首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In response to epidermal growth factor (EGF) stimulation, the intrinsic protein tyrosine kinase of EGF receptor is activated, leading to tyrosine phosphorylation of several cellular substrate proteins, including the EGF receptor molecule itself. To test the mechanism of EGF receptor autophosphorylation in living cells, we established transfected cell lines coexpressing a kinase-negative point mutant of EGF receptor (K721A) with an active EGF receptor mutant lacking 63 amino acids from its carboxy terminus. The addition of EGF to these cells caused tyrosine phosphorylation of the kinase-negative mutant by the active receptor molecule, demonstrating EGF receptor cross-phosphorylation in living cells. After internalization the kinase-negative mutant and CD63 have separate trafficking pathways. This limits their association and the extent of cross-phosphorylation of K721A by CD63. The coexpression of the kinase-negative mutant together with active EGF receptors in the same cells suppressed the mitogenic response toward EGF as compared with that in cells that express active receptors alone. The presence of the kinase-negative mutant functions as a negative dominant mutation suppressing the response of active EGF receptors, probably by interfering with EGF-induced signal transduction. It appears, therefore, that crucial events of signal transduction occur before K721A and active EGF receptors are separated by their different endocytic itineraries.  相似文献   

2.
Mutations in the p53 tumor suppressor protein are highly frequent in tumors and often endow cells with tumorigenic capacities. We sought to examine a possible role for mutant p53 in the cross-talk between cancer cells and their surrounding stroma, which is a crucial factor affecting tumor outcome. Here we present a novel model which enables individual monitoring of the response of cancer cells and stromal cells (fibroblasts) to co-culturing. We found that fibroblasts elicit the interferon beta (IFNβ) pathway when in contact with cancer cells, thereby inhibiting their migration. Mutant p53 in the tumor was able to alleviate this response via SOCS1 mediated inhibition of STAT1 phosphorylation. IFNβ on the other hand, reduced mutant p53 RNA levels by restricting its RNA stabilizer, WIG1. These data underscore mutant p53 oncogenic properties in the context of the tumor microenvironment and suggest that mutant p53 positive cancer patients might benefit from IFNβ treatment.  相似文献   

3.
We previously showed that a noncoding subgenomic flavivirus RNA (sfRNA) is required for viral pathogenicity, as a mutant West Nile virus (WNV) deficient in sfRNA production replicated poorly in wild-type mice. To investigate the possible immunomodulatory or immune evasive functions of sfRNA, we utilized mice and cells deficient in elements of the type I interferon (IFN) response. Replication of the sfRNA mutant WNV was rescued in mice and cells lacking interferon regulatory factor 3 (IRF-3) and IRF-7 and in mice lacking the type I alpha/beta interferon receptor (IFNAR), suggesting a contribution for sfRNA in overcoming the antiviral response mediated by type I IFN. This was confirmed by demonstrating rescue of mutant virus replication in the presence of IFNAR neutralizing antibodies, greater sensitivity of mutant virus replication to IFN-α pretreatment, partial rescue of its infectivity in cells deficient in RNase L, and direct effects of transfected sfRNA on rescuing replication of unrelated Semliki Forest virus in cells pretreated with IFN-α. The results define a novel function of sfRNA in flavivirus pathogenesis via its contribution to viral evasion of the type I interferon response.  相似文献   

4.
A LPS-resistant mutant, W3SF-1, was isolated from a murine macrophage-like cell line, WEHI-3. The W3SF-1 mutant did not produce a significant amount of nitric oxide (NO) or TNF-alpha even with high concentrations of LPS in the presence or absence of FCS, whereas the parental WEHI-3 cells produced them in response to LPS. The parental cells expressed a significant level of TNF-alpha mRNA after LPS stimulation, whereas the mutant cells did not. This defective response of the mutant cells to LPS was neither dependent on the concentration or chemical structure of LPS, nor on the time of LPS treatment. The mutant cells also showed a defective response to zymosan, suggesting that the defect in the mutant cells is common to LPS and zymosan in the signal transduction pathways. The parental and mutant cells showed similar levels of Mac1, F4/80 and CD14, suggesting that these surface markers of macrophages are not linked directly to the defective responses of the mutant to LPS. The treatment of mutant cells with IFN-gamma did not restore the defect of NO or TNF-alpha production on LPS treatment. Binding experiments with 125I-labelled LPS showed a similar binding affinity for LPS in the parental and the mutant cells. These results suggest that the defect in the W3SF-1 mutant cells may not reside in the LPS binding but rather in the early step of signal transduction pathways in the cells after LPS binding.  相似文献   

