首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Summary Polymorphic DNA markers located in bands 16q13, 16q21 and 16q22 were examined for recombination with FRA16B, the fragile site at 16q22.100. A tight linkage cluster D16S10-FRA16B-D16S4-HP was established. There were no recombinants between D16S10 and D16S4, which flank FRA16B. The markers D16S10 and D16S4 are in close proximity on the genetic map and delineate a small chromosomal segment, which contains the distamycin A-inducible fragile site.  相似文献   

2.
The human adenine phosphoribosyltransferase gene (APRT) was mapped with respect to the haptoglobin gene (HP) and the fragile site at 16q23.2 (FRA16D). A subclone of APRT and a cDNA clone of HP were used for molecular hybridization to DNA from mouse-human hybrid cell lines containing specific chromosome 16 translocations. The APRT subclone was used for in situ hybridization to chromosomes expressing FRA16D. APRT was found to be distal to HP and FRA16D and was localized at 16q24, making the gene order cen-FRA16B-HP-FRA16D-APRT-qter.  相似文献   

3.
Human chromosome fragility   总被引:2,自引:0,他引:2  
Fragile sites are heritable specific chromosome loci that exhibit an increased frequency of gaps, poor staining, constrictions or breaks when chromosomes are exposed to partial DNA replication inhibition. They constitute areas of chromatin that fail to compact during mitosis. They are classified as rare or common depending on their frequency within the population and are further subdivided on the basis of their specific induction chemistry into different groups differentiated as folate sensitive or non-folate sensitive rare fragile sites, and as aphidicolin, bromodeoxyuridine (BrdU) or 5-azacytidine inducible common fragile sites. Most of the known inducers of fragility share in common their potentiality to inhibit the elongation of DNA replication, particularly at fragile site loci. Seven folate sensitive (FRA10A, FRA11B, FRA12A, FRA16A, FRAXA, FRAXE and FRAXF) and two non-folate sensitive (FRA10B and FRA16B) fragile sites have been molecularly characterized. All have been found to represent expanded DNA repeat sequences resulting from a dynamic mutation involving the normally occurring polymorphic CCG/CGG trinucleotide repeats at the folate sensitive and AT-rich minisatellite repeats at the non-folate sensitive fragile sites. These expanded repeats were demonstrated, first, to have the potential, under certain conditions, to form stable secondary non-B DNA structures (intra-strand hairpins, slipped strand DNA or tetrahelical structures) and to present highly flexible repeat sequences, both conditions which are expected to affect the replication dynamics, and second, to decrease the efficiency of nucleosome assembly, resulting in decondensation defects seen as fragile sites. Thirteen aphidicolin inducible common fragile sites (FRA2G, FRA3B, FRA4F, FRA6E, FRA6F, FRA7E, FRA7G, FRA7H, FRA7I, FRA8C, FRA9E, FRA16D and FRAXB) have been characterized at a molecular level and found to represent relatively AT-rich DNA areas, but without any expanded repeat motifs. Analysis of structural characteristics of the DNA at some of these sites (FRA2G, FRA3B, FRA6F, FRA7E, FRA7G, FRA7H, FRA7I, FRA16D and FRAXB) showed that they contained more areas of high DNA torsional flexibility with more highly AT-dinucleotide-rich islands than neighbouring non-fragile regions. These islands were shown to have the potential to form secondary non-B DNA structures and to interfere with higher-order chromatin folding. Therefore, a common fragility mechanism, characterized by high flexibility and the potential to form secondary structures and interfere with nucleosome assembly, is shared by all the cloned classes of fragile sites. From the clinical point of view, the folate sensitive rare fragile site FRAXA is the most important fragile site as it is associated with the fragile X syndrome, the most common form of familial mental retardation, affecting about 1/4000 males and 1/6000 females. Mental retardation in this syndrome is considered as resulting from the abolition of the FMR1 gene expression due to hypermethylation of the gene CpG islands adjacent to the expanded methylated trinucleotide repeat. FRAXE is associated with X-linked non-specific mental retardation, and FRA11B with Jacobsen syndrome. There is also some evidence that fragile sites, especially common fragile sites, are consistently involved in the in vivo chromosomal rearrangements related to cancer, whereas the possible implication of common fragile sites in neuropsychiatric and developmental disorders is still poorly documented.  相似文献   

