首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nucleocytoplasmic transport of proteins   总被引:4,自引:0,他引:4  
In eukaryotic cells, the movement of macromolecules between the nucleus and cytoplasm occurs through the nuclear pore complex (NPC)--a large protein complex spanning the nuclear envelope. The nuclear transport of proteins is usually mediated by a family of transport receptors known as karyopherins. Karyopherins bind to their cargoes via recognition of nuclear localization signal (NLS) for nuclear import or nuclear export signal (NES) for export to form a transport complex. Its transport through NPC is facilitated by transient interactions between the karyopherins and NPC components. The interactions of karyopherins with their cargoes are regulated by GTPase Ran. In the current review, we describe the NPC structure, NLS, and NES, as well as the model of classic Ran-dependent transport, with special emphasis on existing alternative mechanisms; we also propose a classification of the basic mechanisms of protein transport regulation.  相似文献   

2.
Nuclear lamins are important structural and functional proteins in mammalian cells, but little is known about the mechanisms and cofactors that regulate their traffic into the nucleus. Here, we demonstrate that trafficking of lamin A, but not lamin B1, and its assembly into the nuclear envelope are regulated by sorting nexin 6 (SNX6), a major component of the retromer that targets proteins and other molecules to specific subcellular locations. SNX6 interacts with lamin A in vitro and in vivo and links it to the outer surface of the endoplasmic reticulum in human and mouse cells. SNX6 transports its lamin A cargo to the nuclear envelope in a process that takes several hours. Lamin A protein levels in the nucleus augment or decrease, respectively, upon gain or loss of SNX6 function. We further show that SNX6-dependent lamin A nuclear import occurs across the nuclear pore complex via a RAN-GTP-dependent mechanism. These results identify SNX6 as a key regulator of lamin A synthesis and incorporation into the nuclear envelope.  相似文献   

3.
4.
Many Gram-negative pathogens use a type III secretion machine to translocate protein toxins across the bacterial cell envelope. Pathogenic Yersinia spp. export at least 14 Yop proteins via a type III machine, which recognizes secretion substrates by signals encoded in yop mRNA or chaperones bound to unfolded Yop proteins. During infection, substrate recognition appears to be regulated in a manner that allows the Yersinia type III pathway to direct Yops to the bacterial envelope, the extracellular medium or into the cytosol of host cells.  相似文献   

5.
Active transport of proteins into the nucleus   总被引:3,自引:0,他引:3  
P Wagner  J Kunz  A Koller  M N Hall 《FEBS letters》1990,275(1-2):1-5
Nuclear proteins are actively and posttranslationally transported across the nuclear envelope. This transport is a highly selective process that can be divided into two steps, receptor-binding followed by translocation through the nuclear envelope. Receptor-binding is mediated by nuclear localization signals that have been identified in many nuclear proteins. Translocation is energy-dependent and occurs through the nuclear pore complex.  相似文献   

6.
Identification of a major polypeptide of the nuclear pore complex   总被引:63,自引:44,他引:19       下载免费PDF全文
The nuclear pore complex is a prominent structural component of the nuclear envelope that appears to regulate nucleoplasmic molecular movement. Up to now, none of its polypeptides have been defined. To identify possible pore complex proteins, we fractionated rat liver nuclear envelopes and microsomal membranes with strong protein perturbants into peripheral and intrinsic membrane proteins, and compared these fractions on SDS gels. From this analysis, we identified a prominent 190-kilodalton intrinsic membrane polypeptide that occurs specifically in nuclear envelopes. Lectin binding studies indicate that this polypeptide (gp 190) is the major nuclear envelope glycoprotein. Upon treatment of nuclear envelopes with Triton X-100, gp 190 remains associated with a protein substructure of the nuclear envelope consisting of pore complexes and nuclear lamina. We prepared monospecific antibodies to gp 190 for immunocytochemical localization. Immunofluorescence staining of tissue culture cells suggests that gp 190 occurs exclusively in the nucleus during interphase. This polypeptide becomes dispersed throughout the cell in mitotic prophase when the nuclear envelope is disassembled, and subsequently returns to the nuclear surfaces during telophase when the nuclear envelope is reconstructed. Immunoferritin labeling of Triton-treated rat liver nuclei demonstrates that gp 190 occurs exclusively in the nuclear pore complex, in the regions of the cytoplasmic (and possibly nucleoplasmic) pore complex annuli. A polypeptide that cross-reacts with gp 190 is present in diverse vertebrate species, as shown by antibody labeling of nitrocellulose SDS gel transfers. On the basis of its biochemical characteristics, we suggest that gp 190 may be involved in anchoring the pore complex to nuclear envelope membranes.  相似文献   

