (TAO) level and accumulation of the lipid peroxidation product, malondialdehyde (MDA). Significant rises in cardiac tumour necrosis factor‐alpha (TNF‐α) and caspase‐3 levels were noticed in DOX‐intoxicated rats. These changes were ameliorated in the GSPE and EGb761‐treated groups. Histopathological analysis confirmed the cardioprotective effects of GSPE and EGb761. In conclusion, GSPE and EGb761 mediate their protective effect against DOX‐induced cardiac injury through antioxidant, anti‐inflammatory and antiapoptotic mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The aim of this study was to assess the possible protective effects of thymol and carvacrol (CAR) against doxorubicin (DOX)‐induced cardiotoxicity. A single dose of DOX (10 mg/kg i.v.) injected to male rats revealed significant increases in serum lactate dehydrogenase, creatine kinase, creatine kinase isoenzyme‐MB, aspartate transaminase, tumor necrosis factor‐alpha, and cardiac troponin levels. It also increased heart contents of malondialdehyde and caspase‐3 accompanied by a significant reduction in heart content of reduced glutathione as well as catalase and superoxide dismutase activity as compared with the control group. In contrast, administration of thymol (20 mg/kg p.o.) and/or CAR (25 mg/kg p.o.) for 14 days before DOX administration and for 2 days after DOX injection ameliorated the heart function and oxidative stress parameters. Summarily, thymol was more cardioprotective than CAR. Moreover, a combination of thymol and CAR had a synergistic cardioprotective effect that might be attributed to antioxidant, anti‐inflammatory, and antiapoptotic activities.  相似文献   

10.
This study aimed to evaluate the protective effects of alpha lipoic acid (ALA) against doxorubicin (DOX)‐induced nephrotoxicity in rats. A single dose of DOX (7.5 mg/kg i.v.) induced nephrotoxicity evidenced by significant elevations in kidney weight, kidney/body weight ratio, serum urea, creatinine, tumor necrosis factor alpha, and renal contents of malondialdehyde, nitric oxide, cyclooxygenase‐2, and caspase‐3. Also, it causes significant reduction in final body weight, serum albumin, renal contents of reduced glutathione and superoxide dismutase activity. Histopathological changes in the kidney tissue confirmed the nephrotoxic effect. In contrast, pretreatment with ALA (50 mg/kg, orally) for 14 days before DOX and for 7 days after DOX administration mitigated renal toxicity evidenced by greater improvement in the examined oxidative stress, inflammation, and apoptosis parameters. In conclusion, ALA had promising protective effects against DOX‐induced nephrotoxicity that might be attributed to its antioxidant, anti‐inflammatory, and antiapoptoic activities.  相似文献   

11.
Acrylonitrile is a potent hepatotoxic, mutagen, and carcinogen. A role for free radical-mediated lipid peroxidation in the toxicity of acrylonitrile has been suggested. The present study was designed to assess the hepatoprotective effect of quercetin against acrylonitrile-induced hepatotoxicity in rats. Liver damage was induced by oral administration of acrylonitrile (50 mg/kg/day/5 weeks). Acrylonitrile produced a significant elevation of malondialdehyde (138.9%) with a marked decrease in reduced glutathione (72.4%), and enzymatic antioxidants; superoxide dismutase (81%), and glutathione peroxidase (53.2%) in the liver. Serum aspartate aminotransferase, alanine aminotransferases, direct bilirubin, and total bilirubin showed a significant increase in acrylonitrile alone treated rats (115.5%, 110.8%, 1006.8%, and 1000.8%, respectively). Pretreatment with quercetin (70 mg/kg/day/6 weeks) and its coadministration with acrylonitrile prevented acrylonitrile-induced alterations in hepatic lipid peroxides and enzymatic antioxidants as well as serum aminotransferases and bilirubin. Histopathological findings supported the biochemical results. We suggest that querectin possess hepatoprotective effect against acrylonitrile-induced hepatotoxicity through its antioxidant activity.  相似文献   

12.
It has been recently postulated from our laboratory that Arabic gum (AG) offers a protective effect in the kidney of rats against nephrotoxicity induced by gentamicin via inhibiting lipid peroxidation. It has also recently shown a powerful antioxidant effect through scavenging superoxide anions. In this study we utilized a rat model of cisplatin (CP)-induced nephrotoxicity to determine its peak time following (1, 2, 5, and 7 days) of a single CP (7.5 mg/kg, i.p.) injection. Also, a possible protective effect of cotreatment with AG (7.5 g/kg/day p.o.) on CP-induced nephrotoxicity was investigated. Biochemical as well as histological assessments were carried out. CP-induced nephrotoxicity was manifested by significant elevations of the functional parameters blood urea, serum creatinine, and kidney/body weight ratio. Maximum toxic effects of CP were observed 5 days after its injection, while it started after day 1 in the biochemical parameters, such as glutathione depletion in the kidney tissue with concomitant increases in lipid peroxides and platinum content. Additionally, severe necrosis and desquamation of tubular epithelial cells in renal cortex as well as interstitial nephritis were observed after 5 days in CP-treated animals. Five days after AG cotreatment with CP did not protect the kidney from the damaging effects of CP. However, it significantly reduced CP-induced lipid peroxidation. These findings suggest that lipid peroxidation is not the main cause of CP-induced nephrotoxicity but it is rather more dependent on other factors such as platinum disposition in renal interstitial tubules.  相似文献   