5.
6.
SH-PTP2 is a nontransmembrane human protein-tyrosine phosphatase that contains two Src homology 2 (SH2) domains and binds to insulin receptor substrate 1 (IRS-1) via these domains in response to insulin. The expression of a catalytically inactive mutant of SH-PTP2 (containing the mutation Cys-459-->Ser) in Chinese hamster ovary cells that overexpress human insulin receptors (CHO-IR cells) markedly attenuated insulin-stimulated Ras activation. Expression of mutant SH-PTP2 also inhibited MAP kinase activation in response to insulin but not in response to 12-O-tetradecanoyl phorbol-13-acetate. In contrast, the insulin-induced association of phosphoinositide 3-kinase activity with IRS-1 was not affected by the expression of inactive SH-PTP2. Furthermore, the expression of mutant SH-PTP2 had no effect on the binding of Grb2 to IRS-1, on the tyrosine phosphorylation of Shc, or on the formation of the complex between Shc and Grb2 in response to insulin. However, the amount of SH-PTP2 bound to IRS-1 in insulin-treated CHO-IR cells expressing mutant SH-PTP2 was greater than that observed in CHO-IR cells overexpressing wild-type SH-PTP2. Recombinant SH-PTP2 specifically dephosphorylated a synthetic phosphopeptide corresponding to the sequence surrounding Tyr-1172 of IRS-1, a putative binding site for SH-PTP2. Additionally, phenylarsine oxide, an inhibitor of protein-tyrosine phosphatases, inactivated SH-PTP2 in vitro and increased the insulin-induced association of SH-PTP2 with IRS-1. These results suggest that SH-PTP2 may regulate an upstream element necessary for Ras activation in response to insulin and that this upstream element may be required for the Grb2- or Shc-dependent pathway. Furthermore, these results are consistent with the notion that SH-PTP2 may bind to IRS-1 through its SH2 domains in response to insulin and dephosphorylate the phosphotyrosine residue to which it binds, thereby regulating its association with IRS-1.  相似文献   

7.
Mutant A2 with increased ability to induce adaptive response was isolated in Bac. subtilis and its properties studied. Mutant A2 was shown to be more resistant to mutagenic action of MNNG, EMS, UV light. It was also discovered that A2 was more sensitive to the lethal action of MNNG and UV light than parent strain 103. It was shown by clonal analysis of mutant colonies, formed by mutant cells A2 and 103 that A2 strain had increased ability to form complete mutants. Properties of A2 mutant suggest that in the process adaptive response induction were is expression of both adaptive response enzymes and some other which are necessary for reparation of premutagenic UV lesions.  相似文献   

8.
The haem proteins catalase and peroxidase are stress response proteins that detoxify reactive oxygen species. In the bacterium Bradyrhizobium japonicum, expression of the gene encoding the haem biosynthesis enzyme delta-aminolevulinic acid dehydratase (ALAD) is normally repressed by the Irr protein in iron-limited cells. Irr degrades in the presence of iron, which requires haem binding to the protein. Here, we found that ALAD levels were elevated in iron-limited cells of a catalase-deficient mutant, which corresponded with aberrantly low levels of Irr. Irr was undetectable in wild-type cells within 90 min after exposure to exogenous H2O2, but not in a haem-deficient mutant strain. In addition, Irr did not degrade in response to iron in the absence of O2. The findings indicate that reactive oxygen species promote Irr turnover mediated by haem, and are involved in iron-dependent degradation. We demonstrated Irr oxidation in vitro, which required haem, O2 and a reductant. A truncated Irr mutant unable to bind ferrous haem does not degrade in vivo, and was not oxidized in vitro. We suggest that Irr oxidation is a signal for its degradation, and that cells sense and respond to oxidative stress through Irr to regulate haem biosynthesis.  相似文献   

