首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The use of GFP fusion proteins has dramatically changed our view of how the cell nucleus is organized and how functions are carried out. In this review we focus on recent advances related to the dynamics of chromatin domains, as well as the dynamics of nuclear proteins and several nuclear organelles.  相似文献   

5.
Hydrogen peroxide-inducible clone-5 (Hic-5), belongs to the group III LIM domain protein family and contains four carboxyl-terminal LIM domains (LIM1-LIM4). In addition to its role in focal adhesion signaling, Hic-5 acts in the nucleus as a coactivator for some steroid hormone receptors such as the glucocorticoid receptor (GR) and androgen receptor (AR). Based upon its effect on AR transactivation, Hic-5 has also been designated as ARA55. Here, we report mapping studies of Hic-5/ARA55 functional domains and establish that LIM3 and LIM4 are necessary for maximal effects on GR transactivation. However, results from yeast two-hybrid assays demonstrated that these two LIM domains together, while necessary, are not sufficient to interact with the tau2 transactivation domain of GR. LIM4 also functions as a nuclear matrix targeting sequence (NMTS) for Hic-5/ARA55, as it is both necessary and sufficient to target a heterologous protein to the nuclear matrix. Thus, as suggested from previous analysis of LIM domain-containing proteins, separate but highly related LIM domains serve distinct functions.  相似文献   

6.
Telomeres--what's new at the end?   总被引:3,自引:0,他引:3  
Telomeres are specialized chromatin domains located at the ends of chromosomes. They are involved in chromosome replication, stability and localization in the nucleus. In addition to these functions, recent work suggests that telomeres are involved in such superficially diverse cellular phenomena as ageing, cancer, nuclear architecture and nuclear/cellular division.  相似文献   

7.
Protein 4.1R, a multifunctional structural protein, acts as an adaptor in mature red cell membrane skeletons linking spectrin-actin complexes to plasma membrane-associated proteins. In nucleated cells protein 4.1 is not associated exclusively with plasma membrane but is also detected at several important subcellular locations crucial for cell division. To identify 4.1 domains having critical functions in nuclear assembly, 4.1 domain peptides were added to Xenopus egg extract nuclear reconstitution reactions. Morphologically disorganized, replication deficient nuclei assembled when spectrin-actin-binding domain or NuMA-binding C-terminal domain peptides were present. However, control variant spectrin-actin-binding domain peptides incapable of binding actin or mutant C-terminal domain peptides with reduced NuMA binding had no deleterious effects on nuclear reconstitution. To test whether 4.1 is required for proper nuclear assembly, 4.1 isoforms were depleted with spectrin-actin binding or C-terminal domain-specific antibodies. Nuclei assembled in the depleted extracts were deranged. However, nuclear assembly could be rescued by the addition of recombinant 4.1R. Our data establish that protein 4.1 is essential for nuclear assembly and identify two distinct 4.1 domains, initially characterized in cytoskeletal interactions, that have crucial and versatile functions in nuclear assembly.  相似文献   

8.
9.
Active genes at the nuclear pore complex   总被引:2,自引:0,他引:2  
The nucleus is spatially and functionally organized and its architecture is now seen as a key contributor to genome functions. A central component of this architecture is the nuclear envelope, which is studded with nuclear pore complexes that serve as gateways for communication between the nucleoplasm and cytoplasm. Although the nuclear periphery has traditionally been described as a repressive compartment and repository for gene-poor chromosome regions, several recent studies in yeast have demonstrated that repressive and activating domains can both be positioned at the periphery of the nucleus. Moreover, association with the nuclear envelope favors the expression of particular genes, demonstrating that nuclear organization can play an active role in gene regulation.  相似文献   

10.
Insulator elements can be classified as enhancer-blocking or barrier insulators depending on whether they interfere with enhancer-promoter interactions or act as barriers against the spreading of heterochromatin. The former class may exert its function at least in part by attaching the chromatin fiber to a nuclear substrate such as the nuclear matrix, resulting in the formation of chromatin loops. The latter class functions by recruiting histone-modifying enzymes, although some barrier insulators have also been shown to create chromatin loops. These loops may correspond to functional nuclear domains containing clusters of co-expressed genes. Thus, insulators may determine specific patterns of nuclear organization that are important in establishing specific programs of gene expression during cell differentiation and development.  相似文献   

