首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Acetaldehyde production in Saccharomyces cerevisiae wine yeasts   总被引:1,自引:0,他引:1  
Abstract Eighty-six strains of Saccharomyces cerevisiae were investigated for their ability to produce acetaldehyde in synthetic medium and in grape must. Acetaldehyde production did not differ significantly between the two media, ranging from a few mg/l to about 60 mg/l, and was found to be a strain characteristic. The fermentation temperature of 30°C considerably increased the acetaldehyde produced. This study allowed us to assign the strains to different phenotypes: low, medium and high acetaldehyde producers. The low and high phenotypes differed considerably also in the production of acetic acid, acetoin and higher alcohols and can be useful for studying acetaldehyde production in S. cerevisiae , both from the technological and genetic point of view.  相似文献   

2.
Higher alcohol and acetic acid production by apiculate wine yeasts   总被引:2,自引:0,他引:2  
P. ROMANO, G. SUZZI, G. COMI AND R. ZIRONI. 1992. Ninety-six strains of apiculate wine yeasts were investigated for their ability to produce higher alcohols and acetic acid in synthetic medium. Less isoamyl alcohol and more n -propanol and isobutanol were formed by Hanseniaspora guilliermondii than by Kloeckera apiculata. The latter produced twice as much acetic acid as H. guilliermondii. The production of higher alcohols and acetic acid was found to be a characteristic of individual strains and was statistically significant. In a multivariate analysis of higher alcohol production two main groupings were formed at 86%S, corresponding to the taxa H. guilliermondii and K. apiculata. Strains that produced low amounts (50 mg/1) of acetic acid, comparable with that of Saccharomyces cerevisiae, were found in both species of apiculate yeasts.  相似文献   

3.
A total of 37 strains of Kloeckera apiculata was isolated during the spontaneous fermentation of star fruit must. Each strain was differentiated from the others on the basis of its capacity to produce acetaldehyde, ethyl acetate, higher alcohols, acetoin and acetic acid. All the strains were characterized by the low production of higher alcohols and the high production of ethyl acetate, whereas consistent differences in the production of acetaldehyde, acetoin and acetic acid served to differentiate star fruit apiculate strains into six different phenotypes, present at different stages of the fermentation process. The metabolic strain diversity found can be interpreted as a natural consequence of environmental conditions, which influenced the frequency and selection of specific apiculate strains. From the biotechnological point of view the different metabolic biotypes represent an important source of strains for potential use as starter cultures for star fruit fermentation.  相似文献   

4.
Higher alcohol and acetoin production by Zygosaccharomyces wine yeasts   总被引:1,自引:1,他引:0  
Seventy strains of Zygosaccharomyces isolated from grape musts were investigated for their ability to produce higher alcohols and acetoin in synthetic medium and grape must. The Zygosaccharomyces strains produced generally low amounts of higher alcohols. Within this genus, Z. fermentati behaved differently from Z. bailii producing less isobutanol in synthetic medium and more amyl alcohols and isobutanol in grape must. Zygosaccharomyces fermentati did not form detectable amounts of acetoin in any conditions whereas Z. bailii produced it both in synthetic medium and in grape must. These strains were found to contribute to aroma and taste of wine.  相似文献   

5.
The production of aroma compounds during tequila fermentation using four native yeast strains isolated from agave juice was quantified at controlled (35 degrees C) and uncontrolled temperatures (room temperature) by gas chromatography (FID). Three of the four strains were identified as Saccharomyces cerevisiae (MTLI 1, MALI 1 and MGLI 1) and one as Kloeckera apiculata (MALI 2). Among the aroma compounds produced, acetaldehyde has the highest accumulation at the controlled temperature and before 50% of sugar was consumed. The S. cerevisiae strains produced ethyl acetate in almost the same quantity at a concentration of 5 mg/L and the K. apiculata produced six-times more (30 mg/L) than the S. cerevisiae strains, independent of the fermentation temperature. The rate and amount of 1-propanol, amyl alcohols and isobutanol production were affected by the type of yeast used. The K. apiculate strain produced 50% less of the higher alcohols than the Saccharomyces strains. The results obtained showed that indigenous isolated yeasts play an important role in the tequila flavor and suggest that mixtures of these yeasts may be used to produce tequila with a unique and desirable aroma.  相似文献   

