首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of left ventricle pressure and volume changes on coronary blood flow was investigated in eight anesthetized dogs. Coronary artery pressure-flow relationships were determined at two levels of left ventricular pressure and volume. The distribution of blood flow within the myocardium was also determined when these relationships varied. Reducing left ventricle pressures and volumes increased heart rate. Rate-pressure product, diastolic coronary pressure, myocardial O2 consumption, total, subendocardial and subepicardial flow decreased. Hematocrit and blood gas data were unchanged. The pressure-flow relationships were shifted leftward (p = 0.001) but the range of autoregulation was not altered. At low left ventricle pressures and volumes, the lower coronary artery pressure limit was shifted leftward (from 75 to 45 mm Hg (1 mm Hg = 133.3 Pa)), while total, subendocardial, and subepicardial blood flow did not change compared with the control. Below the lower coronary artery pressure limit, subendocardial but not subepicardial flow decreased, resulting in maldistribution of flow across the left ventricular wall. When coronary pressure was reset between control and the lower coronary artery pressure limit, subendocardial flow was restored. These results show that the lower coronary artery pressure limit can be shifted leftward while the distribution of blood flow across the left ventricular wall is preserved.  相似文献   

2.
Few studies have investigated factors responsible for the O2 demand/supply balance in the right ventricle. Resting right coronary blood flow is lower than left coronary blood flow, which is consistent with the lesser work of the right ventricle. Because right and left coronary artery perfusion pressures are identical, right coronary conductance is less than left coronary conductance, but the signal relating this conductance to the lower right ventricular O2 demand has not been defined. At rest, the left ventricle extracts approximately 75% of the O2 delivered by coronary blood flow, whereas right ventricular O2 extraction is only ~50%. As a result, resting right coronary venous PO2 is approximately 30 mm Hg, whereas left coronary venous PO2 is approximately 20 mm Hg. Right coronary conductance does not sufficiently restrict flow to force the right ventricle to extract the same percentage of O2 as the left ventricle. Endogenous nitric oxide impacts the right ventricular O2 demand/supply balance by increasing the right coronary blood flow at rest and during acute pulmonary hypertension, systemic hypoxia, norepinephrine infusion, and coronary hypoperfusion. The substantial right ventricular O2 extraction reserve is used preferentially during exercise-induced increases in right ventricular myocardial O2 consumption. An augmented, sympathetic-mediated vasoconstrictor tone blunts metabolically mediated dilator mechanisms during exercise and forces the right ventricle to mobilize its O2 extraction reserve, but this tone does not limit resting right coronary flow. During exercise, right coronary vasodilation does not occur until right coronary venous PO2 decreases to approximately 20 mm Hg. The mechanism responsible for right coronary vasodilation at low PO2 has not been delineated. In the poorly autoregulating right coronary circulation, reduced coronary pressure unloads the coronary hydraulic skeleton and reduces right ventricular systolic stiffness. Thus, normal right ventricular external work and O2 demand/supply balance can be maintained during moderate coronary hypoperfusion.  相似文献   

3.
The vascular beds of the left circumflex and the left anterior descending coronary arteries are modelled by means of coupled differential equations that consider an arterial, a capillary and a venous section. In a stepwise procedure, experimental data from normal coronary perfusion and coronary sinus occlusion are used to assess the model parameters. For venous distensibility, a non-linear form of pressure-volume relationship proved vital to reproduce the characteristics of the rise in venous pressure after the onset of coronary sinus occlusion. Numerical integration was carried out for normal perfusion and for coronary sinus occlusion, yielding time courses of flows, volumes and pressures within large coronary arteries, capillaries and coronary veins. Coronary sinus occlusion reduces total mean flow by 18% and divides intramyocardial flow between the capillaries and the veins into a forward component of 3.03 mls−1 and a backward component of − 1.54 mls−1. This result represents a prediction for a haemodynamic quantity which is therapeutically important but inacessible to measurement. Varying degrees of systolic myocardial squeezing are studied to display the impact of myocardial contractility and vessel collapse on the mean values and phasic components of intra-myocardial flows.  相似文献   