7.
Transport into and out of the nucleus.   总被引:1,自引:0,他引:1  
I G Macara 《Microbiology and molecular biology reviews》2001,65(4):570-94, table of contents
  相似文献   

8.
Many essential processes in eukaryotic cells depend on regulated molecular exchange between its two major compartments, the cytoplasm and the nucleus. In general, nuclear import of macromolecular complexes is dependent on specific peptide signals and their recognition by receptors that mediate translocation through the nuclear pores. Here we address the question of how protein products bearing such nuclear localization signals arrive at the nuclear membrane before import, i.e., by simple diffusion or perhaps with assistance of cytoskeletal elements or cytoskeleton-associated motor proteins. Using direct single-particle tracking and detailed statistical analysis, we show that the presence of nuclear localization signals invokes active transport along microtubules in a cell-free Xenopus egg extract. Chemical and antibody inhibition of minus-end directed cytoplasmic dynein blocks this active movement. In the intact cell, where microtubules project radially from the centrosome, such an interaction would effectively deliver nuclear-targeted cargo to the nuclear envelope in preparation for import.  相似文献   

9.
Asymmetric localization of Ran regulators (RanGAP1 and RanGEF/RCC1) produces a gradient of RanGTP across the nuclear envelope. In higher eukaryotes, the nuclear envelope breaks down as the cell enters mitosis (designated "open" mitosis). This nuclear envelope breakdown (NEBD) leads to collapse of the RanGTP gradient and the diffusion of nuclear and cytoplasmic macromolecules in the cell, resulting in irreversible progression of the cell cycle. On the other hand, in many fungi, chromosome segregation takes place without NEBD (designated "closed" mitosis). Here we report that in the fission yeast Schizosaccharomyces pombe, despite the nuclear envelope and the nuclear pore complex remaining intact throughout both the meiotic and mitotic cell cycles, nuclear proteins diffuse into the cytoplasm transiently for a few minutes at the onset of anaphase of meiosis II. We also found that nuclear protein diffusion into the cytoplasm occurred coincidently with nuclear localization of Rna1, an S. pombe RanGAP1 homolog that is usually localized in the cytoplasm. These results suggest that nuclear localization of RanGAP1 and depression of RanGTP activity in the nucleus may be mechanistically tied to meiosis-specific diffusion of nuclear proteins into the cytoplasm. This nucleocytoplasmic shuffling of RanGAP1 and nuclear proteins represents virtual breakdown of the nuclear envelope.  相似文献   

10.
The nuclear envelope in muscular dystrophy and cardiovascular diseases   总被引:1,自引:0,他引:1  
Considerable interest has been focused on the nuclear envelope in recent years following the realization that several human diseases are linked to defects in genes encoding nuclear envelope specific proteins, most notably A-type lamins and emerin. These disorders, described as laminopathies or nuclear envelopathies, include both X-linked and autosomal dominant forms of Emery–Dreifuss muscular dystrophy, dilated cardiomyopathy with conduction system defects, limb girdle muscular dystrophy 1B with atrioventricular conduction disturbances, and Dunnigan-type familial partial lipodystrophy. Certain of these diseases are associated with nuclear structural abnormalities that can be seen in a variety of cells and tissues. These observations clearly demonstrate that A-type lamins in particular play a central role, not only in the maintenance of nuclear envelope integrity but also in the large-scale organization of nuclear architecture. What is not obvious, however, is why defects in nuclear envelope proteins that are found in most adult cell types should give rise to pathologies associated predominantly with skeletal and cardiac muscle and adipocytes. The recognition of these various disorders now raises the novel possibility that the nuclear envelope may have functions that go beyond housekeeping and which impact upon cell-type specific nuclear processes.  相似文献   