6.
高温高浓发酵技术作为一项新兴的啤酒生产技术,它为啤酒生产带来诸多利益的同时,也存在着发酵结束后酵母絮凝性下降、高级醇生成量过高等系列问题。为提高高温高浓发酵条件下酿酒酵母的絮凝性同时降低高级醇的合成能力,首先构建了以酿酒酵母BAT2基因为整合位点过表达FLO5基因的菌株,重组菌株S6-BF的絮凝性达到67.67%,比出发菌株S6提高了29%,而高级醇生成量仅降低5.9%;进一步构建以BAT2基因为整合位点再次过表达FLO5基因的菌株,与出发菌株S6相比,重组菌株S6-BF2的絮凝性提高了63%,达到85.44%,高级醇生成量下降至159.58 mg/L,降低了9.0%;通过弱化线粒体支链氨基酸转氨酶(BAT1)的表达,高级醇的生成量得到进一步的降低,达到142.13 mg/L,比原始菌株S6降低了18.4%,同时重组菌株S6-BF2B1的絮凝性没有受到影响;风味物质的测定结果表明啤酒中醇酯比例较为合理。研究结果对工业啤酒酵母发酵后的沉降分离和提高啤酒风味品质有着重要的意义。  相似文献   

7.
A practical adaptation of the methylene blue reaction for hydrogen sulfide quantification was developed to perform microbial selection. Closed plate flasks containing a zinc-agar layer above the liquid microbial culture are proposed as a trap system where the H(2)S can be retained and then quantified by the methylene blue reaction. Using this quantitative method, the ability to produce H(2)S was studied in several cheese-ripening microorganisms. Our aim was to select strains that produce the highest quantities of H(2)S as the main product of L-cysteine catabolism. Thirty seven yeast and bacteria strains were cultivated with or without L-cysteine. The separation between the growth medium and the H(2)S trapping layer displayed good performance: all the studied strains grew efficiently and only negligible loss of H(2)S was observed during culturing. The strains displayed large differences in their H(2)S production capabilities: yeast strains were greater producers of H(2)S than bacteria with production strain-related in both cases. Furthermore, the relationship between H(2)S production and L-cysteine consumption was analyzed, which made it possible for us to select microorganisms with high capacity in L-cysteine degradation. The production of volatile sulfur compounds was also studied and the possible effect of culture pH and metabolic differences between strains are discussed.  相似文献   

8.
Streptococcus suis serotype 2 is a major pathogen found in the upper respiratory tract of swine. In this study, isolates of this bacterial species were tested for the production of bacteriocin-like inhibitory substances (BLIS). Of the 38 strains tested, four inhibited the growth of other S. suis isolates according to a deferred-antagonism plate assay. Interestingly, three of the strains were originally isolated from healthy carrier pigs and were considered nonvirulent. Three isolates (94-623, 90-1330, and AAH4) that produced BLIS in liquid broth were selected for further characterization. None of the inhibitory activities was related to the production of either organic acids or hydrogen peroxide. The BLIS produced by these strains were heat stable and proteinase K, pronase, and elastase sensitive but were trypsin and chymotrypsin resistant. They were stable at pH 2 and 12 and had molecular masses in the range of 14 to 30 kDa. Maximum production was observed during the mid-log phase. Following a curing procedure with novobiocin, only 90-1330 lost the ability to produce BLIS, suggesting that the BLIS might be plasmid encoded. Analysis of the inhibitory spectra revealed that the BLIS-producing strains also inhibited the growth of Actinobacillus minor, Actinobacillus porcinus, Enterococcus durans, Micrococcus luteus, Streptococcus agalactiae, Streptococcus dysgalactiae subsp. dysgalactiae, Streptococcus equi subsp. zooepidemicus, and S. dysgalactiae subsp. equisimilis. This study reports for the first time the ability of the swine pathogen S. suis serotype 2 to produce BLIS with the characteristics of classic bacteriocins. Further studies are required to investigate the possibility of using bacteriocin-producing strains to prevent swine infections caused by virulent strains of S. suis serotype 2.  相似文献   

9.
Chiral secondary alcohols are valuable intermediates for many important enantiopure pharmaceuticals and biologically active molecules. In this work, we studied asymmetric reduction of aromatic ketones to produce the corresponding chiral secondary alcohols using lactic acid bacteria (LAB) as new biocatalysts. Seven LAB strains were screened for their ability to reduce acetophenones to their corresponding alcohols. Among these strains, Lactobacillus paracasei BD101 was found to be the most successful at reducing the ketones to the corresponding alcohols. The reaction conditions were further systematically optimized for this strain and high enantioselectivity (99%) and very good yields were obtained. These secondary alcohols were further tested for their antimicrobial activities against important pathogens and significant levels of antimicrobial activities were observed although these activities were altered depending on the secondary alcohols as well as their enantiomeric properties. The current methodology demonstrates a promising and alternative green approach for the synthesis of chiral secondary alcohols of biological importance in a cheap, mild, and environmentally useful process.  相似文献   