4.
In one-day old humans and to 20 years of age, the stroke volume (SV) increases from 5.4 +/- 0.4 to 70 +/- 5 ml, the arterial systolic pressure (ASP)--from 60 +/- 5 to 120 +/- 10 mm Hg. Heart rate decreases to 70 +/- 4/min from 136 +/- 10/min at birth. The N coefficient as the SV/ASP ratio parameter grows from 0.1 in children to 0.6 by 20 years of age. The peripheral resistance in the arterial system scope from the left ventricle exit tract to the middle of the humeral artery amounts up to 76 mm Hg x ml(-1) x min(-1) in newborn infants and in adults it is reduced to 28. Reduction of post-load decreases 6-fold the total amount of the heart mechanical work of pumping the SV into the vascular system.  相似文献   

5.
The haemodynamic effects of a simultaneous infusion of salbutamol and nitroprusside were measured in 20 patients with acute myocardial infarction and severe left ventricular failure. Six patients also had clinical manifestations of cardiogenic shock. Ten patients received salbutamol first with the subsequent addition of nitroprusside; in the other 10 patients nitroprusside was infused first. Salbutamol was infused at a constant rate of 20 micrograms/min in all patients, while the dose of nitroprusside, which averaged 51.25 micrograms/min, was adjusted to reduce left ventricular filling pressure (measured as pulmonary artery end-diastolic pressure) to approximately 15 mm Hg with reference to sternal angle. Cardiac index increased in all patients from a mean of 1.8 to 2.6 l/min/m2 while pulmonary artery end-diastolic pressure fell significantly from 24 to 16 mm Hg. The adverse effects were small in most patients: heart rate did not increase significantly and systolic arterial pressure fell on average from 112 to 96 mm Hg. Ten of the 20 patients survived to leave hospital. Nitroprusside accounted for most of the fall in filling pressure irrespective of treatment sequence, whereas both drugs contributed to the augmented cardiac output. The haemodynamic benefits of this combined regimen were considerably greater than those achieved by either drug alone. Thus salbutamol and nitroprusside have synergistic effects which influence favourably the two principal manifestations of left ventricular dysfunction after extensive myocardial infarction.  相似文献   

6.
The beat-to-beat variability of the diastolic blood pressure induces small variations in the afterload of the left ventricle. These variations influence myocardial contractility, and thus blood pressure amplitude. We assessed the interdependence of blood pressure and changes in the afterload. We continuously recorded blood pressure (duration 200 s, at rest) in 20 patients with dilated cardiomyopathy (ejection fraction 32 +/- 13%, left ventricular diameter 67 +/- 8 mm) and in 20 healthy volunteers. Interbeat intervals, diastolic pressures, systolic pressure amplitudes and mean slopes of systolic pressure amplitudes were measured. Correlation coefficients (r) were calculated to assess the interdependence of blood pressure amplitudes/mean systolic slopes and the preceding diastolic pressures/interbeat intervals, respectively. In healthy volunteers we found a strong interdependence between blood pressure amplitude and the preceding diastolic pressures (r = 0.62 +/- 0.21 and 0.47 +/- 0.22). Higher diastolic pressures were followed by higher blood pressure amplitudes, and by steeper slopes of the systolic peaks. In patients with dilated cardiomyopathy, such interdependence was significantly lower (r = 0.33 +/- 22 and r = 0.28 +/- 0.35), and in patients with severely reduced left ventricular function (ejection fraction < 32%) was only marginal (r = 0.23 +/- 0.27 and 0.21 +/- 0.44, respectively). The forces of the isovolumetric contraction necessary to initiate the ejection phase of the left ventricle depend on the afterload, i.e. on the diastolic pressure. The responses of amplitude and slope of the systolic blood pressure to small changes in the afterload make it possible to assess left ventricular contractility. The latter is impaired in dilated cardiomyopathy.  相似文献   