4.
Jacobsen syndrome is caused by segmental aneusomy for the distal end of the long arm of chromosome 11. Typical features include mild to moderate psychomotor retardation, trigonocephaly, facial dysmorphism, cardiac defects, and thrombocytopenia, though none of these features are invariably present. To define the critical regions responsible for these abnormalities, we studied 17 individuals with de novo terminal deletions of 11q. The patients were characterized in a loss-of-heterozygosity analysis using polymorphic dinucleotide repeats. The breakpoints in the complete two-generation families were localized with an average resolution of 3.9 cM. Eight patients with the largest deletions extending from 11q23.3 to 11qter have breakpoints, between D11S924 and D11S1341. This cytogenetic region accounts for the majority of 11q patients and may be related to the FRA11B fragile site in 11q23.3. One patient with a small terminal deletion distal to D11S1351 had facial dysmorphism, cardiac defects, and thrombocytopenia, suggesting that the genes responsible for these features may lie distal to D11S1351. Twelve of 15 patients with deletion breakpoints as far distal as D11S1345 had trigonocephaly, while patients with deletions distal to D11S912 did not, suggesting that, if hemizygosity for a single gene is responsible for this dysmorphic feature, the gene may lie distal to D11S1345 and proximal to D11S912.  相似文献   

5.
Fragile sites appear as breaks, gaps, or decondensations on metaphase chromosomes when cells are grown under specific culture conditions. The breaks are nonrandom, appearing in defined, conserved locations throughout the mammalian genome. Common fragile sites, as their name implies, are present in virtually all individuals. With three common fragile sites cloned, their mechanism of expression and the role, if any, they play in human disease are still unclear. We have assembled a BAC contig of >1 Mb across the second most active common fragile site, FRA16D (16q23.2). We fluorescently labeled these BACs and used them as probes on metaphases from aphidicolin-induced lymphocytes and demonstrated that FRA16D decondensation/breakage occurs over a region of at least 1 Mb. Thus, this is the largest common fragile site cloned to date. Microsatellite markers that map within FRA16D show a very high loss in prostate, breast, and ovarian tumors, indicating that loss within this fragile site may be important in the development or progression of these tumors. In addition, a common t(14q32;16q23) translocation is observed in up to 25% of all multiple myelomas (MM). We localized four of four such cloned t(14;16) MM breakpoints within the FRA16D region. This work further demonstrates that the common fragile sites may play an important role in cancer development.  相似文献   

6.
We have assigned six polymorphic DNA segments to chromosomal subregions and have established the physical order of these sequences on the long arm of chromosome 21 by in situ hybridization of cloned probes to normal metaphase chromosomes and chromosomes 21 from individuals with three different structural rearrangements: an interstitial deletion, a ring chromosome, and a reciprocal translocation involving four different breakpoints in band 21q22. Segments D21S1 and D21S11 map to region 21q11.2----q21, D21S8 to 21q21.1----q22.11, and D21S54 to 21q21.3----q22.11; D21S23 and D21S25 are both in the terminal subband 21q22.3, but they are separated by a chromosomal breakpoint in a ring 21 chromosome, a finding that places D21S23 proximal to D21S25. The physical map order D21S1/D21S11-D21S8-D21S54-D21S23-D21S25 agrees with the linkage map, but genetic distances are disproportionately larger toward the distal end of 21q.  相似文献   

7.
Summary A genomic probe homologous to 5.4 kb of the c-ets-1 gene was hybridized in situ to chromosomes expressing fra(11)(q23). This probe hybridized distal to the fragile site, which is just distal to the midpoint of band 11q23.3. This result localizes ETS1 from the FRA11B locus to 11q24. The result also distinguishes the FRA11B locus from the site of translocation at 11q23-q24 in the Ewing sarcoma- and peripheral neuroepithelioma-specific t(11;22), indicating that the chromosomes of a previously reported patient heterozygous for fra(11)(q23) did not rearrange at this fragile site to give rise to Ewing sarcoma. This adds to the mounting evidence against individuals with fragile sites being predisposed to developing cancer.  相似文献   

8.
We have used a panel of eight human/mouse somatic-cell hybrids, each containing various portions of human chromosome 7, and three patient cell lines with interstitial deletions on chromosome 7 for localization of six DNA markers linked to the cystic fibrosis locus. Our data suggest that D7S15 is located in the region 7 cen----q22, that MET is located in 7q22----31, and that D7S8 and 7C22 are located in q22----q32. The hybridization results for COL1A2 and TCRB are consistent with their previous assignment to 7q21----q22 and 7q32, respectively. Given the location of these six markers and their linkage relationships, it is probable that the cystic fibrosis locus is in either the distal region of band q22 or the proximal region of q31. Using the same set of cell lines, we have also examined the location of another chromosome 7 marker PGY1. The data show that PGY1 is located in the region 7cen----q22, a position very different from its previous assignment.  相似文献   

