首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of the efficiency of singlet-singlet energy transfer were used to determine the distance between the hydrophobic binding site and the thiol group required for carbohydrate-binding activity of lima bean lectin. 1-Anilino-8-naphthalenesulfonate, bound to the hydrophobic binding site by noncovalent interactions, was used as the donor. Two different nonfluorescent probes were used as the acceptors: a mercurial, 2-chloromercuri-4-nitrophenol, and a maleimide, 4-dimethylaminophenylazophenyl-4'-maleimide. Acceptor was covalently attached to the thiol group at the putative carbohydrate binding site. The efficiency of energy transfer in both the 1-anilino-8-naphthalenesulfonate/2-chloromercuri-4-nitrophenol and and 1-anilino-8-naphthalenesulfonate/4-dimethylaminophenylazophenyl-4' -maleimide donor-acceptor systems indicated an apparent distance of 28 A between the two sites, assuming that the transition dipole of the donor is not correlated with respect to that of the acceptor and that each donor is quenched by a single acceptor. Using an alternate model wherein each donor is equally quenched by two acceptors on adjacent subunits, an apparent distance of 33.4 A was calculated. The fact that two donor-acceptor pairs with different F?rster's critical distance parameters yielded the same distance between the sites is consistent with our assumption of uncorrelated donor-acceptor transition dipoles.  相似文献   

2.
Fluorescence resonance energy transfer (FRET) measurements offer a reliable and noninvasive approach to studying protein and lipid colocalization in cells. We have considered systems in which FRET occurs as intramolecular and/or intermolecular process. The proposed dynamic FRET model shows that in the case of intermolecular process the degree of aggregation only slightly affects the energy transfer efficiency. The theory was tested on a set of donor-acceptor pairs in which energy transfer occurs intramolecularly, intermolecularly, or both. The obtained experimental results are in a good agreement with the proposed model. It is well known that the energy transfer efficiency depends both on the distance between the donor and acceptor molecules and the relative orientation of their respective transition dipole moments. This dual dependence often leads to ambiguity. In this article, we show how FRET efficiency can be significantly reduced even in highly coupled system through conformational restrictions in the donor-acceptor pair. Importantly, such restrictions can be imposed on the system by cell fixation, a procedure routinely used when conducting FRET measurements.  相似文献   

3.
The model of resonance energy transfer (RET) in membrane systems containing donors randomly distributed over two parallel planes separated by fixed distance and acceptors confined to a single plane is presented. Factors determining energy transfer rate are considered with special attention being given to the contribution from orientational heterogeneity of the donor emission and acceptor absorption transition dipoles. Analysis of simulated data suggests that RET in membranes, as compared to intramolecular energy transfer, is substantially less sensitive to the degree of reorientational freedom of chromophores due to averaging over multiple donor-acceptor pairs. The uncertainties in the distance estimation resulting from the unknown mutual orientation of the donor and acceptor are analyzed.  相似文献   

4.
We studied the fluorescence resonance energy transfer (FRET) efficiency of different donor-acceptor labeled model DNA systems in aqueous solution from ensemble measurements and at the single molecule level. The donor dyes: tetramethylrhodamine (TMR); rhodamine 6G (R6G); and a carbocyanine dye (Cy3) were covalently attached to the 5'-end of a 40-mer model oligonucleotide. The acceptor dyes, a carbocyanine dye (Cy5), and a rhodamine derivative (JA133) were attached at modified thymidine bases in the complementary DNA strand with donor-acceptor distances of 5, 15, 25 and 35 DNA-bases, respectively. Anisotropy measurements demonstrate that none of the dyes can be observed as a free rotor; especially in the 5-bp constructs the dyes exhibit relatively high anisotropy values. Nevertheless, the dyes change their conformation with respect to the oligonucleotide on a slower time scale in the millisecond range. This results in a dynamic inhomogeneous distribution of donor/acceptor (D/A) distances and orientations. FRET efficiencies have been calculated from donor and acceptor fluorescence intensity as well as from time-resolved fluorescence measurements of the donor fluorescence decay. Dependent on the D/A pair and distance, additional strong fluorescence quenching of the donor is observed, which simulates lower FRET efficiencies at short distances and higher efficiencies at longer distances. On the other hand, spFRET measurements revealed subpopulations that exhibit the expected FRET efficiency, even at short D/A distances. In addition, the measured acceptor fluorescence intensities and lifetimes also partly show fluorescence quenching effects independent of the excitation wavelength, i.e. either directly excited or via FRET. These effects strongly depend on the D/A distance and the dyes used, respectively. The obtained data demonstrate that besides dimerization at short D/A distances, an electron transfer process between the acceptor Cy5 and rhodamine donors has to be taken into account. To explain deviations from FRET theory even at larger D/A distances, we suggest that the pi-stack of the DNA double helix mediates electron transfer from the donor to the acceptor, even over distances as long as 35 base pairs. Our data show that FRET experiments at the single molecule level are rather suited to resolve fluorescent subpopulations in heterogeneous mixture, information about strongly quenched subpopulations gets lost.  相似文献   