11.
Tropomodulin (Tmod) is a cytoskeletal actin-capping protein that interacts with tropomyosin at the pointed end of actin filaments. E-Tmod is an isoform that expresses predominantly in cardiac cells and slow skeletal muscle fibers. We unexpectedly discovered significant levels of Tmod in nuclei and then defined peptide domains in Tmod responsible for nuclear import and export. These domains resemble, and function as, a nuclear export signal (NES) and a pattern 4 nuclear localization signal (NLS). Both motifs are conserved in other Tmod isoforms and across species. Comparisons of wild-type Tmod and Tmod carrying mutations in these peptide domains revealed that Tmod normally traffics through the nucleus. These observations logically presuppose that Tmod functions may include a nuclear role. Indeed, increasing Tmod in the nucleus severely hampered myogenic differentiation and selectively suppressed muscle-specific gene expression (endogenous p21, myosin heavy chain, myogenin, and Tmod) but did not affect endogenous glyceraldehyde-3-phosphate dehydrogenase or expression from a transfected E-GFP vector. These results suggest that, at least in myogenic cells, nuclear Tmod may be involved in the differentiation process.  相似文献   

12.
The aminoacyl tRNA synthetases arose early in evolution to establish the genetic code during translation. Long thought of as cytoplasmic enzymes with a single defined function, new studies have demonstrated their roles in nuclear and extracellular signaling pathways, where they regulate angiogenesis, inflammation, mTor signaling, tumorigenesis, and more. These novel functions are typically associated with novel domains added to higher eukaryote tRNA synthetases, and specific resected forms that are generated by alternative splicing and natural proteolysis. The tRNA synthetases are now seen as central “nodes” that use their novel domains to connect with multiple-cell signaling pathways through a variety of interacting partners. These partners include nuclear proteins, extracellular receptors, cytoplasmic proteins, and cellular RNAs. This new biology from tRNA synthetases is an endless frontier.  相似文献   

13.
The early gene products IE2 and PE38 of Autographa californica multicapsid nuclear polyhedrosis virus localize to distinct nuclear domains after transient expression. Here, the nuclear localization pattern and the putative association with cellular proteins have been determined during virus infection to shed light on the functional significance of the nuclear domains. IE2 was always localized to distinct nuclear structures while PE38 was partly present in nuclear dots. Confocal imaging indicated colocalization of PE38 and IE2 to common domains, prominently at 2 h p.i. The nuclear dot localization of PE38 in infected cells was different from that in transfected cells. Hence, we have performed cotransfection experiments that suggested that a viral factor influences the nuclear distribution. Since the promyelocytic leukemia protein (PML) that localizes to distinct nuclear multiprotein complexes termed ND10/PODs in mammalian cells functions as a target for some immediate early viral proteins, we have investigated whether baculovirus proteins act similarly. Transiently expressed IE2 and PE38 were found to be associated with endogenous PML in the mammalian cell line BHK21. Infection with a recombinant virus that expresses the human pml gene in insect cells reveals IE2 and PML to be colocalized during the early phase of infection followed by a redistribution of both proteins. Taken together our results provide first evidence that the early baculovirus protein IE2 associates at least with one component of mammalian PODs during virus infection, suggesting that POD-like structures can be formed in insect cells.  相似文献   