7.
The immediate cardiovascular responses on active change from the squatting (control) to the standing position differ from those obtained in the lying-to-standing manoeuvre. Without exception, the first beat after changing from squatting to standing showed a decrease in systolic, diastolic and mean pressure by 2.0 +/- 1.1 kPa (14.6 +/- 8.3 mm Hg), 1.4 +/- 1.7 kPa (10.6 +/- 12.6 mm Hg) and 1.9 +/- 1.0 kPa (13.9 +/- 7.3 mm Hg), respectively. During the 4th or 5th pulse after standing the pulse pressure was significantly higher than when lying (P less than 0.01). Mean pressure reached a minimum of 7.7 +/- 1.9 kPa (57.8 +/- 14.4 mm Hg) after 7.1 +/- 1.1 s. Thereafter the blood pressure increased to a new level within about 15 s. 11 of 16 subjects demonstrated a biphasic heart rate (HR) response. The maximum HR was reached after 11.0 +/- 2.4 s of standing. In all experiments, the peaks in HR were distinctly delayed after the blood pressure dips. We conclude that an arterial baroreflex could be implicated in the immediate HR increase after a squatting-to-standing manoeuvre. The subsequent time course of the initial HR response, however, might be induced by other mechanisms.  相似文献   

8.
The results of several large studies of hypertension and follow up studies on insured people have indicated that the lower the blood pressure the better for longevity. These studies excluded subjects with overt ischaemia. More recently long term studies of hypertension that included patients with more severe forms of hypertension and did not exclude those with overt ischaemia have shown a J shaped relation between diastolic blood pressure during treatment and myocardial infarction; the lowest point (the J point) was at a diastolic blood pressure (phase V) between 85 and 90 mm Hg. The J curve seems to be independent of treatment, pulse pressure, and the degree of fall in diastolic blood pressure and is unlikely to be caused by poor left ventricular function. The most probable explanation is that subjects who have severe stenosis of the coronary artery as well as hypertension have a poor coronary flow reserve, which makes the myocardium vulnerable to coronary perfusion pressures that are tolerated by patients without ischaemia, particularly at high heart rates. An optimal diastolic blood pressure (phase V) for such patients is about 85 mm Hg, though particular caution is appropriate when treating very old patients (84 and over) and patients aged 60-79 who have isolated systolic hypertension.  相似文献   

9.
The purpose of this study was to assess the influence of aerobic training on the left ventricular (LV) systolic function. Thirty patients with stable coronary artery disease, who had participated in the conducted 3-month physical training, were retrospectively divided into 2 cohorts. While patients in the cohort I (n=14) had continued training individually for 12 months, patients in the cohort II (n=16) had stopped training after finishing the conducted program. Rest and stress dobutamine/atropine echocardiography was performed in all patients before the training program and 1 year later. The peak systolic velocities of mitral annulus (Sa) were assessed by tissue Doppler imaging for individual LV walls. In addition, to determine global LV systolic longitudinal function, the four-site mean systolic velocity was calculated (Sa glob). According to the blood supply, left ventricular walls were divided into 5 groups: A- walls supplied by nonstenotic artery; B- walls supplied by coronary artery with stenosis ≤50 %; C- walls supplied by coronary artery with stenosis 51-70 %; D- walls with stenosis of supplying artery 71-99 %; and E- walls with totally occluded supplying artery. In global systolic function, the follow-up values of Sa glob in cohort I were improved by 0.23±0.36 as compared with baseline values at rest, and by 1.26±0.65 cm/s at the maximal load, while the values of Sa glob in cohort II were diminished by 0.53±0.22 (p=NS), and by 1.25±0.45 cm/s (p<0.05), respectively. Concerning the resting regional function, the only significant difference between cohorts in follow-up changes was found in walls E: 0.37±0.60 versus -1.76±0.40 cm/s (p<0.05). At the maximal load, the significant difference was found only in walls A (0.16±0.84 versus -2.67±0.87 cm/s; p<0.05). Patients with regular 12-month physical activity improved their global left ventricle systolic function mainly due to improvement of contractility in walls supplied by a totally occluded coronary artery.  相似文献   