9.
Swarming is a form of bacterial translocation that involves cell differentiation and is characterized by a rapid and co-ordinated population migration across solid surfaces. We have isolated a Tn5 mutant of Sinorhizobium meliloti GR4 showing conditional swarming. Swarm cells from the mutant strain QS77 induced on semi-solid minimal medium in response to different signals are hyperflagellated and about twice as long as wild-type cells. Genetic and physiological characterization of the mutant strain indicates that QS77 is altered in a gene encoding a homologue of the FadD protein (long-chain fatty acyl-CoA ligase) of several microorganisms. Interestingly and similar to a less virulent Xanthomonas campestris fadD(rpfB) mutant, QS77 is impaired in establishing an association with its host plant. In trans expression of multicopy fadD restored growth on oleate, control of motility and the symbiotic phenotype of QS77, as well as acyl-CoA synthetase activity of an Escherichia coli fadD mutant. The S. meliloti QS77 strain shows a reduction in nod gene expression as well as a differential regulation of motility genes in response to environmental conditions. These data suggest that, in S. meliloti, fatty acid derivatives may act as intracellular signals controlling motility and symbiotic performance through gene expression.  相似文献   

10.
Primary cilia are hypothesized to act as a mechanical sensor to detect renal tubular fluid flow. Anomalous structure of primary cilia and/or impairment of increases in intracellular Ca2+ concentration in response to fluid flow are thought to result in renal cyst formation in conditional kif3a knockout, Tg737 and pkd1/pkd2 mutant mice. The mutant inv/inv mouse develops multiple renal cysts like kif3a, Tg737 and pkd1/pkd2 mutants. Inv proteins have been shown to be localized in the renal primary cilia, but response of inv/inv cilia to fluid stress has not been examined. In the present study, we examined the mechanical response of primary cilia to physiological fluid flow using a video microscope, as well as intracellular Ca2+ increases in renal epithelial cells from normal and inv/inv mice in response to flow stress. Percentages of ciliated cells and the length of primary cilia were not significantly different between primary renal cell cultures from normal and inv/inv mutant mice. Localization of inv protein was restricted to the base of primary cilia even under flow stress. Inv/inv mutant cells had similar bending mechanics of primary cilia in response to physiological fluid flow compared to normal cells. Furthermore, no difference was found in intracellular Ca2+ increases in response to physiological fluid flow between normal and inv/inv mutant cells. Our present study suggests that the function of the inv protein is distinct from polaris (the Tg737 gene product), polycystins (pkd1 and pkd2 gene products).  相似文献   

11.
Phospholipid metabolism in the Saccharomyces cerevisiae opi1 mutant, which excretes inositol and is constitutive for the biosynthetic enzyme inositol-1-phosphate synthase (M. Greenberg, P. Goldwasser, and S. Henry, Mol. Gen. Genet. 186:157-163, 1982), was examined and compared to that of a wild-type strain. In wild-type S. cerevisiae, the phospholipid composition and the relative rates of synthesis of individual phospholipids change in response to the availability of exogenous supplies of soluble phospholipid precursors, particularly inositol. The opi1 mutant, in contrast, displays a relatively invariant phospholipid composition, and its pattern of phospholipid synthesis does not change in response to exogenous phospholipid precursors. Phosphatidylinositol synthase was not found to be regulated in either wild-type or opi1 cells. In wild-type cells, phosphatidylserine synthase and the phospholipid N-methyltransferases are coordinately repressed in response to a combination of inositol and choline. However, in opi1 cells these activities are expressed constitutively. These results suggest that the gene product of the OPI1 locus participates in the coordinate regulation of phospholipid synthesis.  相似文献   

12.
13.
Development of mating competency in Tetrahymena thermophila requires starvation for at least 70 min in low ionic strength buffer. Pair formation between conjugating cells is blocked at early stages by the lectin Concanavalin A (Con A). To investigate the role of Con A-binding proteins in this induced cellular change and pairing, and to confirm and extend an earlier study from our laboratory, a method was developed for preparation of Con A-binding proteins from ciliary membrane-rich fractions of T. thermophila. Con A-binding ciliary proteins were prepared from non-starved and starved cells from two wild type strains and a mating mutant, RH179E1. Comparison of these proteins by SDS-PAGE revealed on overall reduction in number of wild-type bands after starvation. In particular, a major band at 28 kDa was present in non-starved cells and absent in starved cells. However, in the mating mutant, no change in banding profile was seen after starvation: the 28 kDa band was present in both non-starved and starved cells. This, Con A-binding ciliary membrane proteins undergo a major change during starvation-induced development of mating competency in wild-type T. thermophila. In contrast, the mutant differed from wild-type in overall composition of its ciliary Con A-binding glycoproteins and in the response of these proteins to starvation, suggesting that it may be deficient in its ability to be initiated by starvation. Our results are consistent with the hypothesis that a change affecting ciliary membrane Con A-binding proteins is essential for the cellular response to mating signals.  相似文献   