13.
The therapeutic usefulness of doxorubicin (Dox), an anthracycline antibiotic used as an anticancer agent, is limited by its cardiotoxicity. Dox-induced cardiotoxicity is mainly attributed to accumulation of reactive oxygen species and interaction of Dox with cellular iron metabolism. The present study investigated the effects of the iron chelator deferiprone (Def) against Dox-induced cardiotoxicity in rats. Dox (15?mg/kg) was injected intraperitoneally as a single dose, and Def (10?mg/kg) was administered orally for 10?days. Dox showed cardiotoxicity as evidenced by increased heart rate, elevated ST segment, prolonged QTc interval, and increased T wave amplitude. In addition, Dox enhanced aconitine cardiotoxicity by decreasing its dose, producing ventricular tachycardia. Administration of Def significantly attenuated Dox-induced electrocardiographic changes. Cardiotoxicity of Dox was confirmed biochemically by a significant elevation in serum creatine kinase-MB and lactate dehydrogenase activities as well as by myocardial malondialdehyde and reduced glutathione contents. Moreover, Dox caused a significant decrease in myocardial superoxide dismutase activity. Administration of Def significantly attenuated the biochemical changes. These results suggest that Def might be a potential cardioprotective agent against Dox-induced cardiotoxicity.  相似文献   

14.
This study aimed to assess the protective effect of hesperidin (HES) and rutin (RUT) against cisplatin‐induced nephrotoxicity in male rats. Cisplatin (5 mg/kg, intraperitoneal) caused significant increases in serum sodium, blood urea nitrogen, serum creatinine, total sodium and potassium excreted in urine, urine volume, and lipid peroxides measured as the malondialdehyde content of kidney, with significant decreases in serum total protein, creatinine clearance, reduced glutathione content of kidney, and kidney superoxide dismutase activity as compared with the control group. On the other hand, administration of HES (200 mg/kg, per oral [p.o.]) or RUT (30 mg/kg, p.o.) for 14 days with a single cisplatin dose on the tenth day ameliorated the cisplatin‐induced nephrotoxicity as indicated by the restoration of kidney function and oxidative stress biomarkers. Furthermore, the test drugs reduced the histopathological changes induced by cisplatin. In conclusion, HES and RUT showed protective effects against cisplatin‐induced nephrotoxicity.  相似文献   

15.
Effect of methanolic extract of fruits of P. longum (PLM) on the biochemical changes, tissue peroxidative damage and abnormal antioxidant levels in adriamycin (ADR) induced cardiotoxicity in Wistar rats was investigated. PLM was administered to Wistar albino rats in two different doses, by gastric gavage (250 mg/kg and 500 mg/kg) for 21 days followed by ip ADR (15 mg/kg) on 21st day. ADR administration showed significant decrease in the activities of marker enzymes aspartate transaminase, alanine transaminase, lactate dehydrogenase and creatine kinase in heart with a concomitant increase in their activities in serum. A significant increase in lipid peroxide levels in heart of ADR treated rats was also observed. Pretreatment with PLM ameliorated the effect of ADR on lipid peroxide formation and restored activities of marker enzymes. Activities of myocardial antioxidant enzymes like catalase, superoxide dismutase, glutathione peroxidase, glutathione reductase along with reduced glutathione were significantly lowered due to cardiotoxicity in rats administered with ADR. PLM pretreatment augmented these endogenous antioxidants. Histopathological studies of heart revealed degenerative changes and cellular infiltrations in rats administered with ADR and pretreatment with PLM reduced the intensity of such lesions. The results indicate that PLM administration offers significant protection against ADR induced oxidative stress and reduces the cardiotoxicity by virtue of its antioxidant activity.  相似文献   

16.
This study aimed to assess the protective effect of cinnamic acid (CA) and cinnamaldehyde (CD) against cisplatin‐induced nephrotoxicity. A single dose of cisplatin (5 mg/kg), injected intraperitoneally to male rats, caused significant increases in serum urea, creatinine levels, and lipid peroxides measured as the malondialdehyde content of kidney, with significant decreases in serum albumin, reduced glutathione, and the activity of antioxidant enzymes (catalase, superoxide dismutase, and glutathione peroxidase) of kidney as compared with the control group. On the other hand, administration of CA (50 mg/kg, p.o.) or CD (40 mg/kg, p.o.) for 7 days before cisplatin ameliorated the cisplatin‐induced nephrotoxicity as indicated by the restoration of kidney function and oxidative stress parameters. Furthermore, they reduced the histopathological changes induced by cisplatin. In conclusion, CA and CD showed protective effects against cisplatin‐induced nephrotoxicity where CD was more effective than CA; affects that might be attributed to their antioxidant activities.  相似文献   

