首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hypersensitive site 4 of the human beta globin locus control region.   总被引:28,自引:6,他引:22       下载免费PDF全文
The Locus Control Region (LCR) of the human beta globin gene domain is defined by four erythroid-specific DNasel hypersensitive sites (HSS) located upstream of this multigene cluster. The LCR confers copy number dependent high levels of erythroid specific expression to a linked transgene, independent of the site of integration. To assess the role of the individual hypersensitive sites of the LCR, we have localized HSS4 to a 280bp fragment that is functional both in murine erythroleukaemia (MEL) cells and in transgenic mice. This fragment coincides with the major area of hypersensitivity 'in vivo' and contains a number of DNasel footprints. Bandshift analysis shows that these footprints correspond to binding sites for the erythroid specific proteins GATA1 and NF-E2 and a number of ubiquitous proteins, including jun/fos, Sp1 and TEF2.  相似文献   

2.
The mouse beta-globin gene cluster is regulated, at least in part, by a locus control region (LCR) composed of several developmentally stable DNase I hypersensitive sites located upstream of the genes. In this report, we examine the level of expression of the beta(min) and beta(maj) genes in adult mice in which HS2, HS3, or HS5,6 has been either deleted or replaced by a selectable marker via homologous recombination in ES cells. Primer extension analysis of RNA extracted from circulating reticulocytes and HPLC analysis of globin chains from peripheral red blood cells revealed that all mutations that reduce the overall output of the locus preferentially decrease beta(min) expression over beta(maj). The implications of these findings for the mechanism by which the LCR controls expression of the beta(maj) and beta(min) promoters are discussed.  相似文献   

3.
4.
5.
6.
Using ligation-mediated polymerase chain reaction and in vivo footprinting methods to study the status of DNA-protein interactions at hypersensitive site 3.5 (HS3.5) of the locus control region in K562 and HEL cells, we found that there was protein occupancy in vivo at HS3.5 in both cell lines and the status of DNA-protein interaction was different between K562 and HEL. These data provide direct evidence that specific nuclear factor-DNA complexes form in vivo at functionally important sequence motifs of the HS3.5 in erythroid cells. This indicates that HS3.5 may play an important role in the regulation of the beta-globin gene cluster. K562 is a human erythroleukemia cell line in which the embryonic epsilon-globin gene is predominantly expressed, while the HEL cell line expresses predominantly the fetal beta-globin genes. Thus, HS3.5 might also be involved in the regulation of developmental stage-specific expression of beta-globin genes. Our results are also consistent with the model that each hypersensitive site acts as a functional unit and HS3.5 may facilitate the formation of the HS3 functional unit.  相似文献   

7.
8.
9.
10.
11.
12.
13.
Single-copy human beta-globin transgenes are very susceptible to suppression by position effects of surrounding closed chromatin. However, these position effects are overcome by a 20 kbp DNA fragment containing the locus control region (LCR). Here we show that the 6.5 kbp microlocus LCR cassette reproducibly directs full expression from independent single-copy beta-globin transgenes. By testing individual DNase I-hypersensitive sites (HS) present in the microlocus cassette, we demonstrate that the 1.5 kbp 5'HS2 enhancer fragment does not direct beta-globin expression from single-copy transgenes. In contrast, the 1.9 kbp 5'HS3 fragment directs beta-globin expression in five independent single-copy transgenic mouse lines. Moreover, the 5'HS3 core element and beta-globin proximal promoter sequences are DNase I hypersensitive in fetal liver nuclei of these expressing transgenic lines. Taken together, these results demonstrate that LCR activity is the culmination of at least two separable functions including: (i) a novel activity located in 5'HS3 that dominantly opens and remodels chromatin structure; and (ii) a recessive enhancer activity residing in 5'HS2. We postulate that the different elements of the LCR form a 'holocomplex' that interacts with the individual globin genes.  相似文献   

14.
15.
M Walters  C Kim    R Gelinas 《Nucleic acids research》1991,19(19):5385-5393
A portion of the beta-globin Locus Control Region (LCR), which included DNAse I hypersensitive site 4 (HS4), was analyzed for its interactions with nuclear extracts and its contribution to LCR activity in a functional assay. In gel retardation assays, a short fragment from HS4 formed complexes with nuclear extracts from both erythroid and nonerythroid cells, and a core protected sequence 5'GACTGGC3' was revealed by DNAse I protection and methylation interference studies. This sequence resembles the binding sites of CCAAT-family members. Purified CP-2 but not CP-1 was shown to bind this HS4 sequence in a gel shift reaction, suggesting that the HS4 binding activity shares some sequence specificity with the CCAAT-factor family. Utilizing a transient expression assay in murine erythroleukemia cells, steady-state RNA levels were measured from pairs of LCR constructs linked to distinguishable beta-globin reporter genes. A short DNA fragment from HS4 which included the binding site for this novel binding activity accounted for most of the contribution to high level expression made by the entire HS4 region.  相似文献   