14.
15.
Alkyl hydroperoxide reductase subunit C (AhpC) is the catalytic subunit responsible for alkyl peroxide metabolism. A Xanthomonas ahpC mutant was constructed. The mutant had increased sensitivity to organic peroxide killing, but was unexpectedly hyperresistant to H(2)O(2) killing. Analysis of peroxide detoxification enzymes in this mutant revealed differential alteration in catalase activities in that its bifunctional catalase-peroxidase enzyme and major monofunctional catalase (Kat1) increased severalfold, while levels of its third growth-phase-regulated catalase (KatE) did not change. The increase in catalase activities was a compensatory response to lack of AhpC, and the phenotype was complemented by expression of a functional ahpC gene. Regulation of the catalase compensatory response was complex. The Kat1 compensatory response increase in activity was mediated by OxyR, since it was abolished in an oxyR mutant. In contrast, the compensatory response increase in activity for the bifunctional catalase-peroxidase enzyme was mediated by an unknown regulator, independent of OxyR. Moreover, the mutation in ahpC appeared to convert OxyR from a reduced form to an oxidized form that activated genes in the OxyR regulon in uninduced cells. This complex regulation of the peroxide stress response in Xanthomonas differed from that in other bacteria.  相似文献   

16.
Campylobacter jejuni is a highly prevalent food-borne pathogen that causes diarrhoeal disease in humans. A natural zoonotic, it must overcome significant stresses both in vivo and during transmission despite the absence of several traditional stress response genes. Although relatively little is understood about its mechanisms of pathogenesis, its ability to interact with and invade human intestinal epithelial cells closely correlates with virulence. A C. jejuni microarray-based screen revealed that several known virulence genes and several uncharacterized genes, including spoT, were rapidly upregulated during infection of human epithelial cells. spoT and its homologue relA have been shown in other bacteria to regulate the stringent response, an important stress response that to date had not been demonstrated for C. jejuni or any other epsilon-proteobacteria. We have found that C. jejuni mounts a stringent response that is regulated by spoT. Detailed analyses of a C. jejuni delta spoT mutant revealed that the stringent response is required for several specific stress, transmission and antibiotic resistance-related phenotypes. These include stationary phase survival, growth and survival under low CO2/high O2 conditions, and rifampicin resistance. A secondary suppressor strain that specifically rescues the low CO2 growth defect of the delta spoT mutant was also isolated. The stringent response additionally proved to be required for the virulence-related phenotypes of adherence, invasion, and intracellular survival in two human epithelial cell culture models of infection; spoT is the first C. jejuni gene shown to participate in longer term survival in epithelial cells. Microarray analyses comparing wild-type to the delta spoT mutant also revealed a strong correlation between gene expression profiles and phenotype differences observed. Together, these data demonstrate a critical role for the C. jejuni stringent response in multiple aspects of C. jejuni biology and pathogenesis and, further, may lend novel insight into unexplored features of the stringent response in other prokaryotic organisms.  相似文献   

17.
The receptor tyrosine kinase c-KIT and its ligand Stem Cell Factor (SCF) are critical in haemopoiesis but pathways linking receptor activation to specific responses in progenitor cells are still unclear. We have investigated the role of c-KIT expression level and the phosphatidylinositol 3-kinase (PI3-K) pathway in survival and cell division of early myeloid cells in response to SCF. Two factor-dependent murine early myeloid cell lines, FDC-P1 and Myb-immortalised haemopoietic cells (MIHC), were transduced to express wild-type c-KIT or a mutant form of the receptor (Y721F) that lacks the major recruitment site for the p85 regulatory subunit of PI3-K. Several clones expressing different receptor levels were analysed in each case. Growth of cells expressing either the wild-type or Y721F mutant KIT was strongly dependent on receptor level within the physiological range. Using an assay that allows quantitative measurement of the contributions of cell survival and cell division, diminished cell growth in response to SCF under limiting conditions of receptor copy number or PI3-K recruitment was shown to be almost entirely due to decreased cell survival. Further studies with the PI3-K inhibitor LY294002 indicated that PI3-K activation was also required for cell division. Alternate binding and/or indirect activation of PI3-K could support cell division mediated by Y721F mutant KIT, but was insufficient for the survival response.  相似文献   