11.
Mori Y 《Uirusu》2007,57(2):151-158
Herpesvirus entry into host cells occurs by recognition of specific cellular receptor(s) with viral envelope glycoproteins. Nucleocapsids formed in nucleus are released into cytoplasm, and acquire tegument proteins there. Nucleocapsids with tegument proteins bud into intracellular vesicles formed in infected cells, which are thought to be derived from Golgi apparatus, trans-Golgi network or endosomes. However, the precise mechanisms involved in virus final envelopment are poorly understood. Here, I review our current knowledge regarding herpesvirus entry into host cells and virus assembly.  相似文献   

12.
We have studied the mitotic reassembly of the nuclear envelope, using antibodies to nuclear marker proteins and NPA58 in F-111 rat fibroblast cells. In earlier studies we have proposed that NPA58, a 58 kDa rat nuclear protein, is involved in nuclear protein import. In this report, NPA58 is shown to be localized on the cytoplasmic face of the envelope in interphase cells, in close association with nuclear pores. In mitotic cells NPA58 is dispersed in the cytoplasm till anaphase. The targeting of NPA58 to the reforming nuclear envelope in early telophase coincides with the recruitment of a well-characterized class of nuclear pore proteins recognized by the antibody mAb 414, and occurs prior to the incorporation of lamin B1 into the envelope. Significant protein import activity is detectable only after localization of NPA58 in the newly-formed envelope. The early targeting of NPA58 is consistent with its proposed role in nuclear transport.  相似文献   

13.
The majority of chloroplast proteins is nuclear-encoded and therefore synthesized on cytosolic ribosomes. In order to enter the chloroplast, these proteins have to cross the double-membrane surrounding the organelle. This is achieved by means of two hetero-oligomeric protein complexes in the outer and inner envelope, the Toc and Tic translocon. The process of chloroplast import is highly regulated on both sides of the envelope membranes. Our studies indicate the existence of an undescribed mode of control for this process so far, at the same time providing further evidence that the chloroplast is integrated into the calcium-signalling network of the cell. In pea chloroplasts, the calmodulin inhibitor Ophiobolin A as well as the calcium ionophores A23187 and Ionomycin affect the translocation of those chloroplast proteins that are imported with an N-terminal cleavable presequence. Import of these proteins is inhibited in a concentration-dependent manner. Addition of external calmodulin or calcium can counter the effect of these inhibitors. Translocation of chloroplast proteins that do not possess a cleavable transit peptide, that is outer envelope proteins or the inner envelope protein Tic32, is not affected. These results suggest that the import of a certain subset of chloroplast proteins is regulated by calcium. Our studies furthermore indicate that this regulation occurs downstream of the Toc translocon either within the intermembrane space or at the inner envelope translocon. A potential promoter of the calcium regulation is calmodulin, a protein well known as part of the plant's calcium signalling system.  相似文献   

14.
Formation of the nuclear envelope (NE) around segregated chromosomes occurs by the reshaping of the endoplasmic reticulum (ER), a reservoir for disassembled nuclear membrane components during mitosis. In this study, we show that inner nuclear membrane proteins such as lamin B receptor (LBR), MAN1, Lap2β, and the trans-membrane nucleoporins Ndc1 and POM121 drive the spreading of ER membranes into the emerging NE via their capacity to bind chromatin in a collaborative manner. Despite their redundant functions, decreasing the levels of any of these trans-membrane proteins by RNAi-mediated knockdown delayed NE formation, whereas increasing the levels of any of them had the opposite effect. Furthermore, acceleration of NE formation interferes with chromosome separation during mitosis, indicating that the time frame over which chromatin becomes membrane enclosed is physiologically relevant and regulated. These data suggest that functionally distinct classes of chromatin-interacting membrane proteins, which are present at nonsaturating levels, collaborate to rapidly reestablish the nuclear compartment at the end of mitosis.  相似文献   