5.
We examined the effects of metallic silver particles on resonance energy transfer (RET) between fluorophores covalently bound to DNA. A coumarin donor and a Cy3 acceptor were positioned at opposite ends of a 23-bp double helical DNA oligomer. In the absence of silver particles the extent of RET is near 9%, consistent with a Forster distance R(0) near 50 A and a donor to acceptor distance near 75 A. The transfer efficiency increased when the solution of AMCA-DNA-Cy3 was placed between two quartz plates coated with silver island films to near 64%, as determined by both steady-state and time-resolved measurements. The apparent R(0) in the presence of silver island films increases to about 110 A. These values of the transfer efficiency and R(0) represent weighted averages for donor-acceptor pairs near and distant from the metallic surfaces, so that the values at an optimal distance are likely to be larger. The increased energy transfer is observed only between two sandwiched silvered slides. When we replaced one silvered slide with a quartz plate the effect vanished. Also, the increased energy transfer was not observed for silvered slides separated more than a few micrometers. These results suggest the use of metal-enhanced RET in PCR, hybridization, and other DNA assays, and the possibility of controlling energy transfer by the distance between silver surfaces.  相似文献   

6.
A general model is developed to simulate dipole-dipole resonance energy transfer in spatially restricted systems. At low concentrations of acceptor molecule, the overall quantum yield of a donor population can be defined quantitatively in terms of transfer to multiple defined acceptor regions. Energy transfer at higher acceptor concentrations can be approximated by assuming an exponential dependence of relative quantum yield on the acceptor concentrations. Through geometrical manipulations, this algorithm has been applied using an electronic calculator to systems in which donor-acceptor interaction is limited by unique steric restriction on donor and acceptor distribution within lipid aggregates. The systems that have been analyzed include monomolecular films, bilayer membranes, small cliscoidal lipid-protein complexes and plasma lipoproteins. The observed energy transfer from N-(2-naphthyl)-23.24-dinor-5-cholen-22-amide-3β-ol to N-dansyldimyristoylphosphatidyl-ethanolamine in a dimyristoylphosphatidylcholine bilayer agrees with that predicted by this model.  相似文献   

7.

Background

Förster resonance energy transfer (FRET) is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRET as a tool for measuring protein-protein interactions inside living cells requires an understanding of how FRET changes with multiple acceptors. When multiple FRET acceptors are present it is assumed that a quantum of energy is either released from the donor, or transferred in toto to only one of the acceptors present. The rate of energy transfer between the donor and a specific acceptor (kD→A) can be measured in the absence of other acceptors, and these individual FRET transfer rates can be used to predict the ensemble FRET efficiency using a simple kinetic model where the sum of all FRET transfer rates is divided by the sum of all radiative and non-radiative transfer rates.

Methodology/Principal Findings

The generality of this approach was tested by measuring the ensemble FRET efficiency in two constructs, each containing a single fluorescent-protein donor (Cerulean) and either two or three FRET acceptors (Venus). FRET transfer rates between individual donor-acceptor pairs within these constructs were calculated from FRET efficiencies measured after systematically introducing point mutations to eliminate all other acceptors. We find that the amount of energy transfer observed in constructs having multiple acceptors is significantly greater than the FRET efficiency predicted from the sum of the individual donor to acceptor transfer rates.