16.
The core of DNase hypersensitive site (HS) 2 from the beta-globin locus control region is a potent enhancer of globin gene expression. Although it has been considered to contain only positive cis-regulatory sequences, our study of the enhancement conferred by segments of HS2 in erythroid cells reveals a novel negative element. Individual cis-regulatory elements from HS2 such as E boxes or Maf-response elements produced as great or greater enhancement than the intact core in mouse erythroleukemia (MEL) cells, indicating the presence of negative elements within HS2. A deletion series through HS2 revealed negative elements at the 5' and 3' ends of the core. Analysis of constructs with and without the 5' negative element showed that the effect is exerted on the promoters of globin genes expressed at embryonic, fetal, or adult stages. The negative effect was observed in bipotential human cells (K562 and human erythroleukemia (HEL) cells), proerythroblastic mouse (MEL) cells, and normal adult human erythroid cells. The novel negative element also functions after stable integration into MEL chromosomes. Smaller deletions at the 5' end of the HS2 core map the negative element within a 20-base pair region containing two conserved sequences.  相似文献   

17.
Chromatin structure was examined at the 3′-boundary region of the human β-globin locus control region hypersensitive site-2 (LCR HS-2) using several footprinting agents. Erythroid K562 cells (possessing HS-2) were damaged by the footprinting agents: hedamycin, bleomycin and four nitrogen mustard analogues. Purified DNA and non-erythroid HeLa cells (lacking HS-2) were also damaged as controls for comparison with K562 cells. The comparison between intact cells and purified DNA showed several protected regions in K562 cells. A large erythroid-specific protected region of 135 bp was found at the boundary of HS-2. The length of this protected region (135 bp) was close to that of DNA contained in a nucleosome core (146 bp). Another two protected regions were found upstream of the protected region. A 16-bp erythroid-specific footprint co-localised with a GATA-1 motif—this indicated that the GATA-1 protein could be involved in positioning the nucleosome. Further upstream, a 100-bp footprint coincided with an AT-rich region. Thus our footprinting results suggest that the 3′-boundary of LCR HS-2 is flanked by a positioned nucleosome and that an erythroid-specific protein binds to the sequence adjacent to the nucleosome and acts to position the nucleosome at the boundary of the hypersensitive site.  相似文献   

18.
Primary structure of the goat beta-globin locus control region   总被引:6,自引:0,他引:6  
The goat beta-globin cluster is composed of a triplicated four-gene set. A locus control region (LCR) containing elements homologous to 5'DNase I hypersensitive sites (HS) 1, 2, and 3 of the human beta-globin LCR has been identified at the 5' end of this locus. We determined 10.2 kb of nucleotide sequence from the goat beta-globin locus control region. Self-comparison of this sequence by dot matrix analysis revealed the presence of six complete and three incomplete artiodactyl repeats. A novel repeated element, termed D repeat, was also identified. Southern blotting analysis demonstrated that these elements exist in the goat genome as a low to medium frequency interspersed repeat family. The absence of any other large region of self-homology (direct or inverted) in the goat LCR suggests that 5'HSs 1, 2, and 3 did not arise through duplication, but rather evolved independently. By comparing goat 5'HS 1 to those of human, rabbit, and mouse, we show a greater than 80% conservation in sequence between the four species. This level of evolutionary conservation suggests that 5'HS 1 plays an important role in the regulation of beta-globin loci.  相似文献   

19.
20.
The beta-globin dominant control region: hypersensitive site 2.   总被引:58,自引:10,他引:48       下载免费PDF全文
The Dominant Control Region (DCR) of the human beta-globin gene locus consists of four strong hypersensitive sites (HSS) upstream of the epsilon-globin gene. Addition of these sites confers copy number dependent expression on the human beta-globin gene in murine erythroleukaemia cells and transgenic mice, at levels comparable with the endogenous mouse globin genes. We have shown previously that a 1.9 kb fragment comprising HSS 2 accounts for 40-50% of the full effect of the DCR. In this paper we describe a deletional analysis of HSS 2. We show that a 225 bp fragment is sufficient to direct high levels of expression of the human beta-globin gene which is copy number dependent and integration site independent. This 225 bp fragment overlaps the major region that is hypersensitive 'in vivo'. DNase I footprinting shows the presence of four binding sites for the erythroid specific protein NF-E1; the three other footprinted regions display a remarkable redundancy of the sequence GGTGG and bind a number of proteins including Sp1 and the CACC box protein. The significance of these results for the regulation of globin gene expression is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号