15.
The metazoan nucleus is disassembled and re-built at every mitotic cell division. The nuclear envelope, including nuclear pore complexes, breaks down at the beginning of mitosis to accommodate the capture of massively condensed chromosomes by the spindle apparatus. At the end of mitosis, a nuclear envelope is newly formed around each set of segregating and de-condensing chromatin. We review the current understanding of the membrane restructuring events involved in the formation of the nuclear membrane sheets of the envelope, the mechanisms governing nuclear pore complex assembly and integration in the nascent nuclear membranes, and the regulated coordination of these events with chromatin de-condensation.  相似文献   

16.
In higher eukaryotes, the nuclear envelope breaks down during mitosis. It reforms during telophase, and nuclear import is reestablished within <10 min after anaphase onset. It is widely assumed that import functionality simultaneously leads to the exclusion of bulk cytoplasmic proteins. However, nuclear pore complex assembly is not fully completed when import capacity is regained, which raises the question of whether the transport and permeability barrier functions of the nuclear envelope are indeed coupled. In this study, we therefore analyzed the reestablishment of the permeability barrier of the nuclear envelope after mitosis in living cells by monitoring the flux of the reversibly photoswitchable fluorescent protein Dronpa from the cytoplasm into the nucleus after photoactivation. We performed many consecutive flux measurements in the same cell to directly monitor changes in nuclear envelope permeability. Our measurements at different time points after mitosis in individual cells show that contrary to the general view and despite the rapid reestablishment of facilitated nuclear import, the nuclear envelope remains relatively permeable for passive diffusion for the first 2 h after mitosis. Our data demonstrate that reformation of the permeability barrier of nuclear pore complexes occurs only gradually and is uncoupled from regaining active import functionality.  相似文献   

17.
18.
The nuclear envelope has traditionally been thought of as a barrier that separates the nucleoplasm from the cytoplasm in eukaryotic cells. Increasing evidence shows that the nuclear envelope also links the inside of the nucleus to the cytoskeleton. Here we discuss recent papers showing that this link occurs through complexes of lamins on the inner aspect of the inner nuclear membrane, transmembrane proteins of the inner nuclear membrane called SUNs and large nesprin isoforms localized specifically to the outer nuclear membrane. These discoveries have implications for nuclear positioning, nuclear migration and pathogenesis of inherited diseases that are caused by mutations in nuclear envelope proteins.  相似文献   

19.
A diverse family of proteins has been discovered with a small C-terminal KASH domain in common. KASH domain proteins are localized uniquely to the outer nuclear envelope, enabling their cytoplasmic extensions to tether the nucleus to actin filaments or microtubules. KASH domains are targeted to the outer nuclear envelope by SUN domains of inner nuclear envelope proteins. Several KASH protein genes were discovered as mutant alleles in model organisms with defects in developmentally regulated nuclear positioning. Recently, KASH-less isoforms have been found that connect the cytoskeleton to organelles other than the nucleus. A widened view of these proteins is now emerging, where KASH proteins and their KASH-less counterparts are cargo-specific adaptors that not only link organelles to the cytoskeleton but also regulate developmentally specific organelle movements.  相似文献   

20.
A nuclear pore complex (NPC) is a large protein assembly that mediates the nucleocytoplasmic exchange of molecules. During the cell cycle, NPCs assemble, disassemble, and dynamically change their distribution on assembled nuclear envelope (NE), whereas in post-mitosis, NPCs are extremely stable. Extensive studies on its components, structure, and building blocks allow the study of its assembly and disassembly at the molecular level. Depending on the location that the initial components of this structure are built (e.g. chromatin versus double lipid bilayers of the nuclear envelope), the regulation and the mechanism of the assembly differ. Moreover, cell cycle dynamics of NPC are linked with INM proteins, lamins, lipid membranes, and the cell cycle signal, which show that NPC dynamics are highly regulated processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号