10.
目的 分离健康女性阴道中的乳杆菌并鉴定其益生特性,为开发治疗妇科疾病的复方益生菌制剂提供新型菌株。方法 采集健康女性阴道分泌物并分离筛选乳杆菌,通过16S rDNA序列分析鉴定乳杆菌分离株,并对其产酸性能、产H2O2能力、抑菌能力、产生物膜能力进行检测。结果 从50名健康女性阴道内共分离出179株乳杆菌,其中卷曲乳杆菌101株、詹氏乳杆菌42株、格氏乳杆菌26株、植物乳杆菌5株、唾液乳杆菌3株以及干酪乳杆菌2株。179株乳杆菌中有146株具有产酸能力,发酵液pH值的最低的5株菌分别为卷曲乳杆菌J3、卷曲乳杆菌J8、詹氏乳杆菌J87,植物乳杆菌J75以及格氏乳杆菌J35,其pH分别为4.20、4.23、4.24、4.26及4.36;产H2O2弱阳性菌株有87株、阳性有37株、强阳性有9株,这9株菌分别为卷曲乳杆菌J3、卷曲乳杆菌J8、卷曲乳杆菌J20、詹氏乳杆菌J87,詹氏乳杆菌J90、詹氏乳杆菌J15、格氏乳杆菌J11、植物乳杆菌J75、植物乳杆菌J69以及植物乳杆菌J40;能拮抗大肠埃希菌的菌株有115株、拮抗金黄色葡萄球菌的有84株、拮抗白假丝酵母的有52株;经统计,对三者同时有拮抗作用且作用最强的只有6株,分别为卷曲乳杆菌J3、卷曲乳杆菌J50、卷曲乳杆菌J62、詹氏乳杆菌J87、詹氏乳杆菌J16和格氏乳杆菌J66;不同乳杆菌产生物膜能力数值范围在1.0~5.4,卷曲乳杆菌、詹氏乳杆菌、干酪乳杆菌的生物被膜形成能力显著高于其他三种菌(P<0.05)。在全部179株菌中,卷曲乳杆菌J3和詹氏乳杆菌J87既具有强的产酸能力和产过氧化氢能力,又有较强抑菌活性,同时产生物膜能力也最强。结论 卷曲乳杆菌J3和詹氏乳杆菌J87具有优良的生物学特性,有望成为用于治疗妇科疾病微生态制剂的备选菌株。  相似文献   

11.
One hundred seven yeast strains were screened for their ability to produce a brandy base wine of exceptional sensory quality. Volatile acids, esters and higher alcohols were quantified and the results were interpreted using a multivariate analysis of variance (MANOVA) and an average linkage cluster analysis. Significant differences between yeast strains for higher alcohol, fatty acid ester and acetate concentrations were observed. On the basis of their chemical profiles, 16 strains were selected and re-evaluated in larger-scale fermentations and subsequent double distillations. Results show that the yeast lees can have an important effect on the final concentration of higher alcohols and esters in the distillate. Highly elevated levels of ethyl acetate and iso-amyl acetate were found to be undesirable. Elevated levels of all the esters present contributed positively to the overall potential quality of the brandy base product. Too low higher alcohol concentrations were also not desirable. Sensory evaluations showed that, since the panel was composed of representatives of the three largest brandy-producing companies, each company preferred a different yeast strain most suitable for their style of brandy. For these reasons, three strains, B7, LL2 and 20-2, warranted further evaluation on a semi-commercial scale for each of the respective companies. Journal of Industrial Microbiology & Biotechnology (2000) 24, 431–440. Received 17 November 1999/ Accepted in revised form 07 March 2000  相似文献   

12.
Medium-chain alcohols are used to produce solvents, surfactants, lubricants, waxes, creams, and cosmetics. In this study, we engineered the oleaginous yeast Yarrowia lipolytica to produce 1-decanol from glucose. Expression of a fatty acyl-CoA reductase from Arabidopsis thaliana in strains of Y. lipolytica previously engineered to produce medium-chain fatty acids resulted in the production of 1-decanol. However, the resulting titers were very low (<10 mg/mL), most likely due to product catabolism. In addition, these strains produced small quantities of 1-hexadecanol and 1-octadecanol. Deleting the major peroxisome assembly factor Pex10 was found to significantly increase 1-decanol production, resulting in titers exceeding 500 mg/L. It also increased 1-hexadecanoland and 1-octadecanol titers, though the resulting increases were less than those for 1-decanol. These results demonstrate that Y. lipolytica can potentially be used for the industrial production of 1-decanol and other fatty alcohols from simple sugars.  相似文献   