14.
The Sp100 and promyelocytic leukemia proteins (PML) are constituents of nuclear domains, known as nuclear dots (NDs) or PML bodies, and are both covalently modified by the small ubiquitin-related protein SUMO-1. NDs play a role in autoimmunity, virus infections, and in the etiology of acute promyelocytic leukemia. To date, little is known about the function of the Sp100 protein. Here we analyzed Sp100 domains that determine its subcellular localization, dimerization, and SUMOylation. A functional nuclear localization signal and an ND-targeting region that coincides with an Sp100 homodimerization domain were mapped. Sequences similar to the Sp100 homodimerization/ND-targeting region occur in several other proteins and constitute a novel protein motif, termed HSR domain. The lysine residue of the Sp100 protein, to which SUMO-1 is covalently linked, was mapped within and may therefore modulate the previously described HP1 protein-binding site. A consensus sequence for SUMOylation of proteins in general is suggested. SUMOylation strictly depended on a functional nuclear localization signal but was not necessary for nuclear import or ND targeting. A three-dimensional structure of Sp100, which supports the mapping data and provides additional information on Sp100 structure/function relationships, was generated by computer modeling. Taken together, our studies indicate the existence of well defined Sp100 domains with functions in ND targeting, nuclear import, nuclear SUMOylation, and protein-protein interaction.  相似文献   

15.
The herpes simplex virus type 1 (HSV-1) immediate-early protein ICP27 is an RNA-binding protein that performs multiple functions required for the expression of HSV-1 genes during a productive infection. One essential function involves shuttling between the nucleus and the cytoplasm. Some of the domains identified in ICP27 include a leucine-rich nuclear export sequence (NES), a nuclear localization signal, three KH-like RNA-binding domains, and an RGG-box type RNA-binding motif. To study the contribution of two of the essential domains in ICP27 to HSV gene expression, we generated recombinant herpesviruses carrying deleterious mutations in the NES and KH domains of ICP27. To accomplish this, we fused the green fluorescent protein (GFP) to ICP27 and utilized fluorescence as a marker to isolate recombinant herpesviruses. Fusion of GFP to wild-type ICP27 did not disturb its localization or function or significantly reduce virus yield. Analysis of HSV gene expression in cells infected with a recombinant virus carrying a point mutation in the first KH-like RNA-binding domain revealed that nuclear export of ICP27 was not blocked, and the expression of only a subset of ICP27-dependent late genes was affected. These findings suggest that individual KH-like RNA-binding motifs in ICP27 may be involved in binding distinct RNAs. Analysis of recombinant viruses carrying a lethal mutation in the NES of ICP27 was not accomplished because this mutation results in a strong dominant-negative phenotype. Finally, we demonstrate that shuttling by ICP27 is regulated by an export control sequence adjacent to its NES that functions like the inhibitory sequence element found adjacent to the NES of NS1 from influenza virus.  相似文献   

16.
We examined the molecular basis of rat P130, a nuclear scaffold protein, and its functions. P130 comprising 845 amino acid residues possesses several functional domains and yields an electrophoretically distinctive isoform, P123, by altering its phosphorylation status in association with translocation across the nuclear membrane and from the digitonin-extractable fraction of the nucleus to the nuclear scaffold. The functional domains, NLS, NES, and zinc-finger bearing DNA-binding domains, ZF1 and ZF2, aid these translocations. P130 binds RNA through two RNA-binding domains (RB1 and RB2) similar to those of hnRNPs I and L. Microsome- and polysome-localized P130 and P123 were found in rat liver and Ac2F hepatoma cells. This localization required prior entry of P130 to the nucleus, but did not require RB1 and RB2. Thus, P130 initially purified from rat liver nuclear scaffold has the potential to play a variety of roles in biological events not only in the nuclear scaffold but also in various subcellular compartments. P130 (AB205483) is identical to matrin 3 (M63485 and BC062231), although the primary structure of rat matrin 3 has been revised, since it was first published.  相似文献   

17.
Using a monoclonal antibody that recognizes a nuclear matrix protein, we selected a cDNA clone from a lambdagt11 human placenta cDNA library. This cDNA encoded a 939-amino acid protein designated nuclear matrix protein NXP-2. Northern blot analysis indicated that NXP-2 was expressed in various tissues at different levels. Forcibly expressed green fluorescent protein-tagged NXP-2 as well as endogenous NXP-2 was localized in the nucleus and distributed to the nuclear matrix. NXP-2 was released from the nuclear matrix when RNase A was included in the buffer for nuclear matrix preparation. Mapping of functional domains was carried out using green fluorescent protein-tagged truncated mutants of NXP-2. The region of amino acids 326-353 was responsible for nuclear matrix binding and contained a cluster of hydrophobic amino acids that was similar to the nuclear matrix targeting signal of acute myeloleukemia protein. The central region (amino acids 500-591) was demonstrated to be required for RNA binding by Northwestern analysis, although NXP-2 lacked a known RNA binding motif. The region of amino acid residues 682-876 was predicted to have a coiled-coil structure. The RNA-binding, nuclear matrix-binding, and coiled-coil domains are structurally separated, suggesting that NXP-2 plays important roles in diverse nuclear functions, including RNA metabolism and maintenance of nuclear architecture.  相似文献   