Conclusions/Significance

We conclude that either an additional energy transfer pathway exists when multiple acceptors are present, or that a theoretical assumption on which the kinetic model prediction is based is incorrect.  相似文献   

8.
Investigation of protein-protein associations is important in understanding structure and function relationships in living cells. Using Förster-type resonance energy transfer between donor and acceptor labeled monoclonal antibodies we can assess the cell surface topology of membrane proteins against which the antibodies were raised. In our current work we elaborated a quantitative image microscopic technique based on the measurement of fluorescence intensities to calculate the energy transfer efficiency on a pixel-by-pixel basis. We made use of the broad excitation and emission spectrum of cellular autofluorescence for background correction of images. In addition to the reference autofluorescence images (UV background) we recorded three fluorescent images (donor, acceptor and energy transfer signal) of donor-acceptor double labeled samples, and corrected for spectral spillage of the directly excited donor and acceptor fluorescence into the energy transfer image. After careful image registration we were able to calculate the energy transfer efficiency on a pixel-by-pixel basis. In this paper, we also present a critical comparison between results obtained with this method and other approaches (photobleaching and flow cytometric energy transfer measurements).  相似文献   

9.
Z Hillel  C W Wu 《Biochemistry》1976,15(10):2105-2113
A statistical method is presented for the interpretation of intramolecular distance measurements by the fluorescence energy transfer technique in systems for which the detailed geometries of the donor-acceptor pairs are unknown. This method enables calculation of the probability that a specified distance range corresponds to the actual distance to be measured. It makes use of the numerically calculated probability density function for the distance of interest. The two general systems considered are the single donor-acceptor pair and the multi-donor-single-acceptor transfer. In both systems, the statistical method incorporates the uncertainty in the orientation of the donor and acceptor dipoles. In addition, it can take into account the rotational mobility of the donor dipoles determined by time-dependent emission anisotropy measurements. When more than one donor is involved in the transfer process, the uncertainties associated with the number and location of individual donors and the size and shape of the donor distribution are also incorporated in calculating the distance ranges. Application of the method was demonstrated for a wide range of transfer efficiency and Ro values for the single donor-acceptor system. Specific examples are also presented for interpretation of both single donor-acceptor and multi-donor-single-acceptor energy transfer measurements performed in order to reveal the spatial relationship of the sigma subunit and the rifampicin binding site in the Escherichia coli RNA polymerase (see Wu, C.-W., Yarbrough, L. R., Wu, F. Y.-H., and Hillel, Z. (1976), Biochemistry, preceding paper in this issue). Analysis of these energy transfer data by methods which use average values of the unknown geometrical parameters of the system yielded results similar to those obtained by the statistical method. However, the statistical method represents a more realistic approach to the interpretation of energy transfer measurements since it provides information concerning the entire range of possible distances and their relative likelihood.  相似文献   

10.
We use fluorescein as the energy donor and rhodamine as the acceptor to measure the efficiency of fluorescence resonance energy transfer (FRET) in a set of hybridized DNA constructs. The two fluorophores are covalently attached via linkers to two separate oligonucleotides with fluorescein at the 3' end of one oligonucleotide and rhodamine at the 5' end or in the middle of another nucleotide. For the FRET analysis both fluorophore-labeled oligonucleotides are hybridized to adjacent sections of the same DNA template to form a three-component duplex with a one base gap between the two labeled oligonucleotides. A similar configuration is implemented for a quantitative real-time polymerase chain reaction (PCR) with LightCycler technology, where a 1-5 base separation between donor and acceptor is recommended to optimize energy transfer efficiencies. Our constructs cover donor-acceptor separations from 2 to 17 base pairs (approximately 10-70 A). The results show that, when the two fluorophores are located at close distances (less than 8 base separation), FRET efficiencies are above 80%, although there may be ground-state interactions between fluorophores when the separation is under about 6 bases. Modeling calculations are used to predict the structure of these three-component constructs. The duplex mostly retains a normal double helical structure, although slight bending may occur near the unpaired base in the DNA template. Stable and reproducible energy transfer is also observed over the distance range investigated here in real-time thermal cycling. The study identifies important parameters that determine FRET response in applications such as real-time PCR.  相似文献   