10.
Semax, a member of ACTH-derived peptides family, has been employed in the treatment of acute ischemic stroke in patients. It decreased neurological deficit and reduced NO hyperproduction in the rat brain, caused by acute cerebral hypoperfusion. We suggested that semax is also able to protect rat heart from ischemic damage in acute myocardial infaction (AMI). AMI was induced by left coronary artery occlusion, myocardial ischemic area averaged 30 % of left ventricle. In 2 hours after coronary occlusion, the AMI group developed 11 % reduced mean arterial blood pressure and 48 % increased diastolic blood pressure in left ventricle in comparison with sham-operated control group. However, infusion of either dobutamine, which directly stimulates myocardial contractility, or sodium nitroprusside and phenylephrine, that change vascular resistance and thus cardiac afterload, did not reveal distinctions in hemodynamic parameters between groups. These data indicate absense or only moderate cardiac dysfunction in rats with AMI and are consistent wih morphometrical and histochemical studies that did not detect any necrotic or apoptotic (TUNEL-test) changes in left ventricular cardiomyocytes in spite of development of distinct ischemic disturbances of mitochondria and nuclear in about 50 % of cardiomyocytes in 2 hours after AMI. Semax (150 microg/kg), given i. p. 15 min and 2 hours after coronary occlusion, caused no effect on cardiac function, but completely prevented ischemia-induced ultrastructural changes of cardiomyocytes. This protective effect was accompanied by the ability of peptide to blunt the increase in plasma concentrations of nitrates, observed in AMI group.  相似文献   

11.
Dynamic capacitance of epicardial coronary arteries in vivo   总被引:2,自引:0,他引:2  
The dynamic capacitance of epicardial coronary arteries (i.d. greater than or equal to 0.4 mm) in vivo was assessed from the volume stiffness and volume of these arteries. The volume stiffness was derived from the pressure wave front velocity as determined in dogs by measuring the delay time between the pressure pulses recorded proximal and distal to a segment of the anterior descending branch of the left coronary artery. The pressure pulse was generated elsewhere in the arterial system during diastole. The volume of the epicardial coronary arteries was calculated from the lengths and diameters as measured in araldite casts, making corrections for in-vitro/in-vivo differences in dimensions. The dynamic capacitance of the right coronary artery, and the anterior descending and circumflex branches of the left coronary artery at an arterial pressure of 13.3 kPa and a frequency between 7 and 30 Hz was found to be 0.0024 +/- 0.0013, 0.0062 +/- 0.0028 and 0.0079 +/- 0.0035 mL/kPa (mean +/- SD), respectively. The total capacitance of the epicardial coronary arteries was calculated to be (0.007 mL/kPa)/100 g, which is small as compared to the total capacitance of the coronary vasculature, including the intramyocardial compartment, which is in the order of (0.5 mL/kPa)/100 g [1].  相似文献   