13.
We aimed to manipulate the metabolism of Saccharomyces cerevisiae to produce lactic acid and search for the potential influence of acid transport across the plasma membrane in this process. Saccharomyces cerevisiae W303-1A is able to use l-lactic acid but its production in our laboratory has not previously been detected. When the l-LDH gene from Lactobacillus casei was expressed in S.?cerevisiae W303-1A and in the isogenic mutants jen1?, ady2? and jen1? ady2?, all strains were able to produce lactic acid, but higher titres were achieved in the mutant strains. In strains constitutively expressing both LDH and JEN1 or ADY2, a higher external lactic acid concentration was found when glucose was present in the medium, but when glucose was exhausted, its consumption was more pronounced. These results demonstrate that expression of monocarboxylate permeases influences lactic acid production. Ady2 has been previously characterized as an acetate permease but our results demonstrated its additional role in lactate uptake. Overall, we demonstrate that monocarboxylate transporters Jen1 and Ady2 are modulators of lactic acid production and may well be used to manipulate lactic acid export in yeast cells.  相似文献   

14.
In recent years, an increase in ocular pathologies related to soft contact lens has been observed. The most common infectious agents were Staphylococcus spp. Some strains produce an extracellular polysaccharidic slime that can cause severe infections. Polysaccharide synthesis is under genetic control and involves a specific intercellular adhesion (ica) locus, in particular, icaA and icaD genes. Conjunctival swabs from 97 patients with presumably bacterial bilateral conjunctivitis, wearers of soft contact lenses were examined. We determined the ability of staphylococci to produce slime, relating it to the presence of icaA and icaD genes. We also investigated the antibiotic susceptibility and Pulsed Field Gel Electrophoresis (PFGE) patterns of the clinical isolates. We found that 74.1% of the S. epidermidis strains and 61.1% of the S. aureus strains isolated were slime producers and showed icaA and icaD genes. Both S. epidermidis and S. aureus slime-producing strains exhibited more surface hydrophobicity than non-producing slime strains. The PFGE patterns overlapped in S. epidermidis strains with high hydrophobicity. The similar PFGE patterns were not related to biofilm production. We found scarce matching among the Staphylococcus spp. studied, slime production, surface hydrophobicity and antibiotic susceptibility.  相似文献   

15.
Strains of Zymomonas mobilis grown in media containing either glucose or sucrose were assessed for the production of hydrogen sulphide (H2S). In a liquid medium with low glucose concentration (20 g l?1) only a proportion of the strains tested formed H2S, but in medium containing a higher glucose concentration (100 g l?1) all the strains tested produced H2S. Four Z. mobilis strains were assayed quantitatively for H2S production and strain ZM4 was found to produce the most H2S in glucose medium. The amount of yeast extract and glucose, and the type of sugar used in the medium affected the amount of H2S formed by strain ZM4. A mutant, designated ZM4701, of strain ZM4 was isolated which did not produce any detectable H2S in liquid medium containing yeast extract plus either glucose or sucrose. The nutritional requirements of ZM4701 were investigated.  相似文献   

16.
Recombinant Saccharomyces cerevisiae strains that produce the sugar alcohols xylitol and ribitol and the pentose sugar D-ribose from D-glucose in a single fermentation step are described. A transketolase-deficient S. cerevisiae strain accumulated D-xylulose 5-phosphate intracellularly and released ribitol and pentose sugars (D-ribose, D-ribulose, and D-xylulose) into the growth medium. Expression of the xylitol dehydrogenase-encoding gene XYL2 of Pichia stipitis in the transketolase-deficient strain resulted in an 8.5-fold enhancement of the total amount of the excreted sugar alcohols ribitol and xylitol. The additional introduction of the 2-deoxy-glucose 6-phosphate phosphatase-encoding gene DOG1 into the transketolase-deficient strain expressing the XYL2 gene resulted in a further 1.6-fold increase in ribitol production. Finally, deletion of the endogenous xylulokinase-encoding gene XKS1 was necessary to increase the amount of xylitol to 50% of the 5-carbon sugar alcohols excreted.  相似文献   