9.
We determined previously that the selectable marker pSV2neo is preferentially inserted into chromosomal fragile sites in human x hamster hybrid cells in the presence of an agent (aphidicolin) that induces fragile-site expression. In contrast, cells transfected without fragile-site induction showed an essentially random integration pattern. To determine whether the integration of marker DNA at fragile sites affects the frequency of fragile-site expression, the parental hybrid and three transfectants (two with pSV2neo integrated at the fragile site at 3p14.2 [FRA3B] and specific hamster fragile sites [chromosome 1, bands q26-31, or mar2, bands q11-13] and one with pSV2neo integrated at sites that are not fragile sites) were treated with aphidicolin. After 24 h the two cell lines with plasmid integration at FRA3B showed structural rearrangements at that site; these rearrangements accounted for 43%-67% of the total deletions and translocations observed. Structural rearrangements were not observed in the parental cell line. After 5 d aphidicolin treatment, the observed excess in frequency of structural rearrangements at FRA3B in the cell lines with pSV2neo integration at 3p14 over that in the two lines without FRA3B integration was less dramatic, but nonetheless significant. Fluorescent in situ hybridization (FISH) analysis of these cells, using a biotin-labeled pSV2neo probe, showed results consistent with the gross rearrangements detected cytogenetically in the lines with FRA3B integration; however, the pSV2neo sequences were frequently deleted concomitantly with translocations.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
A refined physical map of the long arm of human chromosome 16   总被引:3,自引:0,他引:3  
Mapping of 33 anonymous DNA probes and 12 genes to the long arm of chromosome 16 was achieved by the use of 14 mouse/human hybrid cell lines and the fragile site FRA16B. Two of the hybrid cell lines contained overlapping interstitial deletions in bands q21 and q22.1. The localization of the 12 genes has been refined. The breakpoints present in the hybrids, in conjunction with the fragile site, can potentially divide the long arm of chromosome 16 into 16 regions. However, this was reduced to 14 regions because in two instances there were no probes or genes that mapped between pairs of breakpoints.  相似文献   

11.
A 10-point genetic linkage map of the region 16q12.1 to 16q22.1 has been constructed using the CEPH reference families. Four loci, MT, D16S10, D16S91, and D16S4, not previously localized on a multipoint linkage map, were incorporated on the map presented here. The order of loci was cen-D16S39-MT, D16S65-D16S10-FRA16B-D16S38, D16S4, D16S91, D16S46-D16S47-HP-qter. The interval between D16S10 and 4D16S38 is 3.1 cM in males and 2.3 cM in females, and contains FRA16B. The cloning strategy for FRA16B will now be based on YAC walking from D16S10 and D16S38. The location of FRA16B between D16S10 and D16S38 provides a physical reference point for the multipoint linkage map on the short arm of chromosome 16.  相似文献   

12.
13.
Human chromosomal fragile sites are specific loci that are especially susceptible to DNA breakage following conditions of partial replication stress. They often are found in genes involved in tumorigenesis and map to over half of all known cancer-specific recurrent translocation breakpoints. While their molecular basis remains elusive, most fragile DNAs contain AT-rich flexibility islands predicted to form stable secondary structures. To understand the mechanism of fragile site instability, we examined the contribution of secondary structure formation to breakage at FRA16B. Here, we show that FRA16B forms an alternative DNA structure in vitro. During replication in human cells, FRA16B exhibited reduced replication efficiency and expansions and deletions, depending on replication orientation and distance from the origin. Furthermore, the examination of a FRA16B replication fork template demonstrated that the majority of the constructs contained DNA polymerase paused within the FRA16B sequence, and among the molecules, which completed DNA synthesis, 81% of them underwent fork reversal. These results strongly suggest that the secondary-structure-forming ability of FRA16B contributes to its fragility by stalling DNA replication, and this mechanism may be shared among other fragile DNAs.  相似文献   

14.
Two members of the KOX gene family, ZNF23 (KOX16) and ZNF32 (KOX30), have been mapped by in situ hybridization to chromosome regions 16q22 and 10q23-q24, respectively. The map location of ZNF23 and ZNF32 placed these zinc finger protein genes near to chromosome loci that, under certain in vitro conditions, are expressed as fragile sites (FRA16B, FRA16C) and (FRA10D, FRA10A, FRA10B and FRA10E). Human zinc finger gene ZNF32 maps to a chromosome region on 10q23-24 in which deletions have been observed associated with malignant lymphoma on 10q22-23 and with carcinoma of the prostate on 10q24. ZNF23 is located on 16q22 in a chromosomal region that has been involved in chromosome alterations characteristic of acute myeloid leukemia. A second Kox zinc finger gene (ZNF19/KOX12) was recently mapped to the same chromosome region on human chromosome 16q22. In the analogous murine position, the murine zinc finger genes Zfp-1 and Zfp-4 are found in the syntenic 16q region of mouse chromosome 8. Thus, ZNF19 and ZNF23 might be members of an evolutionarily conserved zinc finger gene cluster located on human chromosome 16q22.  相似文献   