12.
Acute respiratory failure is followed by decreased left ventricular performance probably due to the right ventricle dilatation induced by pulmonary hypertension and intraventricular septal shift to the left. An anacrotic notch on the upstroke slope of the carotid curve was detected in 22 of 36 hemodynamic studies with simultaneous ECG, PCG and external pulse carotid curve recording in 7 burned patients with acute respiratory failure. Comparing the values (x +/- SEM) obtained in group with notch and in group without notch, PAPs, PAPm, PVRI were higher (56 +/- 2.30 mmHg; 32 +/- 0.99 mm Hg; 543 +/- 56.8 dyn x s/cm5/m2 versus 32 +/- 1.08 mm Hg; 20 +/- 0.9 mm Hg; 173 +/- 14.7 dyn x s/cm5/m2) and CI and LVSWI were lower (2.6 +/- 0.17 l/min/m2; 25.8 +/- 2.41 g x m/m2; versus 3.8 +/- 0.26 l/min/m2; 38.3 +/- 2.82 g x m/m2) in group with notch. As it is shown by 11 paired measurements where the notch disappeared immediately after starting vasodilator therapy PAPs, PAPm, PVRI decreased (from 54 +/- 3.1, 35 +/- 0.8 mm Hg, 498 +/- 64.1 dyn x s/cm5/m2 to 35 +/- 0.8, 21 +/- 1.1 mmHg, 189 +/- 18.4 dyn x s/cm5/m2 respectively) and heart performance improved. Since the left ventricle contractility (characterized by EF, PCWP, ICT) was normal in both groups, our findings suggest that critically high PAPs values (over 40 mmHg) cause a septal bulging at the beginning of the systole which in turn narrows the left ventricle outflow tract. Regarding to the clinical importance of the deteriorated biventricular function at the critically high PAPs evidenced by notch phenomenon on carotid curve but measurable only by indwelling pulmonary arterial catheterization always being a source of infection, the noninvasive parameters as independent variables were entered into canonical discriminant analysis. The ratio of the correctly classified cases was 89%.  相似文献   

13.
Coronary collaterals preserve left ventricular (LV) function during coronary occlusion by reducing myocardial ischemia and may directly influence LV compliance. We aimed to re-evaluate the relationship between coronary collaterals, measured quantitatively with a pressure wire, and simultaneously recorded LV contractility from conductance catheter data during percutaneous coronary intervention (PCI) in humans. Twenty-five patients with normal LV function awaiting PCI were recruited. Pressure-derived collateral flow index (CFI(p)): CFI(p) = (P(w) - P(v))/(P(a) - P(v)) was calculated from pressure distal to coronary balloon occlusion (P(w)), central venous pressure (P(v)), and aortic pressure (P(a)). CFI(p) was compared with the changes in simultaneously recorded LV end-diastolic pressure (ΔLVEDP), end-diastolic volume, maximum rate of rise in pressure (ΔLVdP/dt(max); systolic function), and time constant of isovolumic relaxation (ΔLV τ; diastolic function), measured by a LV cavity conductance catheter. Measurements were recorded at baseline and following a 1-min coronary occlusion and were duplicated after a 30-min recovery period. There was significant LV diastolic dysfunction following coronary occlusion (ΔLVEDP: +24.5%, P < 0.0001; and ΔLV τ: +20.0%, P < 0.0001), which inversely correlated with CFI(p) (ΔLVEDP vs. CFI(p): r = -0.54, P < 0.0001; ΔLV τ vs. CFI(p): r = -0.46, P = 0.0009). Subjects with fewer collaterals had lower LVEDP at baseline (r = 0.33, P = 0.02). CFI(p) was inversely related to the coronary stenosis pressure gradient at rest (r = -0.31, P = 0.03). Collaterals exert a direct hemodynamic effect on the ventricle and attenuate ischemic LV diastolic dysfunction during coronary occlusion. Vessels with lesions of greater hemodynamic significance have better collateral supply.  相似文献   

14.
The Langendorff perfused heart is studied in a closed system with (i) automatic regulations to maintain constancy of the perfusion column (Krebs-Henseleit + 0.5% albumin or 25-30% washed erythrocyte suspension), (ii) continuous recording of rate, coronary flow, and supravalvular aortic pressure. A microcomputer with software interface is used for storage treatment and on-line analysis of the recorded variables. In 38 preparations perfused with Krebs-Henseleit, minimal diastolic (61.2 +/- 2.8 mm Hg) is significantly below and peak systolic (98.7 +/- 3.6 mm Hg) significantly above perfusion pressure (80 mm Hg). Pressure difference between minimal diastolic and peak systolic (delta P) is 37.5 +/- 1.8 mm Hg. Increases in perfusion pressure will be associated with increases of coronary flow and delta P, which is also increased by isoprenaline administration. Oxygen consumption decreased by 76% when perfusion pressure was lowered from 80 to 60 mm Hg in hearts perfused with a 30% erythrocyte suspension. All of these experimental results were interpreted as indicating that delta P measured in this system resulted from an ejected volume (x acceleration) from the heart. The ejected volume corresponds to a valvular leak caused by the rigid nature of the system which is devoid of aortic compliance. delta P may be considered an index of left ventricular performance, an indication that the Langendorff preparation studied under the present conditions is a working heart. A 100-microliter volume constant infusion syringe for time administration of cardioactive drugs may be inserted at the base of the perfusion column to obtain dose-response effects.  相似文献   