18.
Considerable insight into phosphoinositide-regulated cytoplasmic functions has been gained by identifying phosphoinositide-effector proteins. Phosphoinositide-regulated nuclear functions however are fewer and less clear. To address this, we established a proteomic method based on neomycin extraction of intact nuclei to enrich for nuclear phosphoinositide-effector proteins. We identified 168 proteins harboring phosphoinositide-binding domains. Although the vast majority of these contained lysine/arginine-rich patches with the following motif, K/R-(X(n= 3-7)-K-X-K/R-K/R, we also identified a smaller subset of known phosphoinositide-binding proteins containing pleckstrin homology or plant homeodomain modules. Proteins with no prior history of phosphoinositide interaction were identified, some of which have functional roles in RNA splicing and processing and chromatin assembly. The remaining proteins represent potentially other novel nuclear phosphoinositide-effector proteins and as such strengthen our appreciation of phosphoinositide-regulated nuclear functions. DNA topology was exemplar among these: Biochemical assays validated our proteomic data supporting a direct interaction between phosphatidylinositol 4,5-bisphosphate and DNA Topoisomerase IIα. In addition, a subset of neomycin extracted proteins were further validated as phosphatidyl 4,5-bisphosphate-interacting proteins by quantitative lipid pull downs. In summary, data sets such as this serve as a resource for a global view of phosphoinositide-regulated nuclear functions.  相似文献   

19.
《当今生物学》2018,48(1):45-53
The Cell Nucleus – A Town in the Cell. Part II: Chromatin Nanoarchitecture and Gene Regulation In the second part of this article on nuclear architecture we describe the ground‐breaking potential of super‐resolution fluorescence microscopy (nanoscopy) and new molecular approaches to study the structure of chromatin domains at the nanometer scale and explore their 3D positions in larger chromatin domain clusters. New results and models argue for a decisive role of these structures in nuclear functions, such as gene regulation.  相似文献   

20.
The vpr gene product of human immunodeficiency virus type 1 (HIV-1) is a virion-associated protein that is essential for efficient viral replication in monocytes/macrophages. Vpr is primarily localized in the nucleus when expressed in the absence of other viral proteins. Vpr is packaged efficiently into viral particles through interactions with the p6 domain of the Gag precursor polyprotein p55gag. We developed a panel of expression vectors encoding Vpr molecules mutated in the amino-terminal helical domain, leucine-isoleucine (LR) domain, and carboxy-terminal domain to map the different functional domains and to define the interrelationships between virion incorporation, nuclear localization, cell cycle arrest, and differentiation functions of Vpr. We observed that substitution mutations in the N-terminal domain of Vpr impaired both nuclear localization and virion packaging, suggesting that the helical structure may play a vital role in modulating both of these biological properties. The LR domain was found to be involved in the nuclear localization of Vpr. In contrast, cell cycle arrest appears to be largely controlled by the C-terminal domain of Vpr. The LR and C-terminal domains do not appear to be essential for virion incorporation of Vpr. Interestingly, we found that two Vpr mutants harboring single amino acid substitutions (A30L and G75A) retained the ability to translocate to the nucleus but were impaired in the cell cycle arrest function. In contrast, mutation of Leu68 to Ser resulted in a protein that localizes in the cytoplasm while retaining the ability to arrest host cell proliferation. We speculate that the nuclear localization and cell cycle arrest functions of Vpr are not interrelated and that these functions are mediated by separable putative functional domains of Vpr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号