17.
The effect of N-acetylcysteine (NAC) (Ig/kg body weight in saline for 7 days) against the damages induced by gamma ray was studied. Whole body exposure of rats to gamma-rays (3.5 Gy) caused increases in lipid peroxides (P < 0.01). Reduced glutathione (GSH) (P < 0.01) and total sulphydryl groups (TSH) (P < 0.05), were found to be increased probably to counteract the damages produced by the lipid peroxides. The plasma antioxidant vitamins E, C and A were reduced. The activities of antioxidant enzymes, superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) were enhanced, which might be to eliminate the superoxide radical and H2O2 and accompanied by a fall in glutathione-s-transferase (GST) and glutathione reductase (GR) activity. The excessive production of free radicals and lipid peroxides might have caused the leakage of cytosolic enzymes such as aminotransferases (AST and ALT), lactate dehydrogenase (LDH), creatine kinase (CK) and phosphatases. Membrane damage is quite evident from histological studies undertaken in the intestinal tissue, which is susceptible to radiation damage. Intragastric pretreatment of NAC (1g/kg body weight in saline for 7 days) prevented the radiation induced damage to an appreciable extent. From the results it may be concluded that NAC is effective in protecting from the damages caused by gamma-ray radiations and its prospects as an adjuvant to radiotherapy should be considered.  相似文献   

18.
The efficacy of doxorubicin (DOX) as an antitumor agent is greatly limited by the induction of cardiomyopathy, which results from mitochondrial dysfunction and iron-catalyzed oxidative stress in the cardiomyocyte. Metformin (MET) has been seen to have a protective effect against the oxidative stress induced by DOX in cardiomyocytes through its modulation of ferritin heavy chain (FHC), the main iron-storage protein. This study aimed to assess the involvement of FHC as a pivotal molecule in the mitochondrial protection offered by MET against DOX cardiotoxicity. The addition of DOX to adult mouse cardiomyocytes (HL-1 cell line) increased the cytosolic and mitochondrial free iron pools in a time-dependent manner. Simultaneously, DOX inhibited complex I activity and ATP generation and induced the loss of mitochondrial membrane potential. The mitochondrial dysfunction induced by DOX was associated with the release of cytochrome c to the cytosol, the activation of caspase 3, and DNA fragmentation. The loss of iron homeostasis, mitochondrial dysfunction, and apoptosis induced by DOX were prevented by treatment with MET 24 h before the addition of DOX. The involvement of FHC and NF-κB was determined through siRNA-mediated knockdown. Interestingly, the presilencing of FHC or NF-κB with specific siRNAs blocked the protective effect induced by MET against DOX cardiotoxicity. These findings were confirmed in isolated primary neonatal rat cardiomyocytes. In conclusion, these results deepen our knowledge of the protective action of MET against DOX-induced cardiotoxicity and suggest that therapeutic strategies based on FHC modulation could protect cardiomyocytes from the mitochondrial damage induced by DOX by restoring iron homeostasis.  相似文献   

19.
The present study was designed to evaluate the preventive effects of zingerone on circulatory lipid peroxides and nonenzymatic antioxidants in isoproterenol‐induced myocardial infarcted rats. Rats were pretreated with zingerone (6 mg/kg body weight) daily for a period of 14 days and were then induced myocardial infarction with isoproterenol (100 mg/kg body weight) on 15th and 16th day. Increased intensities of serum lactate dehydrogenase isoenzymes 1 and 2 bands enhanced plasma lipid peroxidation products and lowered nonenzymatic antioxidant system were noted in isoproterenol‐induced rats. Pretreatment with zingerone daily for 14 days revealed significant preventive effects on the electrophoretic and biochemical parameters evaluated in isoproterenol‐induced rats. Furthermore, the in vitro study confirmed the potent antioxidant activity of zingerone. The results of our study showed that zingerone protected the rat's heart against isoproterenol‐induced myocardial infarction by its antioxidant effect.  相似文献   

20.
Doxorubicin (DOX) exerts toxic effects in several organs particularly kidney. The present study aimed to assess the protective effect of proanthocyanidins (PAs) against DOX‐induced nephrotoxicity in rats. A single dose of DOX (7.5 mg/kg, i.v.) significantly increased kidney weight, kidney/body weight ratio, serum urea, creatinine, tumor necrosis factor alpha levels, and kidney contents of malondialdehyde, nitric oxide, cyclooxygenase‐2, and caspase‐3 activity with significant reduction in final body weight, serum albumin, kidney contents of reduced glutathione (GSH), and superoxide dismutase activity as compared with control group. In contrast, pretreatment with PAs (200 mg/kg, p.o.) for 14 days before DOX and for 7 days after DOX ameliorated kidney function and oxidative stress parameters. Histopathological evidence confirmed the protective effects of PAs from the tissue damage induced by DOX. In conclusion, PAs have a multi‐nephroprotective effect that might be attributed to its antioxidant, anti‐inflammatory, and antiapoptoic activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号