15.
The pressure gradients of the canine coronary circulation were measured in 37 dogs during control and following eight interventions: left stellate ganglion or left vagosympathetic trunk stimulation, as well as isoproterenol, acetylcholine, noradrenaline, adenosine, phenylephrine, or adrenaline infusions. During control, pressure gradients in the epicardial coronary arteries (measured from the aorta to coronary artery branch) were 15.2 +/- 1 mmHg (1 mmHg (1 mmHg = 133.32 Pa) during systole and 10.6 +/- 1.5 mmHg during diastole. Adrenaline increased this systolic gradient, while acetylcholine and phenylephrine decreased it. In contrast, the pressure gradients in the small coronary arteries (from the branch of an epicardial artery to the pressure in an obstructed coronary artery) were 56 +/- 1.3 mmHg during systole and 63.7 +/- 1.3 mmHg during diastole. These gradients were increased by phenylephrine during both systole and diastole, noradrenaline and adrenaline during diastole and decreased by isoproterenol (systolic), left vagosympathetic trunk stimulation (diastolic), acetylcholine (systolic and diastolic), and adenosine (diastolic). The microcirculation and small vein gradients during control were 16.4 +/- 1.2 mmHg during systole and 8.5 +/- 0.8 mmHg during diastole. Decreases in this gradient were produced by isoproterenol, acetylcholine, and adenosine during systole and adenosine during diastole. These observations are consistent with the concept that the coronary circulation has considerable regulatory capacity in all of its component parts. Specifically, epicardial arteries appear to function as both conduits and as resistance vessels, small arteries as major resistance vessels, and the microcirculation and small veins as both capacitors and resistors.  相似文献   

16.
A possible role of the autonomic nervous system in the left ventricular response to acute regional myocardial ischemia was sought in conscious dogs instrumented for measurement of left ventricular pressure, internal diameter, and aortic flow. Ischemia produced by occluding the left circumflex coronary artery caused tachycardia and reduced contractility. Changes during control occlusions were compared with those during occlusion.s after beta-adrenergic blockade, parasympathetic blockade, and combined sympathetic and parasymphatetic blockade. Beta-blockade did reduce the tachycardia and slightly reduced left ventricular diameter changes in response to coronary occlusion. Results obtained in animals following surgical cardiac sympathectomy indicated reduced tachycardia and no effects on other parameters. The principal effect of parasympathetic blockade was to augment the increase in end diastolic diameter during occlusion Right atrial pacing indicated this change was due to higher initial heart rates. Combined parasympathetic and sympathetic blockade did not alter inotropic responses to coronary occlusion. Results indicated that inotropic support due to changes in activity in autonomic nerves is not increased during acute occlusion of the left circumflex coronary artery.  相似文献   

17.
The significance of neurogenic influences upon the distribution of systemic and coronary fraction during rise of aortic pressure by step occlusion of ascending aorta was studied in anesthetized cats. Under elevation of aortic pressure up to 60 mm Hg the increase in systemic fraction and less pronounced rise of coronary fraction were observed. When aortic pressure elevation was more than 60 mm Hg commensurable increase of both fractions occurred. Under beta-adrenoreceptor blockade elevation of aortic pressure more than 60 mm Hg evoked the significant increase in systemic fraction and reduction in coronary fraction.  相似文献   