15.
Population cytogenetics of folate-sensitive fragile sites   总被引:2,自引:1,他引:1  
Summary The location and frequency of folate-sensitive common fragile sites (CFS) were studied in three populations: (1) 111 mentally retarded children of school age, (2) 240 mentally subnormal children attending special schools, and (3) 85 healthy children attending normal schools. Common fragile sites were found at 54 chromosomal bands including also the band Xq27, where gaps and breaks were detected in 4% of the children. The most frequent CFS were FRA3B (at 3p14.2), FRA6E (at 6q26), and FRA16D (at 16q23) seen in 73%, 65%, and 58% of the individuals totally studied. The frequencies of CFS-positive individuals did not differ among the populations. The variation found in the distribution of CFS among the populations was primarily assumed to be due to sampling differences and study method. The rate of expression of the most frequent CFS varied significantly among the individuals, seeming to suggest that polymorphism exists at those CFS.  相似文献   

16.
17.
Summary Six heterozygous carriers of a fragile site at 16q22 were available for the current study. We demonstrated that the observed fragile site was a BrdUrd-sensitive fra(16)(q22) or FRA16B, capable of spontaneous expression in some individuals (= spontaneous FRA16B). Significant differences either in spontaneous or in ethylmethane sulfonate (EMS)-induced sister chromatid exchange (SCE) frequencies were found between the fragile 16q22 site, whether expressed or not, and its homologous normal site. These data complement our previous findings on FRAXA and provide additional arguments indicating that fragility and SCE are variable cytogenetic expressions of the same DNA structural alteration.  相似文献   

18.
Molecular basis for expression of common and rare fragile sites   总被引:12,自引:0,他引:12       下载免费PDF全文
Fragile sites are specific loci that form gaps, constrictions, and breaks on chromosomes exposed to partial replication stress and are rearranged in tumors. Fragile sites are classified as rare or common, depending on their induction and frequency within the population. The molecular basis of rare fragile sites is associated with expanded repeats capable of adopting unusual non-B DNA structures that can perturb DNA replication. The molecular basis of common fragile sites was unknown. Fragile sites from R-bands are enriched in flexible sequences relative to nonfragile regions from the same chromosomal bands. Here we cloned FRA7E, a common fragile site mapped to a G-band, and revealed a significant difference between its flexibility and that of nonfragile regions mapped to G-bands, similar to the pattern found in R-bands. Thus, in the entire genome, flexible sequences might play a role in the mechanism of fragility. The flexible sequences are composed of interrupted runs of AT-dinucleotides, which have the potential to form secondary structures and hence can affect replication. These sequences show similarity to the AT-rich minisatellite repeats that underlie the fragility of the rare fragile sites FRA16B and FRA10B. We further demonstrate that the normal alleles of FRA16B and FRA10B span the same genomic regions as the common fragile sites FRA16C and FRA10E. Our results suggest that a shared molecular basis, conferred by sequences with a potential to form secondary structures that can perturb replication, may underlie the fragility of rare fragile sites harboring AT-rich minisatellite repeats and aphidicolin-induced common fragile sites.  相似文献   

19.
20.
DNA instability at chromosomal fragile sites in cancer   总被引:3,自引:0,他引:3  
Human chromosomal fragile sites are specific genomic regions which exhibit gaps or breaks on metaphase chromosomes following conditions of partial replication stress. Fragile sites often coincide with genes that are frequently rearranged or deleted in human cancers, with over half of cancer-specific translocations containing breakpoints within fragile sites. But until recently, little direct evidence existed linking fragile site breakage to the formation of cancer-causing chromosomal aberrations. Studies have revealed that DNA breakage at fragile sites can induce formation of RET/PTC rearrangements, and deletions within the FHIT gene, resembling those observed in human tumors. These findings demonstrate the important role of fragile sites in cancer development, suggesting that a better understanding of the molecular basis of fragile site instability is crucial to insights in carcinogenesis. It is hypothesized that under conditions of replication stress, stable secondary structures form at fragile sites and stall replication fork progress, ultimately resulting in DNA breaks. A recent study examining an FRA16B fragment confirmed the formation of secondary structure and DNA polymerase stalling within this sequence in vitro, as well as reduced replication efficiency and increased instability in human cells. Polymerase stalling during synthesis of FRA16D has also been demonstrated. The ATR DNA damage checkpoint pathway plays a critical role in maintaining stability at fragile sites. Recent findings have confirmed binding of the ATR protein to three regions of FRA3B under conditions of mild replication stress. This review will discuss recent advances made in understanding the role and mechanism of fragile sites in cancer development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号