18.
Role and regulation of starvation-induced autophagy in the Drosophila fat body   总被引:10,自引:0,他引:10  
In response to starvation, eukaryotic cells recover nutrients through autophagy, a lysosomal-mediated process of cytoplasmic degradation. Autophagy is known to be inhibited by TOR signaling, but the mechanisms of autophagy regulation and its role in TOR-mediated cell growth are unclear. Here, we show that signaling through TOR and its upstream regulators PI3K and Rheb is necessary and sufficient to suppress starvation-induced autophagy in the Drosophila fat body. In contrast, TOR's downstream effector S6K promotes rather than suppresses autophagy, suggesting S6K downregulation may limit autophagy during extended starvation. Despite the catabolic potential of autophagy, disruption of conserved components of the autophagic machinery, including ATG1 and ATG5, does not restore growth to TOR mutant cells. Instead, inhibition of autophagy enhances TOR mutant phenotypes, including reduced cell size, growth rate, and survival. Thus, in cells lacking TOR, autophagy plays a protective role that is dominant over its potential role as a growth suppressor.  相似文献   

19.
The receptor for colony-stimulating factor-1 (CSF-1) is a receptor protein-tyrosine kinase. To study the possible function of CSF-1 receptor autophosphorylation, two autophosphorylation sites, Tyr-706, located in the kinase insert, and Tyr-807, a residue conserved in all protein-tyrosine kinases, were changed independently to either phenylalanine or glycine. Wild-type and mutant receptors were stably expressed in Rat-2 cells. In response to CSF-1, cells expressing Phe- or Gly-706 mutant receptors showed increased growth rate and altered cell morphology. Both the Phe- and Gly-706 mutant receptors associated with and phosphorylated phosphatidylinositol-3 kinase at levels comparable with those of wild-type receptors. However, these mutant receptors differed subtly from each other and from the wild-type receptor in their ability to induce different aspects of the response to CSF-1. The Phe-706 mutant receptor was most strongly affected in its ability to increase growth rate or elevate the levels of c-fos and NGF1A mRNAs, whereas the Gly-706 mutant receptor was most markedly affected in its ability to induce a change in cell morphology or increase the levels of c-jun and NGF1A mRNAs. These findings indicate that Tyr-706 itself, or this region of the receptor, may be important for interaction of the CSF-1 receptor with different signalling pathways. Gly-807 mutant receptors lacked protein-tyrosine kinase activity, failed to respond to CSF-1, and were defective in biosynthetic processing. Phe-807 mutant receptors had 40 to 60% reduced protein-tyrosine kinase activity in vitro. Although cells expressing Phe-807 receptors were able to respond to CSF-1, the changes in growth rate and cell morphology were significantly less than seen with wild-type receptors, and the induction of early response genes was also slightly lower than for the wild-type receptor. In contrast, Phe-807 receptors were equivalent to wild-type receptors when tested for their ability to interact with phosphatidylinositol-3 kinase. These findings indicate that phosphorylation of Tyr-807 may be important for full activation of the receptor.  相似文献   

20.
Tuberous sclerosis complex (TSC)1 and TSC2 are tumor suppressors that inhibit cell growth and mutation of either gene causes benign tumors in multiple tissues. The TSC1 and TSC2 gene products form a functional complex that has GTPase-activating protein (GAP) activity toward Ras homolog enriched in brain (Rheb) to inhibit mammalian target of rapamycin complex 1 (mTORC1), which is constitutively activated in TSC mutant tumors. We found that cells with mutation in either TSC1 or TSC2 are hypersensitive to endoplasmic reticulum (ER) stress and undergo apoptosis. Although the TSC mutant cells show elevated eIF2α phosphorylation, an early ER stress response marker, at both basal and induced conditions, induction of other ER stress response markers, including ATF4, ATF6 and C/EBP homologous protein (CHOP), is severely compromised. The defects in ER stress response are restored by raptor knockdown but not by rapamycin treatment in the TSC mutant cells, indicating that a rapamycin-insensitive mTORC function is responsible for the defects in ER stress response. Consistently, activation of Rheb sensitizes cells to ER stress. Our data show an important role of TSC1/TSC2 and Rheb in unfolded protein response and cell survival. We speculate that an important physiological function of the TSC1/2 tumor suppressors is to protect cells from harmful conditions. These observations indicate a potential therapeutic application of using ER stress agents to selectively kill TSC1 or TSC2 mutant cells for TSC treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号