18.
This study compares the effects of perfluorochemical artificial blood versus whole blood on the systolic and diastolic function of regionally ischemic myocardial preparations. Regional ischemia was produced by ligation of the circumflex coronary artery in isolated, blood-perfused rabbit hearts. Three minutes after occlusion, half the hearts were switched from the blood perfusate to perfluorochemical artificial blood; the other half continued to be perfused with blood. Isovolumic left ventricular (LV) developed pressure, dP/dt and resting pressure were monitored before, and for 2 hours after coronary occlusion. After 90 minutes of regional ischemia, perfluorochemical-treated hearts exhibited significantly greater developed pressure than those perfused with blood (78 +/- 6% versus 61 +/- 5% of preligation values; P less than 0.05). At the end of the experiment, LV dP/dt was 21% greater in the perfluorochemical-perfused group than in the blood-perfused group (74 +/- 8% versus 53 +/- 10%; P less than 0.01). Perfluorochemical perfusion also preserved diastolic function by preventing the 58% increase in left ventricular chamber stiffness (i.e., resting pressure; P less than 0.01) associated with circumflex ligation. Thus, in the present model of regional ischemia, perfluorochemical artificial blood is significantly better than blood at maintaining both systolic and diastolic myocardial function after a major coronary artery has been occluded.  相似文献   

19.
The aim of the study was to investigate whether oxygen causes a further decrease in pulmonary artery pressure after administration of calcium channel blocker-verapamil-or angiotensin converting enzyme inhibitor-captopril-in the secondary pulmonary hypertension. We studied 37 patients with the secondary pulmonary hypertension (mean pulmonary artery systolic pressure = 56.1 mm Hg) due to mitral stenosis. After having completed hemodynamic diagnostic procedures, basal oxygen test was performed and pulmonary artery pressure was recorded at 10 min of oxygen breathing. Then, 10 mg of verapamil was injected into the pulmonary artery of 16 patients and 21 patients received 75 mg of oral captopril. At the peak of vasodilation, 30 min after verapamil and 90 min after captopril administration, pulmonary artery pressure was recorded and oxygen test was repeated. Baseline oxygen test produced a statistically significant decrease in pulmonary artery pressure. Verapamil and captopril also lowered pulmonary artery systolic and diastolic pressures. The second oxygen test did not cause a further decrease in the pulmonary artery pressure; mean pulmonary artery systolic pressure was 52.3 +/- 23.7 mm Hg, pulmonary artery diastolic pressure 22.7 +/- 10.6 mm Hg before and 49.1 +/- 23.8 mm Hg and 23.0 +/- 13.5 mm Hg, respectively after the test in verapamil group, and 47.0 +/- 15.5 mm Hg and 21.7 +/- 8.4 mm Hg before and 46.6 +/- 15.4 mm Hg, respectively in captopril subset. The results may support the thesis that vasodilating effect depends rather on the degree of pulmonary vascular changes than on the vasodilatory mechanism of particular drugs.  相似文献   

20.
Peculiarities in structure and deformability of epicardial conduit coronary arteries are described. The thin wall of animal coronary artery contrasts the human coronary artery in which the remarkable wall thickness is due namely by the intima thickness. Deformation in length and diameter of conduit coronary arteries, due to the left and right ventricle volume increase, has been defined in non-beating canine heart. Ramus interventricularis anterior being firmly tethered to the myocardium undergoes about 3 times larger deformation than ramus circumflexus In anaesthetized dogs a 30% increase in blood pressure, elicited by aortic constriction, induces an increase in diameter of coronary artery, in segment lenght, in blood flow and consequently in shear stress which represents a load for circumferentially running smooth muscle bundles, longitudinally running smooth muscle bundles, as well as for the endothelium. The above load lasting 4 h is already reflected by an increase in total RNA content and [14C] leucin incorporation in the left ventricle myocardium in the wall of ramus interventricularis anterior, not in ramus circumflexus. The finding fit completely with the different range of deformation of both the above coronary branches and indicates an increase in proteosynthesis not only in myocardium, but in ramus interventricularis anterior as well. An increase in ornithindecarboxylase activity in coronary wall leading to an increase in biogenic polyamines, is present in the case only, when blood pressure increase is induced by infusion of noradrenaline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号