首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The role of sigma factors in plastid transcription   总被引:30,自引:0,他引:30  
Allison LA 《Biochimie》2000,82(6-7):537-548
  相似文献   

3.
Pentatricopeptide repeat proteins and their emerging roles in plants.   总被引:6,自引:0,他引:6  
Several protein families with tandem repeat motifs play a very important role in plant development and defense. The pentatricopeptide repeat (PPR) protein family, one of the largest families, is the most perplexing one in plants. PPR proteins have been implicated in many crucial functions broadly involving organelle biogenesis and plant development. PPR motifs are degenerate motifs, each with 35-amino-acid sequences and are present in tandem arrays of 2-27 repeats per protein. Although PPR proteins are found in other eukaryotes, their large number is probably required in plants to meet the specific needs of organellar gene expression. The repeats of PPR proteins form a superhelical structure to bind a specific ligand, probably a single-stranded RNA molecule, and modulate its expression. Functional studies on different PPR proteins have revealed their role in organellar RNA processing, fertility restoration in CMS plants, embryogenesis, and plant development. Functional genomic techniques can help identify the diverse roles of the PPR family of proteins in nucleus-organelle interaction and in plant development.  相似文献   

4.
5.
Lectin receptor-like kinases (LecRLKs) are class of membrane proteins found in higher plants that are involved in diverse functions ranging from plant growth and development to stress tolerance. The basic structure of LecRLK protein comprises of a lectin and a kinase domain, which are interconnected by transmembrane region. Here we have identified LecRLKs from Arabidopsis and rice and studied these proteins on the basis of their expression profile and phylogenies. We were able to identify 32 G-type, 42 L-type and 1 C-type LecRLKs from Arabidopsis and 72 L-type, 100 G-type and 1 C-type LecRLKs from rice on the basis of their annotation and presence of lectin as well kinase domains. The whole family is rather intron-less. We have sub-grouped the gene family on the basis of their phylogram. Although on the basis of sequence the members of each group are closely associated but their functions vary to a great extent. The interacting partners and coexpression data of the genes revealed the importance of gene family in physiology and stress related responses. An in-depth analysis on gene-expression suggested clear demarcation in roles assigned to each gene. To gain additional knowledge about the LecRLK gene family, we searched for previously unreported motifs and checked their importance structurally on the basis of homology modelling. The analysis revealed that the gene family has important roles in diverse functions in plants, both in the developmental stages and in stress conditions. This study thus opens the possibility to explore the roles that LecRLKs might play in life of a plant.  相似文献   

6.
转录调控是植物生长发育、逆境反应、信号转导、抗病性等一系列基因表达的最主要调控形式,转录因子是参与基因转录水平调控过程的重要反式因子。单锌指(DNA binding with one finger,DOF)转录因子是植物特有的一类转录因子,包含一个C_2-C_2锌指结构,其N-末端保守的DOF结构域是能与DNA和蛋白相互作用的双重功能域,在植物生长发育过程中参与多种生物学过程。尽管已有研究报道DOF家族基因参与植物抗逆响应,但其在禾谷类重要粮食作物中的作用机制还极不明确。本文通过对禾本科植物DOF家族基因系统进化分析及组织表达和诱导表达分析,综述了DOF家族基因参与植物胁迫应答方面的相关研究进展,为进一步深入了解禾本科植物抗逆机制提供重要参考。  相似文献   

7.
8.
We isolated a cDNA PpSig1 encoding a plastid sigma factor from the moss Physcomitrella patens. The PpSIG1 protein is composed of the conserved subdomains for recognition of -10 and -35 promoter elements, core complex binding and DNA melting. Southern blot analysis showed that the moss sig1 gene is likely a member of a small gene family. Transient expression assay using green fluorescent protein demonstrated that the N-terminal region of PpSIG1 functions as a chloroplast-targeting signal peptide. These observations suggest that multiple nuclear-encoded sigma factors regulate chloroplast gene expression in P. patens.  相似文献   

9.
植物MYB转录因子功能及调控机制研究进展   总被引:2,自引:0,他引:2  
左然  徐美玲  柴国华  周功克 《生命科学》2012,(10):1133-1140
MYB转录因子是植物中数量最大、功能最多样的转录因子之一,在众多生命过程中扮演重要的角色,已成为当前植物基因功能及表达网络调控研究的热点。结合最新研究进展,综述了植物MYB转录因子家族的进化,并着重阐述了生物学功能及表达调控,为进一步分析功能未知的植物MYB转录因子提供参考。  相似文献   