11.
Imaging of fluorescence resonance energy transfer (FRET) between fluorescently labeled molecules can measure the timing and location of intermolecular interactions inside living cells. Present microscopic methods measure FRET in arbitrary units, and cannot discriminate FRET efficiency and the fractions of donor and acceptor in complex. Here we describe a stoichiometric method that uses three microscopic fluorescence images to measure FRET efficiency, the relative concentrations of donor and acceptor, and the fractions of donor and acceptor in complex in living cells. FRET stoichiometry derives from the concept that specific donor-acceptor complexes will give rise to a characteristic FRET efficiency, which, if measured, can allow stoichiometric discrimination of interacting components. A first equation determines FRET efficiency and the fraction of acceptor molecules in complex with donor. A second equation determines the fraction of donor molecules in complex by estimating the donor fluorescence lost due to energy transfer. This eliminates the need for acceptor photobleaching to determine total donor concentrations and allows for repeated measurements from the same cell. A third equation obtains the ratio of total acceptor to total donor molecules. The theory and method were confirmed by microscopic measurements of fluorescence from cyan fluorescent protein (CFP), citrine, and linked CFP-Citrine fusion protein, in solutions and inside cells. Together, the methods derived from these equations allow sensitive, rapid, and repeatable detection of donor-, acceptor-, and donor-acceptor complex stoichiometry at each pixel in an image. By accurately imaging molecular interactions, FRET stoichiometry opens new areas for quantitative study of intracellular molecular networks.  相似文献   

12.
Fluorescence resonance energy transfer (FRET) experiments were carried out in the absence of nucleotide (rigor) or in the presence of MgADP between fluorescent donor probes (IAEDANS (5((((2-iodoacetyl)amino)ethyl)amino)-naphthalene-1-sulfonic acid) at Cys-374 or DANSYL (5-dimethylamino naphthalene-1-(N-(5-aminopentyl))sulfonamide) at Gln-41 of actin and acceptor molecules (FHS (6-[fluorescein-5(and 6)-carboxamido] hexanoic acid succinimidyl ester) at Lys-553 of skeletal muscle myosin subfragment 1. The critical F?rster distance (R(0)) was determined to be 44 and 38 A for the IAEDANS-FHS and DANSYL-FHS donor-acceptor pairs, respectively. The efficiency of energy transfer between the acceptor molecules at Lys-553 of myosin and donor probes at Cys-374 or Gln-41 of actin was calculated to be 0.78 +/- 0.01 or 0.94 +/- 0.01, respectively, corresponding to distances of 35.6 +/- 0.4 A and 24.0 +/- 1.6 A, respectively. MgADP had no significant effect on the distances observed in rigor. Thus, rearrangements in the acto-myosin interface are likely to occur elsewhere than in the lower 50-kDa subdomain of myosin as its affinity for actin is weakened by MgADP binding.  相似文献   

13.
Lanthanide chelates used as donors offer several advantages over classical fluorescence probes in resonance energy transfer distance measurements. One of these advantages is that energy transfer can be conveniently measured using sensitized acceptor decay measurements. In these measurements a long microsecond lifetime of the lanthanide donor and a short nanosecond lifetime of the acceptor allow elimination of a signal from the unquenched donor. Therefore, the decay of sensitized acceptor emission reflects decay properties of the donor engaged in energy transfer. The purpose of this work is to point out the importance of the fact that the amplitude of the sensitized acceptor signal is dependent on the resonance energy transfer rate constant. Thus, in the case where there are two or more populations of donors with different energy transfer rate constants, the relative amplitudes of corresponding decay components observed in sensitized acceptor emission do not represent the relative populations of the donors. We use simulations to show that these effects can be very significant. A minor population of donors with a high rate of energy transfer can produce sensitized acceptor decay which is dominated by a decay component corresponding to this minor donor population. Using a simple experimental system of rapid diffusion limit energy transfer between a europium chelate and Cy5 acceptor we show that the predicted dependency of sensitized acceptor decay amplitude on the energy transfer rate is indeed observed. We suggest that the relative importance of decay components observed in sensitized acceptor emission should be evaluated after an appropriate correction of their values such that they properly reflect possible different populations of donors. We describe a method to perform such correction.  相似文献   