17.
Production of mutacin-like substances by Streptococcus mutans   总被引:1,自引:0,他引:1  
Production of inhibitory substances by strains of the Streptococcus mutans group is well documented, but the nature of the substances implied is often unknown. Of nine laboratory strains known to produce inhibitory substances, the optimal conditions for producing inhibition zones on solid media were found to vary between strains but good production was generally obtained on all-purpose media with Tween 80 at 37 degrees C after 2-4 days of aerobic incubation. Streptococcus sanguis Ny101 was found to be more sensitive than Streptococcus rattus LG-1 to all inhibitory substances produced by the S. mutans strains tested. While all strains showed some inhibition, only six showed inhibition after neutralization; arginine incorporated in agar at 0.75% completely eliminated all inhibition zones. However 1% arginine in the overlays did not affect the production of inhibition zones by strains of S. mutans C67-1, Ny257, Ny266, and T8. These strains were shown to elaborate (in a reproducible fashion) inhibitory substances which were not organic acids. Inhibitory activity was never obtained in liquid preparations, except for strains Ny257 and T8 where it was found to be very unstable.  相似文献   

18.
The aim of the study was to determine susceptibility of 587 strains of S. aureus and 85 strains of coagulase-negative staphylococci isolated from outpatients in Poznań to co-trimoxazole, amoxycillin/clavulanic acid, erythromycin, gentamycin, doxycycline, ampicillin, oxacillin, cephradine, clindamycin and neomycin. Also methicillin-resistant strains were determined as well as strains ability to produce beta-lactamases. Susceptibility testing and examination of methicillin-resistant strains were performed by the disc diffusion techniques according to recommendation of NCCLS. Methicillin-resistant strains were additionally examined to their sensitivity to vankomycin and teicoplanin. beta-lactamase production was detected using nitrocefin impregnated discs and iodometric method. Amoxacillin/clavulanic acid, gentamycin, co-trimoxazole, cephradin, oxacillin and clindamycin occurred to be very active against both, S. aureus and coagulase-negative staphylococci. 84.7% to 100% of examined strains were sensitive to these drugs. Doxycyclin, erythromycin and ampicillin were less effective. Nine strains (1.5%) of 587 strains of S. aureus as well as 7 strains (8.7%) of coagulase-negative staphylococci were methicillin-resistant. All of methicillin-resistant strains were sensitive to vancomycin and teicoplanin. More than 75% of S. aureus and close to 50% of coagulase-negative staphylococci were able to produce beta-lactamases.  相似文献   

19.
Summary The use of microorganisms in biotechnology is an important economic area of interest in Brazil, especially the use of Saccharomyces cerevisiae in the baking and alcohol fermentation industries. Dimorphism in S. cerevisiae (cell morphology alterations from budding cells to filamentous structures) has been observed in conditions of nitrogen and carbon deprivation and in the presence of fusel alcohols. This can be described as a defense mechanism that allows the yeast to forage for nutrients through cell elongation, hyphal formation and invasive growth. In this work fifteen industrial strains of S. cerevisiae (including haploid and diploid strains) isolated from the fermentative process for alcohol production were characterized for filamentation on solid culture media under growth conditions of carbon- and nitrogen-deprivation and in the presence of fusel alcohols. The majority of strains showed filamentation induced by isoamyl alcohol, butanol, isopropanol and isobutanol, but not by methanol. In rich medium (YEPD), both haploid and diploid strains showed invasive growth, although this kind of filamentous growth was more common in haploid strains. Similar results were observed when fructose or mannose was used as the sole carbon source. In nitrogen-deficient medium (SLAD) the strains did not filament. The results obtained indicate that the filamentation induced by higher alcohols and carbon deprivation (specially carbon) is a common process in industrial strains of S. cerevisiae contributing towards their maintenance/survival in adverse conditions.  相似文献   

20.
Sixty-seven strains belonging to 47 species of Basidiomycetes were examined for their acid-producing abilities in glucose media, in both the presence and absence of CaCO3, in stationary and shake cultures. Some strains were found to produce large quantities of oxalic acid. The oxalic acid-producing strains could be separated into two groups. Strains of one group (mostly brown-rot fungi) were able to produce oxalic acid, regardless of whether CaCO3 was present in the medium. Strains of the other group (mostly white-rot fungi) were characterized by their ability to produce oxalic acid only when CaCO3 was added to the medium. With the latter group, shake-culturing was generally more effective than stationary culturing in respect to acid production. In the CaCO3-containing media, Schizophyllum commune, Merulius tremellosus, and Porodisculus pendulus were found to produce substantial amounts of L-malic acid as a main metabolic product, along with small quantities of oxalic and other acids in shake cultures. Especially, S. commune and M. tremellosus may be employed as malic acid-producing species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号