10.
11.
12.
Control of proteolysis is important for plant growth, development, responses to stress, and defence against insects and pathogens. Members of the serpin protein family are likely to play a critical role in this control through irreversible inhibition of endogenous and exogenous target proteinases. Serpins have been found in diverse species of the plant kingdom and represent a distinct clade among serpins in multicellular organisms. Serpins are also found in green algae, but the evolutionary relationship between these serpins and those of plants remains unknown. Plant serpins are potent inhibitors of mammalian serine proteinases of the chymotrypsin family in vitro but, intriguingly, plants and green algae lack endogenous members of this proteinase family, the most common targets for animal serpins. An Arabidopsis serpin with a conserved reactive centre is now known to be capable of inhibiting an endogenous cysteine proteinase. Here, knowledge of plant serpins in terms of sequence diversity, inhibitory specificity, gene expression and function is reviewed. This was advanced through a phylogenetic analysis of amino acid sequences of expressed plant serpins, delineation of plant serpin gene structures and prediction of inhibitory specificities based on identification of reactive centres. The review is intended to encourage elucidation of plant serpin functions.  相似文献   

13.
Sm proteins are members of a family of small proteins that are widespread in biosphere and found associated with RNA metabolism. To date, to our knowledge, only Arabidopsis SAD1 gene has been studied functionally in plant. In this study, 42 Sm genes are identified through comprehensive analysis in Arabidopsis. And a complete overview of this gene family is presented, including the gene structures, phylogeny, chromosome locations, selection pressure and expression. The results reveal that gene duplication contributes to the expansion of the Sm gene family in Arabidopsis genome, diverse expression patterns suggest their functional differentiation and divergence analysis indicates purifying selection as a key role in evolution. Our comparative genomics analysis of Sm genes will provide the first step towards the future experimental research on determining the functions of these genes.  相似文献   

14.
Genome-Wide Analysis of the GRAS Gene Family in Rice and Arabidopsis   总被引:7,自引:0,他引:7  
Tian C  Wan P  Sun S  Li J  Chen M 《Plant molecular biology》2004,54(4):519-532
  相似文献   

15.
Thioredoxins (TRX) are small molecules of proteins that are present in all organisms. TRXs play an important role in diverse functions of plant growth and development. In this study, we performed genome-wide, characterization and expression levels of TRX gene family in cotton. A total of 150 GhTRX proteins were identified in upland cotton and classified into five subfamilies based on their domain compositions. Phylogenetic tree analysis divided TRX genes into seven subgroups. GhTRX genes covered all upland cotton chromosomes, with duplicated gene events. Ka/Ks ratio of three gene pairs was less than 1, suggesting purifying selection. The functions of GhTRX genes were studied using gene ontology, protein localization, and promoter analysis. Furthermore, six GhTRX genes were randomly selected to examine their expression level in cotton development and under various exogenous treatments. The genes showed high expressions in various tissues and at different stages of leaf senescence, also showed high expression under abscisic acid, ethylene, drought, and salinity. This study reveals the first report of TRX family genes in upland cotton. However further studies are needed to elucidate their specific functions in cotton plant.  相似文献   

16.
Rhodobacter sphaeroides sigma(E) is a member of the extra cytoplasmic function sigma factor (ECF) family, whose members have been shown to regulate gene expression in response to a variety of signals. The functions of ECF family members are commonly regulated by a specific, reversible interaction with a cognate anti-sigma factor. In R.sphaeroides, sigma(E) activity is inhibited by ChrR, a member of a newly discovered family of zinc containing anti-sigma factors. We used gel filtration chromatography to gain insight into the mechanism by which ChrR inhibits sigma(E) activity. We found that formation of the sigma(E):ChrR complex inhibits the ability of sigma(E) to form a stable complex with core RNA polymerase. Since the sigma(E):ChrR complex inhibits the ability of the sigma factor to bind RNA polymerase, we sought to identify amino acid substitutions in sigma(E) that altered the sensitivity of this sigma factor to inhibition by ChrR. This analysis identified single amino acid changes in conserved region 2.1 of sigma(E) that either increased or decreased the sensitivity of sigma(E) for inhibition by ChrR. Many of the amino acid residues that alter the sensitivity of sigma(E) to ChrR are located within regions known to be important for interacting with core RNA polymerase in other members of the sigma(70) superfamily. Our results suggest a model where solvent-exposed residues with region 2.1 of sigma(E) interact with ChrR to sterically occlude this sigma factor from binding core RNA polymerase and to inhibit target gene expression.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号