14.
Intramonomer fluorescence resonance energy transfer between the donor epsilon-ATP bound to the nucleotide site and the acceptor N-(4-dimethylamino-3,5-dinitrophenyl)maleimide (DDPM) or 4-dimethylaminophenyl-azophenyl-4'-maleimide bound to Cys-10 in G-actin was measured. The donor-acceptor distance was calculated to be about 40 A. The intermonomer energy transfer in F-actin occurring between epsilon-ADP and DABMI was also measured. The radial coordinate of Cys-10 was calculated to be 25 A based on the helical symmetry of F-actin and the recently calculated radial coordinate of the nucleotide binding site in F-actin i.e. 25 A (Miki, M., Hambly, B. and dos Remedios, C.G. (1986) Biochim. Biophys. Acta 871, 137-141). (The assumption has been made in calculating these distances that the energy donor and acceptor rotate rapidly relative to the fluorescence lifetime.) Corresponding distances separating the donor nucleotide in one monomer from acceptors on Cys-10 in the first and second nearest neighbours in F-actin are 39-40 A and 41-43 A.  相似文献   

15.
In enzyme systems where fast motions are thought to contribute to H-transfer efficiency, the distance between hydrogen donor and acceptor is a very important factor. Sub-ångstrom changes in donor-acceptor distance can have a large effect on the rate of reaction, so a sensitive probe of these changes is a vital tool in our understanding of enzyme function. In this study we use ultrafast transient absorption spectroscopy to investigate the photoinduced electron transfer rates, which are also very sensitive to small changes in distance, between coenzyme analog, NAD(P)H4, and the isoalloxazine center in the model flavoenzymes morphinone reductase (wild-type and selected variants) and pentaerythritol tetranitrate reductase (wild-type). It is shown that upon addition of coenzyme to the protein the rate of photoinduced electron transfer is increased. By comparing the magnitude of this increase with existing values for NAD(P)H4-FMN distances, based on charge-transfer complex absorbance and experimental kinetic isotope effect reaction data, we show that this method can be used as a sensitive probe of donor-acceptor distance in a range of enzyme systems.  相似文献   

16.
In enzyme systems where fast motions are thought to contribute to H-transfer efficiency, the distance between hydrogen donor and acceptor is a very important factor. Sub-ångstrom changes in donor-acceptor distance can have a large effect on the rate of reaction, so a sensitive probe of these changes is a vital tool in our understanding of enzyme function. In this study we use ultrafast transient absorption spectroscopy to investigate the photoinduced electron transfer rates, which are also very sensitive to small changes in distance, between coenzyme analog, NAD(P)H4, and the isoalloxazine center in the model flavoenzymes morphinone reductase (wild-type and selected variants) and pentaerythritol tetranitrate reductase (wild-type). It is shown that upon addition of coenzyme to the protein the rate of photoinduced electron transfer is increased. By comparing the magnitude of this increase with existing values for NAD(P)H4-FMN distances, based on charge-transfer complex absorbance and experimental kinetic isotope effect reaction data, we show that this method can be used as a sensitive probe of donor-acceptor distance in a range of enzyme systems.  相似文献   

17.
Resonance energy transfer between lipid-bound fluorescent probe 3-methoxybenzanthrone as a donor and heme group of cytochrome c as an acceptor has been examined to ascertain the protein disposition relative to the surface of model membranes composed of phosphatidylcholine and cardiolipin (10, 50 and 80 mol%). The model of energy transfer in membrane systems has been extended to the case of donors distributed between the two-bilayer leaflets and acceptors located at the outer monolayer taking into account the donor and acceptor orientational behavior. Assuming specific protein orientation relative to the membrane surface and varying lateral distance of the donor-acceptor closest approach in the range from 0 to 3.5 nm the limits for possible heme distances from the bilayer midplane have been found to be 0.8-3 nm (10 mol% CL), 0-2.6 nm (50 mol% CL), and 1.4-3.3 nm (80 mol% CL).  相似文献   

18.
Water‐soluble CdS quantum dots (QDs) were prepared using mercaptoacetic acid (TGA) as the stabilizer in an aqueous system. A fluorescence resonance energy transfer (FRET) system was constructed between water‐soluble CdS QDs (donor) and Eosin Y (acceptor). Several factors that impacted the fluorescence spectra of the FRET system, such as pH (3.05–10.10), concentration of Eosin Y (2–80 mg/L) and concentration of CdS QDs (2–80 mg/L), were investigated and refined. Donor‐to‐acceptor ratios, the energy transfer efficiency (E) and the distance (r) between CdS QDs and Eosin Y were obtained. The results showed that a FRET system could be established between water‐soluble CdS QDs and Eosin Y at pH 5.0; donor‐to‐acceptor ratios demonstrated a 1: 8 proportion of complexes; the energy transfer efficiency (E) and the distance (r) between the QDs and Eosin Y were 20.07% and 4.36 nm,respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
J A Gardner  K S Matthews 《Biochemistry》1991,30(10):2707-2712
Energy transfer between the two tryptophan residues in the lactose repressor protein and the fluorescent moiety of the cysteine-specific reagent N-[[(iodoacetyl)amino]ethyl]-5-naphthylamine-1-sulfonate (1,5-IAEDANS) has been examined. Modification of repressor with this compound did not affect operator or inducer binding. 1,5-IAEDANS reacted primarily with Cys140 in wild-type repressor [Schneider et al. (1984) Biochemistry 23, 2221]; in the presence of inducer, modification at Cys107 increased, while reaction at Cys140 remained unchanged. Energy transfer between tryptophans and the AEDANS moiety(ies) in wild-type lac repressor occurred with an efficiency of 6.7 +/- 1.9% in the absence and 7.8 +/- 1.6% in the presence of inducer. The distance between the Trp donor(s) and the acceptor in wild-type repressor was calculated to be in the range approximately 35 A under both conditions. The similarity in efficiency despite large differences in the amount of acceptor attached to Cys107 when inducer is bound indicates that the AEDANS group at position 107 does not participate significantly in energy transfer and that the label at position 140 acts as the primary acceptor group. The similarity of energy-transfer efficiency (7.1 +/- 3.8%) observed for 1,5-IAEDANS-modified monomeric mutant repressor (Y282D) indicates that the transfer is primarily intrasubunit in the native tetramer. Measurements using two mutant repressors (each with a single tryptophan and modified with 1,5-IAEDANS) demonstrated that both tryptophans can serve as donor in the energy-transfer process. The W201Y repressor (containing Trp220) exhibited a transfer efficiency lower than wild type (5.6 +/- 2.4%), corresponding to a slightly larger distance between the donor-acceptor pair in this mutant.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
An approach is described using fluorescence resonance energy transfer (FRET) to detect inhomogeneity in lipid organization, on distance scales of the order of tens of nanometers or greater, in lipid bilayers. This approach compares the efficiency of energy transfer between two matched fluorescent lipid donors, differing in their affinities for ordered versus disordered regions of the bilayer, and an acceptor lipid that distributes preferentially into disordered regions. Inhomogeneities in bilayer organization, on spatial scales of tens of nanometers or greater, are detected as a marked difference in the efficiencies of quenching of fluorescence of the two donor species by the acceptor. Using a novel pair of 7-nitrobenz-2-oxa-1,3-diazol-4-yl (NBD)-labeled tetraacyl lipids as donor species with a rhodaminyl-labeled acceptor, this strategy faithfully reports homo- versus inhomogeneous mixing in each of several lipid bilayer systems whose organization on the FRET distance scale can be predicted from previous findings. Interestingly, however, the present FRET method reports clear evidence of inhomogeneity in the organization of mixtures combining sphingomyelin or saturated phospholipids with unsaturated phospholipids and physiological proportions of cholesterol, even at physiological temperatures where these systems have been reported to appear homogeneous by fluorescence microscopy. These results indicate that under physiological conditions, lipid mixtures mimicking the lipid composition of the outer leaflet of the plasma membrane can form domains on a spatial scale comparable to that inferred for the dimensions of lipid rafts in biological membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号